ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (24,351)
  • Wiley  (24,351)
  • 2015-2019  (22,615)
  • 1950-1954  (1,736)
  • Geography  (23,815)
  • Economics  (779)
Collection
  • Articles  (24,351)
Years
Year
  • 1
    Publication Date: 1950-01-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1952-07-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1954-07-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1953-04-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1951-10-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1953-07-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1951-07-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1950-10-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1951-07-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1951-04-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 1950-10-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 1953-10-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 1951-10-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 1950-04-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 1954-10-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 1951-07-01
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley on behalf of Royal Meteorological Society.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-11
    Description: Anthropogenic activities have significantly altered atmospheric chemistry and changed the global mobility of key macronutrients. Here, we show that contemporary global patterns in nitrogen (N) and phosphorus (P) emissions drive large hemispheric variation in precipitation chemistry. These global patterns of nutrient emission and deposition (N:P) are in turn closely reflected in the water chemistry of naturally oligotrophic lakes ( r 2 =0.81, p 〈0.0001). Observed increases in anthropogenic N deposition play a role in nutrient concentrations ( r 2 =0.20, p 〈0.05); however, atmospheric deposition of P appears to be major contributor to this pattern ( r 2 =0.65, p 〈0.0001). Atmospheric simulations indicate a global increase in P deposition by 1.4 times the preindustrial rate largely due to increased dust and biomass burning emissions. Although changes in the mass flux of global P deposition are smaller than for N, the impacts on primary productivity may be greater because, on average, one unit of increased P deposition has 16X the influence of one unit of N deposition. These stoichiometric considerations, combined with the evidence presented here, suggest that increases in P deposition may be a major driver of alpine lake trophic status, particularly in the Southern Hemisphere. These results underscore the need for the broader scientific community to consider the impact of atmospheric phosphorus deposition on the water quality of naturally oligotrophic lakes.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-08-11
    Description: ABSTRACT Earthworm calcite granules (ECG) are secreted by several earthworm species, mostly Lumbricus terrestris and Lumbricus rubellus , which release them at the surface and in the upper part of soil horizons. For a long time, they have been found in various calcareous Quaternary deposits, but more recently in Western European loess sequences where they can be abundant in specific layers. In this study, we present the first continuous record of ECG abundance variations from two loess sequences in northern France dating from the last glacial period. The aim of this research is to evaluate the reliability of ECG as a new palaeoenvironmental proxy for the study of loess environments. ECG counts reveal a link between their abundance and the nature of stratigraphic units, i.e. very high abundances in tundra gley and boreal brown soil horizons and almost none in typical calcareous loess. These abundance variations are similar to those of terrestrial molluscs. The ECG signal thus suggests, along with sedimentological parameters (grain size index, calcium carbonate, total organic carbon), that milder climatic conditions occurred during the development of tundra gleys during the Upper Pleniglacial (∼20–35 ka), and of boreal brown soils during the Middle Pleniglacial (∼35–40 ka).
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-08-08
    Description: We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident or flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high performance DFN suite, dfnWorks , to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approach to simulate transport therein. Results show that after traveling through a pre-equilibrium region both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than two. The physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-08-08
    Description: Hydrologic ensemble forecasts driven by atmospheric ensemble prediction systems need statistical post-processing in order to account for systematic errors in terms of both location and spread. Runoff is an inherently multivariate process with typical events lasting from hours in case of floods to weeks or even months in case of droughts. This calls for multivariate post-processing techniques that yield well calibrated forecasts in univariate terms and ensure a realistic temporal dependence structure at the same time. To this end, the univariate ensemble model output statistics (EMOS) post-processing method is combined with two different copula approaches that ensure multivariate calibration throughout the entire forecast horizon. The domain of this study covers three sub-catchments of the river Rhine that represent different sizes and hydrological regimes: the Upper Rhine up to the gauge Maxau, the river Moselle up to the gauge Trier, and the river Lahn up to the gauge Kalkofen. In this study the two approaches to model the temporal dependence structure are ensemble copula coupling (ECC), which preserves the dependence structure of the raw ensemble, and a Gaussian copula approach (GCA), which estimates the temporal correlations from training observations. The results indicate that both methods are suitable for modelling the temporal dependencies of probabilistic hydrologic forecasts. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2015-08-08
    Description: A three-dimensional mathematical model that describes transport of contaminant in a horizontal aquifer with simultaneous diffusion into a fractured clay formation is proposed. A group of semi-analytical solutions is derived based on specific initial and boundary conditions as well as various source functions. The analytical model solutions are evaluated by numerical Laplace inverse transformation and analytical Fourier inverse transformation. The model solutions can be used to study the fate and transport in a three-dimensional spatial domain in which a non-aqueous phase liquid exists as a pool atop a fractured low permeability clay layer. The non-aqueous phase liquid gradually dissolves into the groundwater flowing past the pool, while simultaneously diffusing into the fractured clay formation below the aquifer. Mass transfer of the contaminant into the clay formation is demonstrated to be significantly enhanced by the existence of the fractures, even though the volume of fractures is relatively small compared to the volume of the clay matrix. The model solution is a useful tool in assessing contaminant attenuation processes in a confined aquifer underlain by a fractured clay formation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2015-08-12
    Description: The objective of this study is to incorporate a time-dependent SCS CN method (SMA_CN) in Soil and Water Assessment Tool (SWAT) and compare its performance with the existing CN method in SWAT by simulating the hydrology of two agricultural watersheds in Indiana, United States. Results show that fusion of the SMA_CN method causes decrease in runoff volume and increase in profile soil moisture content, associated with larger groundwater contribution to the streamflow. In addition, the higher amount of moisture in the soil profile slightly elevates the actual evapotranspiration. The SMA-based SWAT configuration consistently produces improved goodness of fit scores and less uncertain outputs with respect to streamflow during both calibration and validation. The SMA_CN method exhibits better match with the observed data for all flow regimes, thereby addressing issues related to peak and low flow predictions by SWAT in many past studies. Comparison of the calibrated model outputs with field-scale soil moisture observations reveal that the SMA overhauling enables SWAT to represent soil moisture condition more accurately, with better response to the incident rainfall dynamics. While the results from the modification of the SCS method in SWAT are promising, more studies including watersheds with various physical and climatic settings are needed to validate the proposed approach. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2015-08-12
    Description: We adapted Newton's Law of Cooling to model downstream water temperature change in response to stream-adjacent forest harvest on small and medium streams (average 327 ha in size) throughout the Oregon Coast Range, USA. The model requires measured stream gradient, width, depth and upstream control reach temperatures as inputs and contains two free parameters which were determined by fitting the model to measured stream temperature data. This model reproduces the measured downstream temperature responses to within 0.4 C ° for 15 of the 16 streams studied and provides insight into the physical sources of site-to-site variation among those responses. We also use the model to examine how the pre-to-post harvest change in daily maximum stream temperature depends on distance from the harvest reach. The model suggests that the pre-to-post harvest temperature change approximately 300  m downstream of the harvest will range from roughly 82% to less than 1% of that temperature change which occurred within the harvest reach, depending primarily on the downstream width, depth, and gradient. Using study-averaged values for these channel characteristics the model suggests that for a stream representative of those in the study, the temperature change approximately 300  m downstream of the harvest will be 56% of the temperature change which occurred within the harvest reach. This adapted Newton's Law of Cooling procedure represents a highly practical means for predicting stream temperature behavior downstream of timber harvests relative to conventional heat budget approaches, and is informative of the dominant processes affecting stream temperature. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2015-08-13
    Description: Extraction of oil and natural gas (hydrocarbons) from shale is increasing rapidly in North America, with documented impacts to native species and ecosystems. With shale oil and gas resources on nearly every continent, this development is set to become a major driver of global land-use change. It is increasingly critical to quantify spatial habitat loss driven by this development to implement effective mitigation strategies and develop habitat offsets. Habitat selection is a fundamental ecological process, influencing both individual fitness and population-level distribution on the landscape. Examinations of habitat selection provide a natural means for understanding spatial impacts. We examined the impact of natural gas development on habitat selection patterns of mule deer on their winter range in Colorado. We fit resource selection functions in a Bayesian hierarchical framework, with habitat availability defined using a movement-based modeling approach. Energy development drove considerable alterations to deer habitat selection patterns, with the most substantial impacts manifested as avoidance of well pads with active drilling to a distance of at least 800 m. Deer displayed more nuanced responses to other infrastructure, avoiding pads with active production and roads to a greater degree during the day than night. In aggregate, these responses equate to alteration of behavior by human development in over 50% of the critical winter range in our study area during the day and over 25% at night. Compared to other regions, the topographic and vegetative diversity in the study area appear to provide refugia that allow deer to behaviorally mediate some of the impacts of development. This study, and the methods we employed, provides a template for quantifying spatial take by industrial activities in natural areas and the results offer guidance for policy makers, mangers, and industry when attempting to mitigate habitat loss due to energy development.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2015-08-13
    Description: To quantify the balance between new production and vertical nitrogen export of sinking particles, we measured nitrate uptake, net nitrate drawdown, ΔO 2 /Ar-based net community production, sediment trap flux, and 234 Th export at a coastal site near Palmer Station, Antarctica during the phytoplankton growing season from October 2012 to March 2013. We also measured nitrate uptake and 234 Th export throughout the northern western Antarctic Peninsula (WAP) region on a cruise in January 2013. We used a non-steady state 234 Th equation with temporally-varying upwelling rates and an irradiance-based phytoplankton production model to correct our export and new production estimates in the complex coastal site near Palmer Station. Results unequivocally showed that nitrate uptake and net community production were significantly greater than the sinking particle export on region-wide spatial scales and season-long temporal scales. At our coastal site, new production (105±17.4 mg N m −2 d −1 , mean±st.err.) was 5.3 times greater than vertical nitrogen export (20.4±2.4 mg N m −2 d -1 ). On the January cruise in the northern WAP, new production (47.9±14.4 mg N m −2 d -1 ) was 2.4 times greater than export (19.9±1.4 mg N m −2 d −1 ). Much of this imbalance can be attributed to diffusive losses of particulate nitrogen from the surface ocean due to diapycnal mixing, indicative of a “leaky” WAP ecosystem. If these diffusive losses are common in other systems where new production exceeds export, it may be necessary to revise current estimates of the ocean's biological pump.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2015-08-14
    Description: ABSTRACT Cores of coastal drumlins in Connemara contain stratified diamictons that interdigitate with gravelly clinoforms and finer grained rhythmites. The diamictons are interpreted as subaqueous mud apron deposits delivered by subglacial till advection to continuously failing subaqueous ice-contact fans, whose strata were being syn-depositionally over-steepened by glacitectonic deformation. The localized nature of the stratified sediments reflects the emergence of subglacial deforming tills and meltwater deposits in a glacilacustrine environment to produce interdigitated mass flow diamictons and grounding line fans/wedges. These depo-centres became glacitectonized and subglacially streamlined during glacier overriding and hence regional drumlin sedimentology reflects the varying degrees of inheritance of pre-existing glacigenic deposits and suggests that drumlin production relates more to the position of localized sediment accumulations at the glacier bed than full-depth till deformation processes (e.g. instability mechanisms) within the same drumlin field. Till cored drumlins give way down ice to stratified cored drumlins with till caps and then to stratified drumlins. This zonation is compatible with the increased lateral variability in drumlin composition that would arise from the occurrence of linear assemblages of glacifluvial (esker) and subaqueous (grounding line) sediments in an otherwise marginal-thickening till sheet.
