ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (89,810)
  • Wiley  (73,525)
  • American Association for the Advancement of Science (AAAS)  (16,285)
  • American Association of Petroleum Geologists (AAPG)
  • 2015-2019  (86,444)
  • 1955-1959  (3,366)
  • Biology  (89,810)
Collection
  • Articles  (89,810)
Publisher
Years
Year
  • 1
  • 2
  • 3
  • 4
    Publication Date: 2019
    Description: Abstract In this study, we report 20 years of data from three ponderosa pine plantations in northern California. Our sites span a natural gradient of forest productivity where climate variability and edaphic conditions delineate marked differences in baseline productivity (approximately threefold). Experimental herbicide application and fertilization significantly reduced competition and improved tree growth by 1.4‐ to 2.2‐fold across sites. At the site of lowest productivity, where soils are poorly developed and water limiting, tree growth increased strongly in response to understory suppression. Small but significant improvements in tree growth were observed in response to understory suppression at the moderate‐productivity site. At the site of highest productivity, where climate is favorable and soils well developed, fertilization increased productivity to a greater extent than did understory suppression. In most cases, the effect of understory suppression and fertilization caused an unexpected growth release, exceeding the anticipated maximum productivity by 〉5 m of additional height and 60–100% more basal area. At the site of highest productivity, however, understory suppression caused a weak increase on late‐season growth compared to fertilization alone, suggesting a beneficial effect of understory vegetation on long‐term growth at that site. Tree ring cellulose carbon isotopes indicate a negative relationship between intrinsic water use efficiency (iWUE) and tree growth in control stands, which shifted to a positive relationship as both iWUE and tree growth increased in response to management. Cellulose oxygen isotope ratios (δ18O) were positively correlated with iWUE and negatively correlated with vapor pressure deficit across sites, but δ18O was not a strong predictor of tree growth.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: Abstract Aims As global temperatures rise, the survival of many species may hinge on whether they can shift their climatic niches quickly enough to avoid extinction. Previous analyses among species and populations suggest that species’ niches change far slower than rates of projected climate change. However, it is unclear how quickly niches can change over the timeframe most relevant to global warming (decades instead of thousands or millions of years). Here, we use data from introduced species to assess how quickly climatic niches can change over decadal timescales. Location Global. Methods We analyse climatic data from 76 reptile and amphibian species introduced into the USA. We test for a relationship between species climatic‐niche values in their native and introduced ranges. We also quantify niche shifts in introduced populations relative to their native ranges and the rate of change associated with these shifts. We then compare these rate estimates to those estimated among species and to projected rates of future climate change. Results Remarkably, niche shifts in introduced species are roughly a million times faster than niche shifts among species in their native ranges and roughly 10 times faster than rates of projected climate change. Main conclusions Our results demonstrate that dramatic and rapid niche shifts are possible, although these may be limited in species’ native ranges by biotic interactions and other factors.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: Abstract Chlorophyll fluorometry is one of the most commonly implemented approaches for estimating phytoplankton biomass in situ, despite documented sources of natural variability and instrumental uncertainty in the relationship between in vivo fluorescence and chlorophyll concentration. A number of strategies are employed to minimize errors and quantify natural variability in this relationship in the open ocean. However, the assumptions underlying these approaches are unsupported in coastal waters due to the short temporal and small spatial scales of variability, as well as the optical complexity. The largest source of variability in the in situ chlorophyll fluorometric signal is nonphotochemical quenching (NPQ). Typically, unquenched nighttime observations are interpolated over the quenched daytime interval, but this assumes a spatial homogeneity not found in tidally impacted coastal waters. Here, we present a model that provides a tidally resolved correction for NPQ in moored chlorophyll fluorescence measurements. The output of the model is a time series of unquenched chlorophyll fluorescence in tidal endmembers (high and low tide extremes), and thus a time series of phytoplankton biomass growth and loss in these endmember populations. Comparison between modeled and measured unquenched time series yields quantification of nonconservative variations in phytoplankton biomass. Tidally modeled interpolation between these endmember time series yields a highly resolved time series of unquenched daytime chlorophyll fluorescence values at the location of the moored sensor. Such data sets provide a critical opportunity for validating the satellite remotely sensed ocean color chlorophyll concentration data product in coastal waters.
    Electronic ISSN: 1541-5856
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019
    Description: Evergreen broadleaf forests (EBFs) illustrated higher temporal stability and resistance of EVI than other biomes. Preserving EBFs is beneficial for global vegetation productivity stability and climate mitigation. Abstract Global increase in drought occurrences threatens the stability of terrestrial ecosystem functioning. Evergreen broadleaf forests (EBFs) keep leaves throughout the year, and therefore could experience higher drought risks than other biomes. However, the recent temporal variability of global vegetation productivity or land carbon sink is mainly driven by non‐evergreen ecosystems, such as semiarid grasslands, croplands, and boreal forests. Thus, we hypothesize that EBFs have higher stability than other biomes under the increasingly extreme droughts. Here we use long‐term Standardized Precipitation and Evaporation Index (SPEI) data and satellite‐derived Enhanced Vegetation Index (EVI) products to quantify the temporal stability (ratio of mean annual EVI to its SD), resistance (ability to maintain its original levels during droughts), and resilience (rate of EVI recovering to pre‐drought levels) at biome and global scales. We identified significantly increasing trends of annual drought severity (SPEI range: −0.08 to −1.80), area (areal fraction range: 2%–19%), and duration (month range: 7.9–9.1) in the EBF biome over 2000–2014. However, EBFs showed the highest resistance of EVI to droughts, but no significant differences in resilience of EVI to droughts