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2015-08-15
    Description: Digital elevation models (DEMs) that are used in hydrological applications must be processed to remove sinks, mainly topographic depressions. Flow enforcement techniques include filling methods, which raise elevations within depressions, breaching, which carves channels through blockages, and hybrid methods. Despite previous research demonstrating the large impact to DEMs and subsequent analyses of depression filling, it is common practice apply this technique to flow enforcement. This is partly due to the greater efficiency of depression filling tools compared to breaching counterparts, which often limits breaching to applications of small- to moderate-sized DEMs. A new hybrid flow enforcement algorithm is presented in this study. The method can be run in complete breaching, selective breaching (either breached or filled), or constrained breaching (partial breaching) modes, allowing for greater flexibility in how practitioners enforce continuous flow paths. Algorithm performance was tested with DEMs of varying topography, spatial extents, and resolution. The sites included three moderate sized DEMs (52,000,000 to 190,000,000 cells) and three massive DEMs of the Iberian Peninsula, and the Amazon and Nile River basins, the largest containing nearly one billion cells. In complete breaching mode, the new algorithm required 87% of the time needed by a filling method to process the test DEMs, while the selective breaching and constrained breaching modes, operating with maximum breach depth constraints, increased run times by 8% and 27% respectively. Therefore, the new algorithm offers comparable performance to filling and the ability to process massive topographic data sets, while giving practitioners greater flexibility and lowering DEM impact. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2015-08-16
    Description: Cover: In Somes and Oschlies [doi 10.1002/2014GB005050 ], comparison of surface (0–50m) (a) map and (b) zonally averaged DON observations [Letscher et al., 2013] with annual semirecalcitrant DON from the model experiments (c) Redfield DOM (RedDOM), (d) preferential DOP remineralization (pref_DOP_remin), (e) preferential DOP recycling and phytoplankton DOP uptake (nonRedDOP), (f ) non-Redfield DOP with low DOM production (low_nonRedDOP), (g) non-Redfield DOP with high DOM production (high_nonRedDOP), and (h) fast recycling non-Redfield DOP (fast_nonRedDOP). Note that the zonally averaged model results in (b) are taken only from locations where observations exist. See pp. 973–993.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2015-07-30
    Description: ABSTRACT A multiproxy Lateglacial environmental record is presented for a ca. 3.5-m lacustrine sequence retrieved from a small basin (ca. 2 km 2 ) at Thomastown Bog in County Meath, Ireland. Sediment chemistry, pollen, chironomid and stable isotope data provide a detailed picture of catchment and lake system changes from the end of the last glacial (GS-2a) to the early Holocene that correspond closely to existing local and regional models of climate change. Concomitant adjustments in independent proxy records are matched to the NGRIP oxygen isotope curve giving 12 event-episodes ranging from major climatic shifts to lower amplitude, centennial- to sub-centennial-scale adjustments, including a previously unreported regressive period of landscape instability during the north-west European ‘Rammelbeek Phase’. The study emphasizes the potential of palaeoenvironmental reconstruction from sediment chemistry where the sediment mixing system reflects autochthonous versus allochthonous inputs. The investigation also indicates problems of interpreting isotope data derived from bulk marl due to possible lag effects controlling the delivery of soil and groundwater and multiple sources of HCO 3– (aq.). These research findings have implications for core site selection and for studies attempting to use stable isotopes for correlation purposes.
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2015-08-04
    Description: Although long-distance migratory songbirds are widely believed to be at risk from warming temperature trends, species capable of attempting more than one brood in a breeding season could benefit from extended breeding seasons in warmer springs. To evaluate local and global factors affecting population dynamics of the black-throated blue warbler ( Setophaga caerulescens ), a double-brooded long-distance migrant, we used Pradel models to analyze 25 years of mark-recapture data collected in New Hampshire, USA. We assessed the effects of spring temperature (local weather) and the El Niño Southern Oscillation index (a global climate cycle), as well as predator abundance, insect biomass, and local conspecific density on population growth in the subsequent year. Local and global climatic conditions affected warbler populations in different ways. We found that warbler population growth was lower following El Niño years (which have been linked to poor survival in the wintering grounds and low fledging weights in the breeding grounds) than La Niña years. At a local scale, populations increased following years with warm springs and abundant late-season food, but were unaffected by spring temperature following years when food was scarce. These results indicate that the warming temperature trends might have a positive effect on recruitment and population growth of black-throated blue warblers if food abundance is sustained in breeding areas. In contrast, potential intensification of future El Niño events could negatively impact vital rates and populations of this species. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2015-08-04
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2015-08-05
    Description: The direct respiration of sinking organic matter by attached bacteria is often invoked as the dominant sink for settling particles in the mesopelagic ocean. However, other processes, such as enzymatic solubilization and mechanical disaggregation, also contribute to particle flux attenuation by transferring organic matter to the water column. Here, we use observations from the North Atlantic Ocean, coupled to sensitivity analyses of a simple model, to assess the relative importance of particle-attached microbial respiration compared to the other processes that can degrade sinking particles. The observed carbon fluxes, bacterial production rates, and respiration by water column and particle-attached microbial communities each spanned more than an order of magnitude. Rates of substrate-specific respiration on sinking particle material ranged from 0.007 ± 0.003 to 0.173 ± 0.105 d -1 . A comparison of these substrate-specific respiration rates with model results suggested sinking particle material was transferred to the water column by various biological and mechanical processes nearly 3.5 times as fast as it was directly respired. This finding, coupled with strong metabolic demand imposed by measurements of water column respiration (729.3 ± 266.0 mg C m -2 d -1 , on average, over the 50 to 150 m depth interval), suggested a large fraction of the organic matter evolved from sinking particles ultimately met its fate through subsequent remineralization in the water column. At three sites, we also measured very low bacterial growth efficiencies and large discrepancies between depth-integrated mesopelagic respiration and carbon inputs.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2015-08-05
    Description: Mountain snowpacks provide most of the annual discharge of western U.S. rivers, but the future of water resources in the western U.S. is tenuous, as climatic changes have resulted in earlier spring melts that have exacerbated summer droughts. Compounding changes to the physical environment are biotic disturbances including the mountain pine beetle (MPB), which has decimated millions of acres of western North American forests. At the watershed scale, MPB disturbance increases the peak hydrograph, and at the stand scale the ‘gray’ phase of MPB canopy disturbance decreases canopy snow interception, increases snow albedo, increases net shortwave radiation and decreases net longwave radiation versus the ‘red’ phase. Fewer studies have been conducted on the red phase of MPB disturbance, and in the mixed coniferous stands that may follow MPB-damaged forests. We measured the energy balance of four snowpacks representing different stages of MPB damage, management, and recovery: a lodgepole pine stand, a MPB-infested stand in the red phase, a mixed coniferous stand (representing one successional trajectory), and a clearcut (representing reactive management) in the Tenderfoot Creek Experimental Forest in Montana, USA. Net longwave radiation was lower in the MPB-infested stand despite higher basal area and plant area index of the other forests, suggesting that the dessicated needles serve as a less effective thermal buffer against longwave radiative losses. Eddy covariance observations of sensible and latent heat flux indicate that they are of similar but opposite magnitude, on the order of 20 MJ m −2 during the melt period. Further analyses reveal that net turbulent energy fluxes were near zero due to the temperature and atmospheric vapor pressure encountered during the melt period. Future research should place snow science in the context of forest succession and management, and address important uncertainties regarding the timing and magnitude of needlefall events. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2015-08-05
    Description: Ecotones are transition zones that form, in forests, where distinct forest types meet across a climatic gradient. In mountains, ecotones are compressed and act as potential harbingers of species shifts that accompany climate change. As the climate warms in New England, USA, high elevation boreal forests are expected to recede upslope, with northern hardwood species moving up behind. Yet recent empirical studies present conflicting findings on this dynamic, reporting both rapid upward ecotonal shifts and concurrent increases in boreal species within the region. These discrepancies may result from the limited spatial extent of observations. We developed a method to model and map the montane forest ecotone using Landsat imagery to observe change at scales not possible for plot-based studies, covering mountain peaks over 39,000 km 2 . Our results show that ecotones shifted downward or stayed stable on most mountains between 1991 and 2010, but also shifted upward in some cases (13-15% slopes). On average, upper ecotone boundaries moved down -1.5 m·yr −1 in the Green Mountains, VT, and -1.3 m·yr −1 in the White Mountains, NH. These changes agree with re-measured forest inventory data from Hubbard Brook Experimental Forest, NH and suggest that processes of boreal forest recovery from prior red spruce decline, or human landuse and disturbance, may swamp out any signal of climate-mediated migration in this ecosystem. This approach represents a powerful framework for evaluating similar ecotonal dynamics in other mountainous regions of the globe. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2015-08-05
    Description: In order to adequately monitor biodiversity trends through time and their responses to natural or anthropogenic impacts, researchers require long time series that are often unavailable. This general lack of datasets that are several decades or longer makes establishing a background or baseline of diversity metrics difficult – especially when attempting to understand species composition changes against a backdrop of climate and ecological variability. Here we present an analysis of a community of juvenile nearshore fishes based on nearly 8 decades of highly standardized Norwegian survey records. Using multivariate statistical techniques, we: a) characterize the change in taxonomic community composition through time, b) determine whether there has been an increase in warm water affinity species relative to their cold water affinity counterparts, and c) characterize the temporal change in the species’ functional trait assemblage. Our results strongly indicate a shift towards a novel fish assemblage between the late 1990s and 2000s. The context of changes within the most recent two decades are in stark contrast to those during the 60s and 70s, but similar to those during the previous warm period during the 30s and 40s. This novel assemblage is tightly linked to the warming temperatures in the region portrayed by the increased presence of warm water species and a higher incidence of pelagic, planktivorous species. The results indicate a clear influence of ocean temperature on the region's juvenile fish community that points to climate mediated effects on the species assemblages of an important fish nursery area. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2015-07-29
    Description: This paper investigates the use of a particle filter for data assimilation with a full scale coupled ocean–atmosphere general circulation model. Synthetic twin experiments are performed to assess the performance of the equivalent weights filter in such a high-dimensional system. Artificial 2-dimensional sea surface temperature fields are used as observational data every day. Results are presented for different values of the free parameters in the method. Measures of the performance of the filter are root mean square errors, trajectories of individual variables in the model and rank histograms. Filter degeneracy is not observed and the performance of the filter is shown to depend on the ability to keep maximum spread in the ensemble.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2015-07-29
    Description: This work focuses on the implementation of a Shallow Water-Exner model for compound natural channels with complex geometry and movable bed within the finite volume framework. The model is devised for compound channels modeling: cross-section overbanks are treated with fixed bed conditions, while the main channel is left free to modify its morphology. A capacitive approach is used for bedload transport modeling, in which the solid flow rates are estimated with bedload transport formulas. The model equations pose some numerical issues in the case of natural channels, where bedload transport may occur for both subcritical and supercritical flows and geometry varies in space. An explicit path-conservative scheme, designed to overcome all these issues, is presented in the paper. The scheme solves liquid and solid phases dynamics in a coupled manner, in order to correctly model near critical currents/channel interactions and is well-balanced, that is able to properly reproduce steady states. The Roe and Osher Riemann solvers are implemented, so as to take into account the spatial geometry variations of natural channels. The scheme reaches up to 2 nd order accuracy. Validation is performed with fixed and movable bed test cases whose analytical solution is known, and with flume experimental data. An application of the model to a real case study is also shown. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2015-08-05
    Description: In this paper we use a physical modelling approach to explore the effect of lateral confinement on gravel bed river planform style, bed morphology, and sediment transport processes. A set of 27 runs was performed in a large flume (25 m long, 2.9 m wide), with constant longitudinal slope (0.01) and uniform grain size (1 mm), changing the water discharge (1.5 to 2.5 l/s) and the channel width (0.15 m to 1.5 m) to model a wide range of channel configurations, from narrow, straight, embanked channels to wide braided networks. The outcomes of each run were characterized by a detailed digital elevation model describing channel morphology, a map of dry areas and areas actively transporting sediment within the channel, and continuous monitoring of the amount of sediment transported through the flume outlet. Analysis reveals strong relationships between unit stream power and parameters describing the channel morphology. In particular, a smooth transition is observed between narrow channels with an almost rectangular cross section profile (with sediment transport occurring across the entire channel width) and complex braided networks where only a limited proportion (30%) of the bed is active. This transition is captured by descriptors of the bed elevation frequency distribution, e.g. standard deviation, skewness and kurtosis. These summary statistics represent potentially useful indicators of bed morphology that are compared with other commonly used summary indicators such as the braiding index and the type and number of bars. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2015-08-07
    Description: Knowledge about the annual and seasonal patterns of organic and inorganic carbon (C) exports from the major rivers of the world to the coastal ocean are essential for our understanding and potential management of the global C budget so as to limit anthropogenic modification of global climate. Unfortunately our predictive understanding of what controls the timing, magnitude and quality of carbon export is still rudimentary. Here we use a process-based coupled hydrologic/ecosystem biogeochemistry model (the Dynamic Land Ecosystem Model, DLEM) to examine how climate variability and extreme events, changing land use, and atmospheric chemistry have affected the annual and seasonal patterns of C exports from the Mississippi River basin to the Gulf of Mexico. Our process-based simulations estimate that the average annual exports of dissolved organic C (DOC), particulate organic C (POC), and dissolved inorganic C (DIC) in the 2000s was 2.6 ± 0.4 Tg C yr −1 , 3.4 ± 0.3 Tg C yr −1 and 18.8 ± 3.4 Tg C yr −1 , respectively. Although land-use change was the most important agent of change in C export over the past century, climate variability and extreme events (such as flooding and drought) were primarily responsible for seasonal and interannual variations in C export from the basin. The maximum seasonal export of DIC occurred in summer while for maximum DOC and POC occurred in winter. Relative to the 10-year average (2001–2010), our modeling analysis indicates that the years of maximal and minimal C export co-occurred with wet and dry years (2008: 32% above average and 2006: 32% below average). Given IPCC-predicted changes in climate variability and the severity of rain events and droughts of wet and dry years for the remainder of the 21 st Century, our modeling results suggest major changes in the riverine link between the terrestrial and oceanic realms, which are likely to have a major impact on carbon delivery to the coastal ocean.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2015-08-08
    Description: Forecast models have seen vast improvements in recent years, via both increased resolutions and the ability to assimilate observational data, particularly that which has been affected by clouds and precipitation. The High-Resolution Rapid Refresh (HRRR) model is an hourly-updated, 3km model designed for forecasting convective precipitation recently deployed for operational use in the US that initializes latent heating profiles as a function of assimilated radar reflectivity. An object oriented verification process was developed to validate experimental HRRR convective precipitation forecasts during the 2013 warm season using the NCEP StageIV multi sensor precipitation product. A database of 467 convective precipitation features that were observed during the forecast assimilation period and their corresponding HRRR forecast precipitation features was created. This database was used to evaluate model performance over the entire forecast period, and to relate that performance to model processes, especially those related to precipitation production. Generally, HRRR precipitation is located within 30 km of the observed throughout the forecast period. Validation statistics are best at forecast hour 3, with median biases in mean, maximum, and total rainfall and raining area near 0%. Earlier in the forecast, median biases in the mean and maximum rain rate exceed 30%, with bias values often exceeding 150%. The median bias in areal extent at the beginning of the forecast is near -40%. This low areal bias and POD values textless ˂0.6 appear to be related to the model's ability to produce deep convection relative to atmospheric moisture content and concentration of rainfall in convective cores. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1942-2466
    Topics: Geography , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2015-08-08
    Description: This study compares the relations between solar radiation and air and ground temperatures in the Quartermain Mountains of the McMurdo Dry Valleys of Antarctica with those in ice-free Victoria Land and Arctic Canada. The surface offset is near 0°C at all sites in the Quartermain Mountains and other sites in coastal Victoria Land, whereas the thermal offset is near 0°C at shallow ice table depths (〈 20 cm) and near 1°C for ice tables deeper than the depth of diurnal temperature variation. The surface and thermal offsets in Victoria Land differ markedly from those in Arctic Canada, which are generally characterised by a positive surface offset and a negative thermal offset. These important differences highlight the effects of a lack of vegetation, surface organic layer, snow cover and moisture content in near-surface soils on the direction and magnitude of surface and thermal offsets. Summer ground surface temperatures in the Quartermain Mountains correlate strongly with incoming solar radiation. Based on measured ground surface temperatures and modelled potential incoming solar radiation, two zones with distinct ground surface temperatures are defined in the Quartermain Mountains: (i) perennially cryotic zones (PCZs) characterised by ground surface temperatures always below 0°C; and (ii) seasonally non-cryotic zones (NCZs) characterised by ground surface temperatures 〉 0°C for at least a few hours. Soils in the PCZs experience water exchange through vapour diffusion, whereas soils in the NCZs contain features associated with liquid water activity, such as increased soil moisture and frozen ponds recharged by snow/glacier meltwater. Copyright © 2015 John Wiley & Sons, Ltd.
    Print ISSN: 1045-6740
    Electronic ISSN: 1099-1530
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2015-08-08
    Description: A 5.4 m long sediment core was collected from Belbín, a karstic depression dammed by a moraine in a mid-altitude environment in the Western Massif of the Picos de Europa of the Cantabrian Mountains, northern Spain. 14 C AMS dating of the basal sediments in the core suggests that the maximum glacier advance during the last glacial cycle preceded the global Last Glacial Maximum and occurred prior to 37.2 ka cal BP. Four environmental stages are reconstructed from analysis of the sediment core and in particular the surface microstructures on quartz sand grains: (1) 37.2–29.4 ka was characterised by intense periglacial activity with deposition of slope deposits; (2) 29.4–22.6 ka saw the gradual infilling of the depression with sediment; (3) 22.6–8.1 ka was associated with a palaeolake; and (4) since 8.1 ka, terrestrialisation of the palaeolake commenced, and human impact related to fire activity started around 4.9 ka. Microstructures on the surface of quartz grains suggest different intensity patterns of frost weathering processes in response to Late Quaternary climate oscillations. Copyright © 2015 John Wiley & Sons, Ltd.
    Print ISSN: 1045-6740
    Electronic ISSN: 1099-1530
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2015-08-18
    Description: High Arctic landscapes are expansive and changing rapidly. However our understanding of their functional responses and potential to mitigate or enhance anthropogenic climate change is limited by few measurements. We collected eddy covariance measurements to quantify the net ecosystem exchange (NEE) of CO 2 with polar semidesert and meadow wetland landscapes at the highest-latitude location measured to date (82°N). We coupled these rare data with ground and satellite vegetation production measurements (Normalized Difference Vegetation Index; NDVI) to evaluate the effectiveness of upscaling local to regional NEE. During the growing season, the dry polar semidesert landscape was a near zero sink of atmospheric CO 2 (NEE: -0.3±13.5 g C m −2 ). A nearby meadow wetland accumulated over 300 times more carbon (NEE: -79.3±20.0 g C m −2 ) than the polar semidesert landscape, and was similar to meadow wetland NEE at much more southerly latitudes. Polar semidesert NEE was most influenced by moisture, with wetter surface soils resulting in greater soil respiration and CO 2 emissions. At the meadow wetland, soil heating enhanced plant growth, which in turn increased CO 2 uptake. Our upscaling assessment found that polar semidesert NDVI measured on site was low (mean: 0.120-0.157) and similar to satellite measurements (mean: 0.155-0.163). However, weak plant growth resulted in poor satellite NDVI-NEE relationships and created challenges for remotely-detecting changes in the cycling of carbon on the polar semidesert landscape. The meadow wetland appeared more suitable to assess plant production and NEE via remote-sensing, however high Arctic wetland extent is constrained by topography to small areas that may be difficult to resolve with large satellite pixels. We predict that until summer precipitation and humidity increases substantially, climate-related changes of dry high Arctic landscapes may be restricted by poor soil moisture retention, and therefore have some inertia against short-term changes in NEE. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2015-08-19
    Description: We believe that there are too many models in hydrology and we should ask ourselves the question, if we are currently wasting time and effort in developing another model again instead of focusing on the development of a community hydrological model. In other fields this kind of models have been quite successful, but due to several reasons, no single community model has been developed in the field of hydrology yet. The concept, strength and weakness of a community model was discussed at the Chapman Conference on Catchment Spatial Behaviour and Complex Organisation held in Luxembourg in September 2014. This discussion as well as out own opinions about the potential of a community models, or at least the necessary discussion to establish one are debated in this commentary. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2015-08-21
    Description: ABSTRACT Datasets containing large numbers (〉10,000) of glacial lineaments are increasingly being mapped from remotely sensed data in order to develop a palaeo-glacial reconstruction or “inversion”. The palimpsest landscape presents a complex record of past ice flow and deconstructing this information into a logical history is an involved task. One stage in this process requires the identification of sets of genetically linked lineaments that can form the basis of a reconstruction. This paper presents a semi-automated algorithm, CLustre, for lineament clustering that uses a locally adaptive, region growing, methodology. After outlining the algorithm, it is tested on synthetic datasets that simulate parallel and orthogonal cross-cutting lineaments, encompassing 1,500 separate classifications. Results show robust classification in most scenarios, although parallel overlap of lineaments can cause false positive classification unless there are differences in lineament length. Case studies for Dubawnt Lake and Victoria Island, Canada, are presented and compared to existing datasets. For Dubawnt Lake 9 out of 14 classifications directly match incorporating 89% of lineaments. For Victoria Island 57 out of 58 classifications directly match incorporating 95% of lineaments. Differences are related to small numbers of unclassified lineaments and parallel cross-cutting lineaments that are of a similar length. CLustre enables the automated, repeatable, assignment of lineaments to flow sets using defined user criteria. This is important as qualitative visual interpretation may introduce bias, potentially weakening the testability of palaeo-glacial reconstructions. In addition, once classified, summary statistics of lineament clusters can be calculated and subsequently used during the reconstruction process. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2015-08-21
    Description: Soil surface sealing is a widespread natural process occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water uptake (VWU). This effect is investigated here using experimental data, 2D physically based modelling and a long-term climatic dataset from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes VWU parameters for the dominant shrub at the study site ( Sarcopoterium spinosum ) were acquired using lysimeter experiments. The results indicate that during the season surface sealing could either increase or decrease VWU depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on inter-annual variability of the seal layer effect on VWU, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. The seal layer was found to reduce the period where the vegetation was under water stress by 31% compared with unsealed conditions. This effect was more pronounced for seasons with total rainfall depth higher than 10 cm/y, and was affected by interseasonal climatic variability. These results shed light on the importance of surface sealing in dry environments and its contribution to the resilience of woody vegetation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2015-08-23
    Description: Urban areas are expanding rapidly in tropical regions, with potential to alter ecosystem dynamics. In particular, exotic grasses and atmospheric nitrogen (N) deposition simultaneously affect urbanized landscapes, with unknown effects on properties like soil carbon (C) storage. We hypothesized that: (H1.) Soil nitrate (NO 3 - ) is elevated nearer to the urban core, reflecting N deposition gradients. (H2.) Exotic grasslands have drier soils, elevated NO 3 - , and decreased soil C relative to secondary forests, with higher N promoting decomposer activity. (H3.) Exotic grasslands have greater seasonality in soil NO 3 - versus secondary forests, due to higher sensitivity of grassland soil moisture to rainfall. We predicted that NO 3 - would be related to dissolved organic C (DOC) production via changes in decomposer activity. We measured six paired grassland/secondary-forest sites along a tropical urban-to-rural gradient during three dominant seasons (hurricane, dry, and early wet). We found that: (1.) Soil NO 3 - was generally elevated near the urban core, with particularly clear spatial trends for grasslands. (2.) Exotic grasslands had lower soil C than secondary forests, which was related to elevated decomposer enzyme activities and soil respiration. Unexpectedly, soil NO 3 - was negatively related to enzyme activities, and was higher in forests than grasslands. (3.) Grasslands had greater soil NO 3 - seasonality versus forests, but this was not strongly linked to shifts in soil moisture or DOC. Our results suggest that exotic grasses in tropical regions are likely to drastically reduce soil C storage, but that N deposition may have an opposite effect via suppression of enzyme activities. However, soil NO 3 - accumulation here was higher in urban forests than grasslands, potentially due to an interplay of aboveground N interception and soil processes. Net urban effects on C storage across tropical landscapes will likely vary depending on rates of N deposition, the mosaic of land covers, and responses by local decomposer communities. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2015-08-25
    Description: Soils are subject to varying degrees of direct or indirect human disturbance, constituting a major global change driver. Factoring out natural from direct and indirect human influence is not always straightforward, but some human activities have clear impacts. These include land use change, land management, and land degradation (erosion, compaction, sealing and salinization). The intensity of land use also exerts a great impact on soils, and soils are also subject to indirect impacts arising from human activity, such as acid deposition (sulphur and nitrogen) and heavy metal pollution. In this critical review, we report the state-of-the-art understanding of these global change pressures on soils, identify knowledge gaps and research challenges, and highlight actions and policies to minimise adverse environmental impacts arising from these global change drivers. Soils are central to considerations of what constitutes sustainable intensification. Therefore, ensuring that vulnerable and high environmental value soils are considered when protecting important habitats and ecosystems, will help to reduce the pressure on land from global change drivers. To ensure that soils are protected as part of wider environmental efforts, a global soil resilience programme should be considered, to monitor, recover or sustain soil fertility and function, and to enhance the ecosystem services provided by soils. Soils cannot, and should not, be considered in isolation of the ecosystems that they underpin and vice versa. The role of soils in supporting ecosystems and natural capital needs greater recognition. The lasting legacy of the International Year of Soils in 2015 should be to put soils at the centre of policy supporting environmental protection and sustainable development. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2015-08-25
    Description: As a result of climate change/variation and its aggravation by human activities over the past several decades, the hydrological conditions in the middle Yellow River in China have dramatically changed, which has led to a sharp decrease of streamflow and the drying up of certain tributaries. This paper simulated and analysed the impact of sediment-trapping dams (STDs, a type of large-sized check dam used to prevent sediment from entering the Yellow River main stem) on hydrological processes, and the study area was located in the 3,246 km 2 Huangfuchuan (HFC) River basin. Changes in the hydrological processes were analysed, and periods of natural and disturbed states were defined. Subsequently, the number and distribution of the STDs were determined based on data collected from statistical reports and identified from remote sensing images, and the topological relationships between the STDs and high-resolution river reaches were established. A hydrological model, the Digital Yellow River Integrated Model, was used to simulate the STD impact on the hydrological processes, and the maximum STD impact was evaluated through a comparison between the simulation results with and without the STDs, which revealed that the interception effect of the STDs contributed to the decrease of the streamflow by approximately 39%. This paper also analysed the relationship between the spatial distribution of the STDs and rainfall in the HFC River basin and revealed that future soil and water conservation measures should focus on areas with a higher average annual rainfall and higher number of rainstorm hours. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2015-08-25
    Description: The response of soil organic carbon (SOC) pools to globally rising surface temperature crucially determines the feedback between climate change and the global carbon cycle. However, there is a lack of studies investigating the temperature sensitivity of decomposition for decadally cycling SOC which is the main component of total soil carbon stock and the most relevant to global change. We tackled this issue by using two decadally 13 C-labeled soils and a much improved measuring system in a long-term incubation experiment. Results indicated that the temperature sensitivity of decomposition for decadally-cycling SOC (〉 23 years in one soil and 〉 55 years in the other soil) was significantly greater than that for faster-cycling SOC (〈 23 or 55 years) or for the entire SOC stock. Moreover, decadally-cycling SOC contributed substantially (35-59%) to the total CO 2 loss during the 360-day incubation. Overall, these results indicate that the decomposition of decadally-cycling SOC is highly sensitive to temperature change, which will likely make this large SOC stock vulnerable to loss by global warming in the 21 st century and beyond. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2015-08-23
    Description: Female salmonids bury and lay their eggs in streambeds by digging a pit, which is then covered with sediment from a second pit. The spawning process alters streambed topography, winnows fine sediment, and mixes sediment in the active layer. The resulting egg nests (redds) contain coarser and looser sediments than those of unspawned streambed areas, and display a dune-like shape with an amplitude and length that vary with fish size, substrate conditions, and flow conditions. Redds increase local bed surface roughness (〈10 −1 channel width, W ), but may reduce the size of macro-bedforms by eroding reach scale topography (10 ° -10 1 W ). Research has suggested that spawning may increase flow resistance due to redd form drag, resulting in lower grain shear stress and less particle mobility. Spawning however also prevents streambed armoring through surface and subsurface material mixing, potentially increasing particle mobility. Here, we use 2-dimensional hydraulic modeling with detailed pre- and post-spawning bathymetries and field observations to test the effect of small spawning salmonids on sediment transport. Our results show that topographical roughness added by small-bodied salmon redds has negligible effects on shear stress at the reach-unit scale, and limited effects at the local scale. Conversely, our results indicate sediment mixing reduces armoring and enhances sediment mobility, which increases potential bed load transport by subsequent floods. River restoration in fish-bearing streams should take into consideration the effects of redd excavation on channel stability. This is particularly important for streams that historically supported salmonids, and at present are the focus of habitat restoration actions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2015-08-19
    Description: Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses and NGOs for modelled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally, and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ∼90 m resolution for the whole terrestrial land surface between 56˚S and 60˚N, and results are validated against high resolution government flood hazard datasets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ∼1 km, mean absolute error in flooded fraction falls to ∼5%. The full complexity global model contains an automatically parameterised subgrid channel network, and comparison to both a simplified 2D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. Whilst careful processing of existing global terrain datasets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain datasets will offer the best prospect for a step-change improvement in model performance. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2015-08-20
    Description: We designed simulations for the high-temperature event that occurred on 23 July 2003 in East China using a series of forecast lead times, from short-range to medium-range, and four land surface schemes (LSSs) (i.e., SLAB, NOAH, RUC, and PX) in the Weather Research and Forecasting Model (WRF), Version 3. The sensitivities of short- and medium-range simulations to the LSSs systematically varied with the lead times. In general, the model reproduced short-range, high-temperature distributions. The simulated weather was sensitive to the LSSs, and the LSS-induced sensitivity was higher in the medium range than in the short range. Furthermore, the LSS performances were complex, i.e., the PX errors apparently increased in the medium range (longer than 6 days), RUC produced the maximum errors, and SLAB and NOAH had approximately equivalent errors that slightly increased. Additional sensitivity simulations revealed that the WRF modeling system assigns relatively low initial soil moisture for RUC and that soil moisture initialization plays an important role that is comparable to the LSS choice in the simulations. LSS-induced negative feedback between surface air temperature (SAT) and atmospheric circulation in the lower atmosphere was found in the medium range. These sensitivities were mainly caused by the LSS-induced differences in surface sensible heat flux and by errors associated with the lead times. Using the SAT equation, further diagnostic analyses revealed LSS deficiencies in simulating surface fluxes and physical processes that modify the SAT and indicated the main reasons for these deficiencies. These results have implications for model improvement and application. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1942-2466
    Topics: Geography , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2015-08-21
    Description: ABSTRACT Large wood tends to be deposited in specific geomorphic units within rivers. Nevertheless, predicting the spatial distribution of wood deposits once wood enters a river is still difficult because of the inherent complexity of its dynamics. In addition, the lack of long-term observations or monitored sites has usually resulted in a rather incomplete understanding of the main factors controlling wood deposition under natural conditions. In this study, the deposition of large wood was investigated in the Czarny Dunajec River, Polish Carpathians, by linking numerical modelling and field observations so as to identify the main factors influencing wood retention in rivers. Results show that wood retention capacity is higher in unmanaged multi-thread channels than in channelized, single-thread reaches. We also identify preferential sites for wood deposition based on the probability of deposition under different flood scenarios, and observe different deposition patterns depending on the geomorphic configuration of the study reach. In addition, results indicate that wood is not always deposited in the geomorphic units with the highest roughness, except for low-magnitude floods. We conclude that wood deposition is controlled by flood magnitude and the elevation of flooded surfaces in relation to the low-flow water surface. In that sense, the elevation at which wood is deposited in rivers will differ between floods of different magnitude. Therefore, together with the morphology, flood magnitude represents the most significant control on wood deposition in mountain rivers wider than the height of riparian trees. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2015-08-21
    Description: ABSTRACT This paper presents a comparison between two methods for estimating shear stress in an atmospheric internal boundary layer over a beach surface under optimum conditions, using wind velocities measured synchronously at 13 heights over a 1.7 m vertical array using ultrasonic anemometry. The Reynolds decomposition technique determines at-a-point shear stresses at each measurement height, while the Law-of-the-Wall yields a single boundary layer estimate based on fitting a logarithmic velocity profile through the array data. Analysis reveals significant inconsistencies between estimates derived from the two methods, on both a whole-event basis and as time-series. Despite a near-perfect fit of the Law-of-the-Wall, the point estimates of Reynolds shear stress vary greatly between heights, calling into question the assumed presence of a constant stress layer. A comparison with simultaneously measured sediment transport finds no relationship between transport activity and the discrepancies in shear stress estimates. Results do show, however, that Reynolds shear stress measured nearer the bed exhibits slightly better correlation with sand transport rate. The findings serve as a major cautionary message to the interpretation and application of single-height measurements of Reynolds shear stress and their equivalence to Law-of-the-Wall derived estimates, and these concerns apply widely to boundary layer flows in general. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2015-08-23
    Description: ABSTRACT Following perturbation, an ecosystem (flora, fauna, soil) should evolve as a function of time at a rate conditioned by external variables (relief, climate, geology). More recently, biogeomorphologists have focused upon the notion of co-development of geomorphic processes with ecosystems over very short through to very long (evolutionary) time-scales. Alpine environments have been a particular focus of this co-development. However, work in this field has tended to adopt a simplified view of the relationship between perturbation and succession, including: how the landform and ecosystem itself conditions the impact of a perturbation to create a complex spatial response impact; and how perturbations are not simply ecosystem destroyers but can be a significant source of ecosystem resources. What this means is that at the within landform scale, there may well be a complex and dynamic topographic and sedimentological template that co-develops with soil, flora and fauna. Here, we present and test a conceptual model of this template for a subalpine alluvial fan. We combine detailed floristic inventory with soil inventory, determination of edaphic variables and analysis of historical aerial imagery. Spatial variation in the probability of perturbation of sites on the fan surface was associated with down fan variability in the across-fan distribution of fan ages, fan surface channel characteristics and fan surface sedimentology. Floristic survey confirmed that these edaphic factors distinguished site floristic richness and plant communities up until the point that the soil-vegetation system was sufficiently developed to sustain plant communities regardless of edaphic conditions. Thus, the primary explanatory variable was the estimated age of each site, which could be tied back into perturbation history and its spatial expression due to the geometry of the fan: distinct plant communities were emergent both across fan and down fan, a distribution maintained by the way in which the fan dissipates potentially perturbing events. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2015-08-23
    Description: The impact of variational data assimilation for predicting two heavy rainfall events that caused devastating floods in Jeddah, Saudi Arabia is studied using the Weather Research and Forecasting (WRF) model. On 25 November 2009 and 26 January 2011, the city was deluged with more than double the annual rainfall amount caused by convective storms. We used a high resolution, two-way nested domain WRF model to simulate the two rainfall episodes. Simulations include control runs initialized with National Center for Environmental Prediction (NCEP) Global Forecasting System (GFS) data and 3-Dimensional Variational (3DVAR) data assimilation experiments conducted by assimilating NCEP prepbufr and radiance observations. Observations from Automated Weather Stations (AWS), synoptic charts, radar reflectivity and satellite pictures from the Presidency of Meteorology and Environment (PME), Jeddah, Saudi Arabia are used to assess the forecasting results. To evaluate the impact of the different assimilated observational datasets on the simulation of the major flooding event of 2009, we conducted 3DVAR experiments assimilating individual sources and a combination of all data sets. Results suggest that while the control run had a tendency to predict the storm earlier than observed, the assimilation of profile observations greatly improved the model's thermodynamic structure and lead to better representation of simulated rainfall both in timing and amount. The experiment with assimilation of all available observations compared best with observed rainfall in terms of timing of the storm and rainfall distribution, demonstrating the importance of assimilating different types of observations. Retrospective experiments with and without data assimilation, for three different model lead times (48, 72 and 96-h), were performed to examine the skill of WRF model to predict the heavy rainfall events. Quantitative rainfall analysis of these simulations suggests that 48-h lead time runs with assimilation of all observational data provide best statistical scores.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2015-08-23
    Description: Observations of tropical convection from precipitation radar and the concurring large-scale atmospheric state at two locations (Darwin and Kwajalein) are used to establish effective stochastic models to parameterise subgrid-scale tropical convective activity. Two approaches are presented which rely on the assumption that tropical convection induces a stationary equilibrium distribution. In the first approach we parameterise convection variables such as convective area fraction as an instantaneous random realisation conditioned on the large-scale vertical velocities according to a probability density function estimated from the observations. In the second approach convection variables are generated in a Markov process conditioned on the large-scale vertical velocity, allowing for non-trivial temporal correlations. Despite the different prevalent atmospheric and oceanic regimes at the two locations, with Kwajalein being exposed to a purely oceanic weather regime and Darwin exhibiting land-sea interaction, we establish that the empirical measure for the convective variables conditioned on large-scale mid-level vertical velocities for the two locations are close. This allows us to train the stochastic models at one location and then generate time series of convective activity at the other location. The proposed stochastic subgrid-scale models adequately reproduce the statistics of the observed convective variables and we discuss how they may be used in future scale-independent mass-flux convection parameterisations.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2015-08-25
    Description: A framework was developed to estimate dry deposition of polycyclic aromatic compounds (PACs), including 17 polycyclic aromatic hydrocarbons (PAHs), 21 alkylated PAHs, and 5 parent and alkylated dibenzothiophenes (DBTs), to various land covers surrounding three monitoring sites in the Athabasca oil sands region. Modelled dry deposition velocities for various gaseous PACs and over various land covers were mostly in the range of 0.01-0.5 cm s −1 with median and annual mean values between 0.08 and 0.24 cm s −1 , comparable with literature values obtained from field studies. Annual dry deposition of the sum of PAHs was estimated to range from 330 to 560 µg m −2 over forested canopies surrounding the three sites and from 270 to 490 µg m −2 over grass and shrubs. The corresponding values are 3920 to 5380 µg m −2 and 2850 to 4920 µg m −2 for the sum of 21 alkylated PAHs, and are 230 to 1120 µg m −2 and 450 to 930 µg m −2 for the sum of 5 DBTs. The three monitoring sites are situated nearby the Athabasca River, and the direct annual atmospheric dry deposition to water surface was estimated to range from 350 to 500, 3170 to 4530, and 170 to 840 µg m −2 for PAHs, alkylated PAHs, and DBTs, respectively. Alkylated PAHs contributed 80% of the total dry and 60% of the total wet deposition budget, suggesting the importance of including this group of PAHs in the atmospheric deposition budget estimation for subsequent ecosystem impact studies. This article is protected by copyright. All rights reserved.
    Electronic ISSN: 1942-2466
    Topics: Geography , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2015-08-23
    Description: Understanding how channel bed morphology affects flow conditions (and vice versa) is important for a wide range of fluvial processes and practical applications. We investigated interactions between bed roughness and flow velocity in a steep, glacier-fed mountain stream (Riedbach, Ct. Valais, Switzerland) with almost flume-like boundary conditions. Bed gradient increases along the 1-km study reach by roughly one order of magnitude ( S =3-41%), with a corresponding increase in streambed roughness, while flow discharge and width remain approximately constant due to the glacial runoff regime. Streambed roughness was characterized by semi-variograms and standard deviations of point clouds derived from terrestrial laser scanning. Reach-averaged flow velocity was derived from dye tracer breakthrough curves measured by 10 fluorometers installed along the channel. Commonly used flow resistance approaches (Darcy-Weisbach equation and dimensionless hydraulic geometry) were used to relate the measured bulk velocity to bed characteristics. As a roughness measure, D 84 yielded comparable results to more laborious measures derived from point clouds. Flow resistance behavior across this large range of steep slopes agreed with patterns established in previous studies for both lower-gradient and steep reaches, regardless of which roughness measures were used. We linked empirical critical shear stress approaches to the variable power equation for flow resistance to investigate the change of bed roughness with channel slope. The predicted increase in D 84 with increasing channel slope was in good agreement with field observations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2015-08-23
    Description: Large wood governs channel morphology, as well as the availability of in-stream habitat, in many forested streams. In this paper we use a stochastic, physically based model to simulate wood recruitment and in-stream geomorphic processes, in order to explore the influence of disturbance history on the availability of aquatic habitat. Specifically, we consider the effects of fire on a range of stream sizes by varying the rate of tree toppling over time in a simulated forest characterized by a tree height of 30 m. We also consider the effects of forest harvesting with various riparian buffer sizes, by limiting the lateral extent of the riparian stand. Our results show that pulsed inputs of wood increase the availability and variability of physical habitat in the post-fire period; reach-averaged pool area and deposit area double in small streams, while side-channels increase by over 50% in intermediate-sized channels. By contrast, forest harvesting reduces the availability of habitat within the reach, though the effects diminish with increasing buffer size or stream width; in laterally stable streams the effects are minimal so long as buffer width is large enough for key pieces to be recruited to the reach. This research emphasizes the importance of natural disturbance in creating and maintaining habitat heterogeneity and shows that scenario-based numerical modeling provides a useful tool for assessing the historical range of variability associated with natural disturbance, as well as changes in habitat relevant to fish. It can be also used to inform forest harvesting and management. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2015-08-23
    Description: Spreading of conservative solutes in groundwater due to aquifer heterogeneity is quantified by the macrodispersivity, which was found to be scale dependent. It increases with travel distance, stabilizing eventually at a constant value. However, the question of its asymptotic behaviour at very large scale is still a matter of debate. It was surmised in the literature that macrodispersivity scales up following a unique scaling law. Attempts to define such a law were made by fitting a regression line in the log-log representation of an ensemble of macrodispersivities from multiple experiments. The functional relationships differ among the authors, based on the choice of data. Our study revisits the data basis, used for inferring unique scaling, through a detailed analysis of literature marcodispersivities. In addition, values were collected from the most recent tracer tests reported in the literature. We specified a system of criteria for reliability and re-evaluated the reliability of the reported values. The final collection of reliable estimates of macrodispersivity does not support a unique scaling law relationship. On the contrary, our results indicate, that the field data can be explained as a collection of macrodispersivities of aquifers with varying degree of heterogeneity where each exhibits its own constant asymptotic value. Our investigation concludes that transport, and particularly the macrodispersivity, is formation-specific, and that modeling of transport cannot be relegated to a unique scaling law. Instead, transport requires characterization of aquifer properties, e.g. spatial distribution of hydraulic conductivity, and the use of adequate models. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2015-08-23
    Description: For the past few decades, heat has been used to estimate river-aquifer exchange flux at discrete locations by comparison of river and groundwater temperature. In recent years, heat has also been employed to estimate reach-scale river-aquifer exchange flux based only on river temperature. However, there are many more parameters that govern heat exchange and transport in surface water than in groundwater. In this study, we analyzed the sensitivities of surface water temperature to various parameters and assessed the accuracy of temperature-based estimates of exchange flux in two synthetic rivers and in a field setting. For the large synthetic river with a flow rate of 63 m 3 s −1 (i.e., 5.44 × 10 6 m 3 d −1 ), the upper and lower bounds of the groundwater inflow rate can be determined when the actual groundwater inflow is around 100 m 2 d −1 . For higher and lower fluxes, only minimum and maximum bounds respectively can be determined. For the small synthetic river with the flow rate of 0.63 m 3 s −1 (i.e., 5.44 × 10 4 m 3 d −1 ), the bounds of the groundwater inflow rate can only be estimated when the actual groundwater inflow rate is near 10 m 2 d −1 . In the field setting, results show that the inflow rate must be less than 100 m 2 d −1 , but a lower bound for groundwater inflow cannot be determined. The large ranges of estimated groundwater inflow rates in both theoretical and field settings indicate the need to reduce parameter errors and combine heat measurements with other isotopic and/or chemical methods. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2015-08-23
    Description: Climate state can be an important predictor of future hydrologic conditions. In ensemble streamflow forecasting, where historical weather inputs or streamflow observations are used to generate the ensemble, climate index weighting is one way to represent the influence of climate state. Using a climate index, each forecast variable member of the ensemble is selectively weighted to reflect the climate state at the time of the forecast. A new approach to climate index weighting of ensemble forecasts is presented. The method is based on a sampling-resampling approach for Bayesian updating. The original hydrologic ensemble members define a sample drawn from the prior distribution; the relationship between the climate index and the ensemble member forecast variable is used to estimate a likelihood function. Given an observation of the climate index at the time of the forecast, the estimated likelihood function is then used to assign weights to each ensemble member. The weights define the probability of each ensemble member outcome given the observed climate index. The weighted ensemble forecast is then used to estimate the posterior distribution of the forecast variable conditioned on the climate index. The Bayesian climate index weighting approach is easy to apply to hydrologic ensemble forecasts; its parameters do not require calibration with hindcasts, and it adapts to the strength of the relation between climate and the forecast variable, defaulting to equal weighting of ensemble members when no relationship exists. A hydrologic forecasting application illustrates the approach and contrasts it with traditional climate index weighting approaches. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2015-08-25
    Description: The performance of three urban land surface models, run in offline mode, with their default external parameters, is evaluated for two distinctly different sites in Helsinki: Torni and Kumpula. The former is a dense city centre site with 22% vegetation, while the latter is a suburban site with over 50% vegetation. At both locations the models are compared against sensible and latent heat fluxes measured using the eddy covariance technique, along with snow depth observations. The cold climate experienced by the city causes strong seasonal variations that include snow cover and stable atmospheric conditions. Most of the time the three models are able to account for the differences between the study areas as well as the seasonal and diurnal variability of the energy balance components. However, the performances are not systematic across the modelled components, season and surface type. The net all-wave radiation is well simulated, with the greatest uncertainties related to snowmelt timing, when the fraction of snow cover has a key role, particularly in determining the surface albedo. For the turbulent fluxes, more variation between the models is seen which can partly be explained by the different methods in their calculation and partly by surface parameter values. For the sensible heat flux, simulation of wintertime values was the main problem, which also leads to issues in predicting near-surface stabilities particularly at the dense city centre site. All models have the most difficulties in simulating latent heat flux. This study particularly emphasizes that improvements are needed in the parameterization of anthropogenic heat flux and thermal parameters in winter, snow cover in spring and evapotranspiration in order to improve the surface energy balance modelling in cold climate cities.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2015-08-13
    Description: ABSTRACT Marine Isotope Stage (MIS) 11 in Iberia is documented at three main Acheulean archaeological sites: Gran Dolina (Burgos, Atapuerca), Áridos-1 (Madrid) and Ambrona (Soria). As the amphibians and reptiles recovered as fossils from these sites are not extinct and their ecology can be directly studied, mutual climatic range and habitat weighting methods have been applied to the herpetofaunal assemblages to estimate climatic and environmental parameters during MIS 11. Compared with today, mean annual temperature varies from +2.7 to +0.3 °C and mean annual precipitation varies from +311.7 to +74.4 mm, suggesting, in accordance with the numerical dates for each locality, a progressive decrease in temperature and rainfall from the fully interglacial conditions of MIS 11c to the end of MIS 11. The presence of woodland areas is also well substantiated throughout the duration of MIS 11, at least during the interglacial and interstadial periods.
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2015-08-14
    Description: Numerous observations demonstrate that considerable spatial variability exists in components of the marine planktonic ecosystem at the mesoscale and submesoscale (100 km -1 km). The causes and consequences of physical processes at these scales (‘eddy advection’) influencing biogeochemistry have received much attention. Less studied, the non-linear nature of most ecological and biogeochemical interactions means that such spatial variability has consequences for regional estimates of processes including primary production and grazing, independent of the physical processes. This effect has been termed ‘eddy reactions’. Models remain our most powerful tools for extrapolating hypotheses for biogeochemistry to global scales and to permit future projections. The spatial resolution of most climate and global biogeochemical models means that processes at the mesoscale and submesoscale are poorly resolved. Modelling work has previously suggested that the neglected ‘eddy reactions’ may be almost as large as the mean field estimates in some cases. This study seeks to quantify the relative size of eddy and mean reactions observationally, using in situ and satellite data. For primary production, grazing and zooplankton mortality the eddy reactions are between 7% and 15% of the mean reactions. These should be regarded as preliminary estimates to encourage further observational estimates, and not taken as a justification for ignoring eddy reactions. Compared to modelling estimates, there are inconsistencies in the relative magnitude of eddy reactions and in correlations which are a major control on their magnitude. One possibility is that models exhibit much stronger spatial correlations than are found in reality, effectively amplifying the magnitude of eddy reactions.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2015-08-14
    Description: Human induced climate change is projected to increase ocean temperature and modify circulation patterns, with potential widespread implications for the transport and survival of planktonic larvae of marine organisms. Circulation affects the dispersal of larvae, whereas temperature impacts larval development and survival. However, the combined effect of changes in circulation and temperature on larval dispersal and survival has not been studied in a future climate scenario. Such understanding is crucial to predict future species distributions, anticipate ecosystem shifts, and design effective management strategies. We simulate contemporary (1990s) and future (2060s) dispersal of lobster larvae using an eddy-resolving ocean model in south-eastern Australia, a region of rapid ocean warming. Here we show that the effects of changes in circulation and temperature can counter each other: ocean warming favours the survival of lobster larvae, whereas a strengthened western boundary current diminishes the supply of larvae to the coast by restricting cross-current larval dispersal. Furthermore, we find that changes in circulation have a stronger effect on connectivity patterns of lobster larvae along south-eastern Australia than ocean warming in the future climate so that the supply of larvae to the coast reduces by ~ 4% and the settlement peak shifts poleward by ~270km in the model simulation. Thus ocean circulation may be one of the dominant factors contributing to the climate-induced expansion of species ranges. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2015-08-14
    Description: Distributed, continuous hydrologic models promote better understanding of hydrology and enable integrated hydrologic analyses by providing a more detailed picture of water transport processes across the varying landscape. However, such models are not widely used in routine modeling practices, due in part to the extensive data input requirements, computational demands, and complexity of routing algorithms. We developed a two-dimensional continuous hydrologic model, HYSTAR, using a time-area method within a grid-based spatial data model with the goal of providing an alternative way to simulate spatiotemporally varied watershed-scale hydrologic processes. The model calculates the direct runoff hydrograph by coupling a time-area routing scheme with a dynamic rainfall excess sub-model implemented here using a modified curve number method with an hourly time step, explicitly considering downstream ‘reinfiltration’ of routed surface runoff. Soil moisture content is determined at each time interval based on a water balance equation, and overland and channel runoff is routed on time-area maps, representing spatial variation in hydraulic characteristics for each time interval in a storm event. Simulating runoff hydrographs does not depend on unit hydrograph theory or on solution of the Saint Venant equation, yet retains the simplicity of a unit hydrograph approach and the capability of explicitly simulating two-dimensional flow routing. The model provided acceptable performance in predicting daily and monthly runoff for a 6-year period for a watershed in Virginia (USA) using readily available geographic information about the watershed landscape. Spatial and temporal variability in simulated effective runoff depth and time area maps dynamically show the areas of the watershed contributing to the direct runoff hydrograph at the outlet over time, consistent with the variable source area overland flow generation mechanism. The model offers a way to simulate watershed processes and runoff hydrographs using the time-area method, providing a simple, efficient, and sound framework that explicitly represents mechanisms of spatially and temporally varied hydrologic processes. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2015-08-14
    Description: Given the importance of groundwater temperature to the biogeochemical health of aquatic ecosystems, a floodplain study was implemented to improve understanding of rural land use impacts on shallow groundwater (SGW) temperature. Study sites included a historic agricultural field (Ag) and bottomland hardwood forest (BHF), each with nine piezometers in an 80 × 80 m grid. Piezometers were equipped with pressure transducers to monitor SGW temperature and level at 30 minute intervals during the 2011, 2012, 2013, and 2014 water years. The study is one of the first to utilize long-term, continuous, automated, in situ monitoring to investigate rural land use impacts on shallow groundwater temperatures. Average SGW temperature during the study period was 11.1 and 11.2 °C at the Ag and BHF sites, respectively. However, temperature range at the Ag site was 72% greater than at the BHF site. Results indicate a greater responsiveness to seasonal climate fluctuations in Ag site SGW temperature related to absence of forest canopy. Patterns of intra-site groundwater temperature differences at both study sites illustrate the influence of stream-aquifer thermal conduction and occasional baseflow reversals. Considering similar surface soil temperature amplitudes and low average groundwater flow values at both sites, results suggest that contrasting rates of plant water use, groundwater recharge, and subsurface hydraulic conductivity are likely mechanistic causes for the observed SGW temperature differences. Results highlight the long-term impact of forest removal on subsurface hydrology and groundwater temperature regime. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2015-08-14
    Description: The Southern Ocean plays a pivotal role in the control of atmospheric CO 2 levels, via both physical and biological sequestration processes. The biological carbon transfer to the ocean interior is tightly coupled to the availability of other elements, especially iron as a trace limiting nutrient and dissolved silicon (DSi) as the mineral substrate that allows diatoms to dominate primary production. Importantly, variations in the silicon cycling are large but not well understood. Here, we use δ 30 Si measurements to track seasonal flows of silica to the deep sea, as captured by sediment trap time series, for the three major zones (Antarctic, AZ; Polar Frontal, PFZ and Subantarctic, SAZ) of the open Southern Ocean. Variations in the exported flux of biogenic silica (BSi) and its δ 30 Si composition reveal a range of insights, including that i) the sinking rate of BSi exceeds 200 m d −1 in summer in the AZ, yet decreases to very low values in winter that allow particles to remain in the water column through to the following spring, ii) occasional vertical mixing events affect the δ 30 Si composition of exported BSi in both the SAZ and AZ, iii) the δ 30 Si signature of diatoms is well conserved through the water column despite strong BSi and POC attenuation at depth, and is closely linked to the Si consumption in surface waters. With the strong coupling observed between BSi and POC fluxes in PFZ and AZ, these data provide new constraints for application to biogeochemical models of seasonal controls on production and export.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2015-08-13
    Description: The quantification of sources and sinks of carbon from land use and land cover changes (LULCC) is uncertain. We investigated how the parametrization of LULCC and of organic matter decomposition, as well as initial land cover affect the historical and future carbon fluxes in an Earth System Model (ESM). Using the land component of the Max-Planck-Institute ESM, we found that the historical (1750–2010) LULCC flux varied up to 25% depending on the fraction of biomass which enters the atmosphere directly due to burning or is used in short-lived products. We found an uncertainty in the decadal LULCC fluxes of the recent past due to the parametrization of decomposition and direct emissions of 0.6 Pg C yr −1 , which is three times larger than the un-certainty previously attributed to model and method in general. Pre-industrial natural land cover had a larger effect on decadal LULCC fluxes than the aforementioned parameter sensitivity (1.0 Pg C yr −1 ). Re-gional differences between reconstructed and dynamically-computed land cover, in particular at low-latitudes, led to differences in historical LULCC emissions of 84–114 Pg C, globally. This effect is larger than the effects of forest regrowth, shifting cultivation or climate feedbacks and comparable to the effect of differences among studies in the terminology of LULCC. In general, we find that the practice of calibrating the net land carbon balance to provide realistic boundary conditions for the climate component of an ESM hampers the applicability of the land component outside its primary field of application.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2015-08-15
    Description: Geodemographic classifications are categorical measures representing salient multidimensional population and built environment attributes of small areas. The UK Output Area Classification (OAC) is one such classification, created on behalf of the Office for National Statistics, and was built with an open methodology and entirely from 2011 Census variables. However, one criticism of national classifications such as OAC is that they do not adequately accommodate local or regional structures that diverge from national patterns. In this paper we explore this issue with respect to Greater London. We develop a London classification based upon the OAC methodology, and explore the extent to which these patterns are divergent from the national classification.
    Electronic ISSN: 2054-4049
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2015-08-15
    Description: Field hydrology is on the decline. Meanwhile, the need for new field-derived insight into the age, origin and pathway of water in the headwaters, where most runoff is generated, is more needed than ever. Water Resources Research (WRR) has included some of the most influential papers in field-based runoff process understanding, particularly in the formative years when the knowledge base was developing rapidly. Here, we take advantage of this 50 th anniversary of the journal to highlight a few of these important field-based papers and show how field scientists have posed strong and sometimes outrageous hypotheses—approaches so needed in an era of largely model-only research. We chronicle the decline in field work and note that it is not only the quantity of field work that is diminishing but its character is changing too: from discovery science to data collection for model parameterisation. While the latter is a necessary activity, the loss of the former is a major concern if we are to advance the science of watershed hydrology. We outline a vision for field research to seek new fundamental understanding, new mechanistic explanations of how watershed systems work, particularly outside the regions of traditional focus. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2015-07-30
    Description: The zooplankton of the northern California Current are typically characterized by an abundance of lipid-rich copepods that support rapid growth and survival of ecologically, commercially, and recreationally valued fish, birds, and mammals. Disruption of this food chain and reduced ecosystem productivity are often associated with climatic variability such as El Niño events. We examined the variability in timing, magnitude, and duration of positive temperature anomalies and changes in copepod species composition in the northern California Current in relation to ten tropical El Niño events. Measureable impacts on mesozooplankton of the northern California Current were observed during seven out of ten of these events. The occurrence of anomalously warm water and the response of the copepod community was rapid (lag of zero to two months) following the initiation of canonical Eastern Pacific events, but delayed (lag of two to eight months) following “Modoki” Central Pacific events. The variable lags in the timing of a physical and biological response led to impacts in the northern California Current peaking in winter during EP events and in the spring during CP events. The magnitude and duration of the temperature and copepod anomalies were strongly and positively related to the magnitude and duration of El Niño events, but were also sensitive to the phase of the lower-frequency Pacific Decadal Oscillation. When fisheries managers and biological oceanographers are faced with the prospect of a future El Niño event, prudent management and observation will require consideration of the background oceanographic conditions, the type of event, and both the magnitude and duration of the event when assessing the potential physical and biological impacts on the northern California Current. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2015-07-30
    Description: Growing demand on groundwater resources and the semi-arid climate in the North China Plain (NCP) highlight the need for improved understanding of connections between regional climate change and groundwater recharge. Hydrologic time series of precipitation and groundwater levels were analyzed in three representative geographical zones throughout the NCP for the period of 1960-2008 using trend analysis and spectral analysis methods. A significant change point around 1975 is followed by a long term decline trend in precipitation time series, which coincides with the Pacific Decadal Oscillation (PDO) positive phase. However, the magnitudes of groundwater levels variability due to heavily pumping overwhelm the low-frequency signal of groundwater levels. Nonlinear trends that related to long-term climatic variability and anthropogenic activities are removed by using the Singular Spectrum Analysis (SSA) method. Spectral analyses of the detrended residuals demonstrate significant short-term oscillations at the frequencies of 2–7 years, which have strong correlations with the El Niño-Southern Oscillation (ENSO) modes. This study contributes to improved understanding of dynamic relationship between groundwater and climate variability modes in the NCP, and demonstrates the importance of reliable detrending methods for groundwater levels that are affected greatly by pumping. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2015-08-03
    Description: On September 3, 1998, a glacial lake outburst flood (GLOF) that originated from Tam Pokhari occurred in the Hinku valley of the eastern Nepal Himalaya. This study analyzes the lake's geomorphic and hydrologic conditions prior to the outburst, and evaluates the conditions that could contribute to a future flood through photogrammetric techniques. We processed high-resolution Corona KH-4A (2.7 m) and ALOS PRISM (2.5 m) stereo-images taken before and after the GLOF event, and produced detailed topographic maps (2-m contour interval) and DEMs (5 m × 5 m). We (re-) constructed lake water surfaces before (4410 ± 5 m) and after (4356 ± 5 m) the outburst, and reliably estimated the lake water surface lowering (54 ± 5 m) and the water volume released (19.5 ± 2.2 × 10 6  m 3 ) from the lake, showing good agreement with the results obtained from ground-based measurements. The most relevant conditions that may have influenced the catastrophic drainage of Tam Pokhari in 1998 include the presence of: i) a narrow (75 ± 6 m), steep (up to 50°) and high (120 ± 5 m) moraine dam; ii) high lake level (8 ± 5 m of freeboard); and iii) a steep overhanging glacier (〉40°). The lake outburst substantially altered the immediate area, creating a low and wide (〉500 m) outwash plain below the lake, a wide lake outlet channel (~50 m) and a gentle channel slope (~3–5°). Our new data suggest that the likelihood of a future lake outburst is low. Our results demonstrate that the datasets produced by photogrammetric techniques provide an excellent representation of micro-landform features on moraine dams, lake water surfaces and the changes in both over time, thereby allowing highly accurate pre- and post-GLOF (volumetric) change analysis of glacial lakes. Furthermore, it enables precise measurement of several predictive variables of GLOFs that can be useful for identifying potentially dangerous glacial lakes or prioritizing them for detailed field investigations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2015-08-05
    Description: Time series of environmental measurements are essential for detecting, measuring and understanding changes in the Earth system and its biological communities. Observational series have accumulated over the past 2-5 decades from measurements across the world's estuaries, bays, lagoons, inland seas and shelf waters influenced by runoff. We synthesize information contained in these time series to develop a global view of changes occurring in marine systems influenced by connectivity to land. Our review is organized around four themes: (1) human activities as drivers of change; (2) variability of the climate system as a driver of change; (3) successes, disappointments and challenges of managing change at the sea-land interface; and (4) discoveries made from observations over time. Multidecadal time series reveal that many of the world's estuarine-coastal ecosystems are in a continuing state of change, and the pace of change is faster than we could have imagined a decade ago. Some have been transformed into novel ecosystems with habitats, biogeochemistry and biological communities outside the natural range of variability. Change takes many forms including linear and nonlinear trends, abrupt state changes, and oscillations. The challenge of managing change is daunting in the coastal zone where diverse human pressures are concentrated and intersect with different responses to climate variability over land and over ocean basins. The pace of change in estuarine-coastal ecosystems will likely accelerate as the human population and economies continue to grow and as global climate change accelerates. Wise stewardship of the resources upon which we depend is critically dependent upon a continuing flow of information from observations to measure, understand and anticipate future changes along the world's coastlines. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2015-08-07
    Description: Although the importance to account for microrelief in the calculation of specific yields for shallow groundwater systems is well recognized, the microrelief influence is often treated very simplified, which can cause considerable errors. We provide a general one-dimensional expression that correctly represents the effect of a microrelief on the total specific yield that is composed of the soil and surface specific yield. The one-dimensional expression can be applied for different soil hydraulic parameterizations and soil surface elevation frequency distributions. Applying different van Genuchten parameters and a simple linear microrelief model, we demonstrate that the specific yield is influenced by the microrelief not only when surface storage directly contributes to specific yield by (partial) inundation but also when water levels are lower than the minimum surface elevation. Compared to a simplified representation of the soil specific yield, in which a mean soil surface is assumed for the calculation of soil specific yield, the correct representation can lead to lower as well as higher soil specific yields depending on the specific interaction of the soil water retention characteristics and the microrelief. The new equation can be used to obtain more accurate evapotranspiration estimates from water level fluctuations and to account for the effect of microtopographic subgrid variability on simulated water levels of spatially-distributed hydrological models. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2015-08-08
    Description: Globally, Dissolved Inorganic Carbon (DIC) accounts for more than half the annual flux of carbon exported from terrestrial ecosystems via rivers. Here we assess the relative influences of biogeochemical and hydrological processes on DIC fluxes exported from a tropical river catchment characterized by distinct land cover, climate and geology transition from the wet tropical mountains to the low lying savanna plains. Processes controlling changes in river DIC were investigated using dissolved organic carbon (DOC), particulate organic carbon (POC) and DIC concentrations and stable isotope ratios of DIC (δ 13 C DIC ) at two time scales; seasonal and diel. The recently developed Isotopic Continuous Dissolved Inorganic Carbon Analyser (ISO-CADICA) was used to measure diel DIC concentration and δ 13 C DIC changes at a 15 minute temporal resolution. Results highlight the predominance of biologically mediated processes (photosynthesis and respiration) controlling diel changes in DIC. These resulted in DIC concentrations varying between 3.55-3.82 mg/L, and δ 13 C DIC values ranging from -19.7 ± 0.31 to -17.1 ± 0.08 ‰. In contrast, at the seasonal scale we observe wet season DIC variations predominantly from mixing processes, and dry season DIC variations due to both mixing processes and biological processes. The observed wet season increases in DIC concentrations (by 6.81 mg/L) and δ 13 C DIC values of river water (by 5.4 ‰) largely result from proportional increases in subsurface inflows from the savanna plains (C 4 vegetation) region relative to inflows from the rainforest (C 3 vegetation) highlands. The high DIC river load during the wet season results in the transfer of 97% of the annual river carbon load. Therefore, in this gaining river there are significant seasonal variations in both the hydrological and carbon cycles, and there is evidence of substantial coupling between the carbon cycles of the terrestrial and the fluvial environments. Recent identification of a substantial savanna carbon sink in wetter years in the recent past does not take into account the possibility of a substantial, rapid, lateral flux of carbon to rivers and back to the atmosphere. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2015-06-04
    Description: Caspian sea ice concentration from satellite passive microwave data and surface daily air temperatures are analysed from 1978 to 2009. Relationships between mean winter air temperatures, cumulative freezing degree days (CFDD) and the sum of daily ice area (cumulative ice area) are found. These show that mean monthly air temperatures of less than 5.5 to 9.5 ∘ C, and a minimum CFDD of 3.6-11.2 ∘ C, is required for ice formation in the Northern Caspian. Examination of climate projections from multi-model ensembles of monthly mean air temperatures suggest that the Northern Caspian may be largely ice-free by 2100 for the highest emission scenario. An ocean-ice-atmosphere model of the Caspian shows weak sensitivities of the minimum CFDD to varied sea ice albedo and ice compressive strength. Sea level decline is found to reduce the minimum CFDD as well as promote the formation of higher concentration or "closed ice".
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2015-06-04
    Description: Over the Far East in summer, climate is strongly influenced by the fluctuating Western Pacific Subtropical High (WPSH), and strong precipitation is often associated with southeasterly low-level wind that brings moist air from the southern China seas. The WPSH intra-seasonal variability is partly influenced by quasi-stationary wave-trains propagating eastwards from Europe across Asia along the two westerly jets: the Silk-Road wave-train along the Asian jet at mid-latitudes and the polar wave-train along the sub-polar jet. In the unusual summer of 2010, Northeast China experienced its worst seasonal flooding for a decade, triggered by unusually severe precipitation. That summer was also characterized by a record-breaking heat wave over Eastern Europe and Russia, whose impact on the precipitation further east over China has been little explored. Here, we examine the role of the Silk-Road and polar wave-trains, and their impact on precipitation over Northeast China throughout August 2010, using station precipitation data and re-analyses. We found that there is a strong link between the Silk-Road wave-train and extreme precipitation events, associated with a strong occasional influence of the polar wave-train. Forecasting such regional precipitation events at the monthly timescale remains a big challenge for operational global prediction systems. In this study, we use simulations with the atmospheric model of the European Centre for Medium-Range Weather Forecasts (ECMWF) at a horizontal resolution of T255 to highlight the key role of the intra-seasonal fluctuations of the Silk-Road and polar wave-trains in modulating extreme precipitation over North and Northeast China in August 2010. While the ensemble-mean of the forecasts fails to predict the pulses of the Silk-Road wave-train, some model members show a high spatial correlation in upper-level meridional winds with re-analyses. Similarly, there is high spatial correlation between model meridional winds and precipitation. These results highlight the importance of better representing the intra-seasonal evolution of the Silk-Road wave-train in order to improve the monthly prediction of summer precipitation over the Far East.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2015-06-04
    Description: In the last decade, a series of super extreme droughts have swept across Southwest China (SWC). However, the essential feature behind them is not yet fully understood and traditional drought indices as well as precipitation fail to describe it, due to a lack of comprehensive treatment of drought. We propose an integrated metric, the Comprehensive Multiscalar Indicator (CMI), as a new criterion for super drought detection. Reexamination of SWC droughts illuminates the essential feature of super drought events: a combination of multiple stresses on water resources and highlights the utility of CMI.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2015-06-04
    Description: Large-scale atmospheric models (LSAMs) that utilize the Monte Carlo Independent Column Approximation (McICA) have, thus far, paired McICA only with two-stream approximations (TSAs) of the radiative transfer equation. In this study, the shortwave TSA is exchanged for a Monte Carlo (MC) photon transport model. More than 44,000 domains of cloud properties retrieved from A-train satellite data, each measuring 256 km in length, were used to assess the noise characteristics of TSA- and MC-based McICA models. It appears as though application of a MC algorithm in McICA will be both beneficial and tractable for LSAMs. This is because known levels of acceptable radiative noise produced by TSA-based McICAs can be achieved with small numbers of MC photons. The greatest concern with the TSA McICA has been noise associated with heating rates for cloudy layers. But with as few as 500–1,000 photons per simulation, the MC McICA reduces cloudy layer heating rate errors by typically ~20%. Furthermore, since MC models can utilize detailed descriptions of cloud particle scattering phase functions and TSAs use only corresponding asymmetry parameters, TSA-based McICAs, on average, overestimate all-sky top-of-atmosphere reflected flux density at small solar zenith angles θ 0 by ~3 W m −2 and underestimate it at large θ 0 by ~1 W m −2 ; vice versa for surface net flux density. Systematic biases such as these are important when attempting to balance an LSAM’s energy budgets and when making detailed estimates of radiative forcings due to anthropogenic activities.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2015-06-04
    Description: This study has investigated serial (temporal) clustering of extra-tropical cyclones simulated by 17 climate models that participated in CMIP5. Clustering was estimated by calculating the dispersion (ratio of variance to mean) of 30 December-February counts of Atlantic storm tracks passing nearby each grid point. Results from single historical simulations of 1975-2005 were compared to those from historical ERA40 reanalyses from 1958-2001 ERA40 and single future model projections of 2069-2099 under the RCP4.5 climate change scenario. Models were generally able to capture the broad features in reanalyses reported previously: underdispersion/regularity (i.e. variance less than mean) in the western core of the Atlantic storm track surrounded by overdispersion/clustering (i.e. variance greater than mean) to the north and south and over western Europe. Regression of counts onto North Atlantic Oscillation (NAO) indices revealed that much of the overdispersion in the historical reanalyses and model simulations can be accounted for by NAO variability. Future changes in dispersion were generally found to be small and not consistent across models. The overdispersion statistic, for any 30 year sample, is prone to large amounts of sampling uncertainty that obscures the climate change signal. For example, the projected increase in dispersion for storm counts near London in the CNRMCM5 model is 0.1 compared to a standard deviation of 0.25. Projected changes in the mean and variance of NAO are insufficient to create changes in overdispersion that are discernible above natural sampling variations.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2015-06-04
    Description: Various remote-sensing methods are available to estimate soil moisture, but few address the fine spatial resolutions (e.g., 30 m grid cells) and root-zone depth requirements of agricultural and other similar applications. One approach that has been previously proposed to estimate fine-resolution soil moisture is to first estimate the evaporative fraction from an energy balance that is inferred from optical and thermal remote-sensing images (e.g., using the ReSET algorithm) and then estimate soil moisture through an empirical relationship to evaporative fraction. A similar approach has also been proposed to estimate the degree of saturation. The primary objective of this study is to evaluate these methods for estimating soil moisture and degree of saturation, particularly for a semiarid grassland with relatively dry conditions. Soil moisture was monitored at twenty-eight field locations in southeastern Colorado with herbaceous vegetation during the summer months of three years. In-situ soil moisture and degree of saturation observations are compared with estimates calculated from Landsat imagery using the ReSET algorithm. The in-situ observations suggest that the empirical relationships with evaporative fraction that have been proposed in previous studies typically provide overestimates of soil moisture and degree of saturation in this region. However, calibrated functions produce estimates with an accuracy that may be adequate for various applications. The estimates produced by this approach are more reliable for degree of saturation than for soil moisture, and the method is more successful at identifying temporal variability than spatial variability in degree of saturation for this region. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2015-06-04
    Description: Groundwater movements in volcanic mountains and their effects on streamflow discharge and representative elementary area (REA) have remained largely unclear. We surveyed the discharge and chemical composition of spring and stream water in two catchments: the Hontani river (NR) catchment (6.6 km 2 ) and the Hosotani river (SR) catchment (4.0 km 2 ) at the southern part of Daisen volcano, Japan. Daisen volcano is a young volcano (17 × 10 3  years) at an early stage of erosion. Our study indicated that deep groundwater that moved through thick lava and pyroclastic flows and that could not be explained by shallow movements controlled by surface topography contributed dominantly to streamflow at larger catchment areas. At the NR catchment, the deep groundwater contribution clearly increased at a catchment boundary defined by an area of 3.0 km 2 and an elevation of 800 m. At the SR catchment, the contribution deep groundwater to the stream also increased suddenly at a boundary threshold of 2.0 km 2 and 700 m. Beyond these thresholds, the contributions of deep bedrock groundwater remained constant, indicating that the REA is between 2 and 3 km 2 at the observed area. These results indicate that the hydrological conditions of base flow were controlled mainly by the deep bedrock groundwater that moved through thick lava and pyroclastic flows in the undissected volcanic body of the upper part of the catchment. Our study demonstrates that deep and long groundwater movements via a deep bedrock layer including thick deposits of volcanic materials at the two catchments on Daisen volcano strongly determined streamflow discharge instead of the mixing of small-scale hydrological conditions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2015-06-04
    Description: We propose a novel technique for improving a long-term multi-step-ahead streamflow forecasts. A model based on wavelet decomposition and a multivariate Bayesian machine learning approach is developed for forecasting the streamflow three, six, nine and twelve months ahead simultaneously. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model accuracy can be increased by using the wavelet boundary rule introduced in this study. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data from the Yellowstone River in the Uinta Basin in Utah. The model based on the combination of wavelet and Bayesian machine learning regression techniques is compared to the wavelet and artificial neural networks based model. The robustness of the models is evaluated. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2015-06-04
    Description: The combined use of water erosion models and geographic information systems (GIS) has facilitated soil loss estimation at the watershed scale. Tools such as the Geo-spatial interface for the Water Erosion Prediction Project (GeoWEPP) model provide a convenient spatially-distributed soil loss estimate but require discretization to identify hillslopes and channels. In GeoWEPP, the TOpographic PArameteriZation (TOPAZ) model is used as an automated procedure to extract a watershed boundary, hillslopes and channels from a digital elevation model (DEM). Previous studies in small watersheds have shown that the size of the hillslopes and the channel distribution affect the model estimates, but in large watersheds the effects on the soil loss estimates have yet to be tested. Therefore, the objective of this study was to evaluate the effect of discretization on the hillslope sediment yield estimates using GeoWEPP in two large watersheds (〉10 km 2 ). The watersheds were selected and discretized varying the TOPAZ parameters (CSA – Critical Source Area, and MSCL – Minimum Source Channel Length) in a 30-m resolution DEM. The drainage networks built with TOPAZ were compared among each other using the drainage density index. The results showed that the discretization affected hillslope sediment yield estimates and their spatial distribution more than total runoff. The drainage density index and the hillslope sediment yield were proportional but inversely related, thus soil loss estimates were highly affected by the spatial discretization. As a result of this analysis, a method to choose the CSA and MSCL values that generates the greatest fraction of hillslopes having profile lengths less than 200 m was developed. This slope length condition is particularly crucial when using the WEPP and GeoWEPP models, in order for them to produce realistic estimates of sheet and rill erosion. Finally, and as a result of this analysis, a more reliable method was developed for selecting the TOPAZ channel network parameters (CSA and MSCL).
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2015-06-04
    Description: Linkages between the controls on surface storage and catchment streamflow response were examined in a wetland dominated basin in the Canadian Prairie Pothole region. Snowmelt, surface storage, water table elevation, atmospheric fluxes, and streamflow were monitored during spring snowmelt and summer in a 1 km 2 sub-catchment containing a semi-permanent pond complex connected via an intermittent stream. Snow accumulation in the basin in spring of the 2013 study year was the largest in the 24-year record. Rainfall totals in 2013 were close to the long term average, though June was an anomalously wet month. The water budget of the pond complex indicates that there was a significant subsurface contribution to surface storage. Activation of an effective transmission zone occurred between uplands and the stream network where the water table was located near the ground surface, which allowed significant lateral movement of subsurface water into the stream network. This was also important for maintaining and re-establishing surface connectivity and streamflow during rainfall events. The observed period of surface-water connectivity was one of the longest on record in the catchment due to unusually wet conditions; nevertheless, the results of this study have implications for how contributing area and runoff should be considered in monitoring and modelling studies in the region, as inclusion of more frequent and varied runoff processes will be essential to understanding changing streamflow regimes. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2015-06-04
    Description: Stream-subsurface exchange plays a significant role in the fate and transport of contaminants in streams. It has been modeled explicitly by considering fundamental processes such as hydraulic exchange, colloid filtration, and contaminant interactions with streambed sediments and colloids. The models have been successfully applied to simulate the transport of inorganic metals and nutrients. In this study, laboratory experiments were conducted in a recirculating flume to investigate the exchange of a hydrophobic organic contaminant (HOC), p,p′ -DDE, between a stream and a quartz sand bed. A previously developed process-based multiphase exchange model was modified by accounting for the p,p′ -DDE kinetic adsorption to and desorption from the bed sediments/colloids and was applied to interpret the experimental results. Model input parameters were obtained by conducting independent small-scale batch experiments. Results indicate that the immobilization of p,p′ -DDE in the quartz sand bed can occur under representative natural stream conditions. The observed p,p′ -DDE exchange was successfully simulated by the process-based model. The model sensitivity analysis results show that the exchange of p,p′ -DDE can be sensitive to either the sediment sorption/desorption parameters or colloidal parameters depending on the experimental conditions tested. For the experimental conditions employed here, the effect of colloids on contaminant transport is expected to be minimal and the stream-subsurface exchange of p,p′ -DDE is dominated by the interaction of p,p′ -DDE with bed sediment. The work presented here contributes to a better mechanistic understanding of the complex transport process that HOCs undergo in natural streams, and to the development of reliable, predictive models for the assessment of impacted streams. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2015-06-04
    Description: The physical and hydrological conditions in extracted peatlands often act as barriers to the regeneration of the keystone peat-forming genus Sphagnum . Although previous work has suggested that Sphagnum mosses regenerating on cutover peat surfaces quickly become vulnerable to water stress as the thickness of the regenerated layer increases, uncertainties regarding the storage and transmission properties of this layer and how these might evolve over time have made this assertion difficult to evaluate. This study investigates the hydrophysical properties and hydrological behaviour of regenerating Sphagnum layers ranging from 3-43 years in age using both field and laboratory methods. The 〉40 year old regenerated layers had significantly (p 〈 0.001) higher bulk density and retention capacity in the 5 cm thick basal layer directly overlying the cutover peat than the newer (〈10 year old) regenerated layers. Capillarity was a much stronger control on surficial water content (θ) than precipitation, which was poorly retained in the Sphagnum canopy, suggesting that regulation of water table position is an effective method of controlling θ as a means of optimizing productivity. In general, the θ sustained at a given water table position decreased as regenerated layer thickness increased. Analysis of water table position relative to the former cutover peat surface in different areas of the site suggests that the soil water dynamics of the 〉40 year old regenerated layers may be becoming increasingly similar to those of a natural bog peatland. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2015-06-04
    Description: We present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatio-temporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a non-quadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulic head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation and extent of the intrusion from the steady-state data only. Addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2015-06-04
    Description: Human societies are increasingly altering the water and biogeochemical cycles to both improve ecosystem productivity and reduce risks associated with the unpredictable variability of climatic drivers. These alterations, however, often cause large negative environmental consequences, raising the question as to how societies can ensure a sustainable use of natural resources for the future. Here we discuss how ecohydrological modeling may address these broad questions with special attention to agroecosystems. The challenges related to modeling the two-way interaction between society and environment are illustrated by means of a dynamical model in which soil and water quality supports the growth of human society but is also degraded by excessive pressure, leading to critical transitions and sustained societal growth-collapse cycles. We then focus on the coupled dynamics of soil water and solutes (nutrients or contaminants), emphasizing the modeling challenges, presented by the strong nonlinearities in the soil and plant system and the unpredictable hydro-climatic forcing, that need to be overcome to quantitatively analyze problems of soil water sustainability in both natural and agricultural ecosystems. We discuss applications of this framework to problems of irrigation, soil salinization, and fertilization and emphasize how optimal solutions for large-scale, long-term planning of soil and water resources in agroecosystems under uncertainty could be provided by methods from stochastic control, informed by physically and mathematically sound descriptions of ecohydrological and biogeochemical interactions. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2015-06-04
    Description: Water resource management (WRM) through dams or reservoirs is worldwide necessary to support key human-related activities, ranging from hydropower production to water allocation and flood risk mitigation. Designing of reservoir operations aims primarily to fulfil the main purpose (or purposes) for which the structure has been built. However, it is well known that reservoirs strongly influence river geomorphic processes, causing sediment deficits downstream, altering water and sediment fluxes, leading to river bed incision and causing infrastructure instability and ecological degradation. We propose a framework that, by combining physically based modelling, surrogate modelling techniques and Multi-Objective (MO) optimization, allows to include fluvial geomorphology into MO optimization whose main objectives is the maximization of hydropower revenue and the minimization of river bed degradation. The case study is a run-of-the-river power plant on the River Po (Italy). A 1D mobile-bed hydro-morphological model simulated the river bed evolution over a ten year horizon for alternatives operation rules of the power plant. The knowledge provided by such a physically based model is integrated into a MO optimization routine via surrogate modelling using the response surface methodology. Hence, this framework overcomes the high computational costs that so far hindered the integration of river geomorphology into WRM. We provided numerical proof that river morphologic processes and hydropower production are indeed in conflict, but that the conflict may be mitigated with appropriate control strategies. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2015-06-04
    Description: This paper addresses how much flood water can be conserved for use after the flood season through the operation of reservoir by taking into account the residual flood control capacity (the difference between flood conveyance capacity and the expected inflow in a lead time). A two-stage model for dynamic control of the flood limited water level (the maximum allowed water level during the flood season, DC-FLWL) is established considering forecast uncertainty and acceptable flood risk. It is found that DC-FLWL is applicable when the reservoir inflow ranges from small to medium levels of the historical records, while both forecast uncertainty and acceptable risk in the downstream affect the feasible space of DC-FLWL. As forecast uncertainty increases (under a given risk level) or as acceptable risk level decreases (under a given forecast uncertainty level), the minimum required safety margin for flood control increases, and the chance for DC-FLWL decreases. The derived hedging rules from the modeling framework illustrate either the dominant role of water conservation or flood control or the tradeoff between the two objectives under different levels of forecast uncertainty and acceptable risk. These rules may provide useful guidelines for conserving water from flood, especially in the area with heavy water stress. The analysis is illustrated via a case study with a real-world reservoir in northeastern China. This article is protected by copyright. All rights reserved.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2015-06-05
    Description: Soil is the largest stock of carbon (C) in the terrestrial biosphere, so even slight changes in soil C stock may induce significant fluctuations in the atmospheric C dioxide (CO 2 ) concentration. Early coupled C-climate models predicted that positive C-climate feedback would be triggered due to the acceleration of C release to the atmosphere under future climate warming (Cox et al ., 2000). However, due to the omission of key microbial components and biogeochemical mechanisms in these models (Wieder et al ., 2013), these predictions remain controversial, because soil C dynamics is still highly uncertain among results simulated by 11 Earth system models (ESMs) involved in CMIP5 (Ciais et al ., 2013). This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2015-06-05
    Description: ABSTRACT Dam construction in the 1960's to 1980's significantly modified sediment supply from the Kenyan uplands to the lower Tana River. To assess the effect on suspended sediment fluxes of the Tana River, we monitored the sediment load at high temporal resolution for one year and complemented our data with historical information. The relationship between sediment concentration and water discharge was complex: at the onset of the wet season, discharge peaks resulted in high sediment concentrations and counterclockwise hysteresis, while towards the end of the wet season, a sediment exhaustion effect led to low concentrations despite the high discharge. The total sediment flux at Garissa (ca. 250 km downstream of the lowermost dam) between June 2012 and June 2013 was 8.8 Mt yr −1 . Comparison of current with historical fluxes indicated that dam construction had not greatly affected the annual sediment flux. We suggest that autogenic processes, namely river bed dynamics and bank erosion, mobilized large quantities of sediments stored in the alluvial plain downstream of the dams. Observations supporting the importance of autogenic processes included the absence of measurable activities of the fall-out radionuclides 7 Be and 137 Cs in the suspended sediment, the rapid lateral migration of the river course, and the seasonal changes in river cross-section. Given the large stock of sediment in the alluvial valley of the Tana River, it may take centuries before the effect of damming shows up as a quantitative reduction in the sediment flux at Garissa. Many models relate the sediment load of rivers to catchment characteristics, thereby implicitly assuming that alterations in the catchment induce changes in the sediment load. Our research confirms that the response of an alluvial river to external disturbances such as land use or climate change is often indirect or non-existent as autogenic processes overwhelm the changes in the input signal.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2015-06-05
    Description: ABSTRACT The Tangra Yum Co graben is one of the active structures that accommodate the east-west extension of the southern Tibetan Plateau and hosts one of the largest Tibetan lakes, which experienced lake-level changes of ~200 m during the Holocene. In this study, cosmogenic 10 Be is employed to (1) quantify catchment-wide denudation rates in fault-bounded mountain ranges adjacent to the Tangra Yum Co graben, (2) date palaeo-shorelines related to the Holocene lake-level decline, and (3) determine the age of glacial advances in this region. The fault-bounded, non-glaciated mountain range north of Tangra Yum Co – and presumably most other areas around the lake – erode at low rates of 10–70 mm/ka. Owing to the slow erosion of the landscape, the sediments delivered to Tangra Yum Co have high 10 Be concentrations. As a consequence, accurate exposure dating of sediment-covered terraces and beach ridges is difficult, because the pre-depositional 10 Be concentration may exceed the post-depositional 10 Be concentration from which exposure ages are calculated. This difficulty is illustrated by a rather inaccurate 10 Be exposure age of 2.3 ± 1.4 ka (i.e. an error of 60%) for a terrace that is located 67 m above the lake. Nevertheless, the age is consistent with luminescence ages for a series of beach ridges and provides further evidence for the decline of the lake level in the late Holocene. At Tangra Yum Co exposure dating of beach ridges via 10 Be depth profiles is not feasible, because the pre-depositional 10 Be component in these landforms varies with depth, which violates a basic assumption of this approach. 10 Be ages for boulders from two moraines are much older than the early Holocene lake-level highstand, indicating that melting of glaciers in the mountain ranges adjacent to Tangra Yum Co has not contributed significantly to the lake-level highstand in the early Holocene.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2015-06-06
    Description: The influence of human activity on the biosphere is increasing. While direct damage (e.g. habitat destruction) is relatively well understood, many activities affect wildlife in less apparent ways. Here we investigate how anthropogenic noise impairs foraging, which has direct consequences for animal survival and reproductive success. Noise can disturb foraging via several mechanisms that may operate simultaneously, and thus their effects could not be disentangled hitherto. We developed a diagnostic framework that can be applied to identify the potential mechanisms of disturbance in any species capable of detecting the noise. We tested this framework using Daubenton's bats, which find prey by echolocation. We found that traffic noise reduced foraging efficiency in most bats. Unexpectedly, this effect was present even if the playback noise did not overlap in frequency with the prey echoes. Neither overlapping nor non-overlapping noise influenced the search effort required for a successful prey capture. Hence, noise did not mask prey echoes or reduce the attention of bats. Instead, noise acted as an aversive stimulus that caused avoidance response, thereby reducing foraging efficiency. We conclude that conservation policies may seriously underestimate numbers of species affected and the multilevel effects on animal fitness, if the mechanisms of disturbance are not considered. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...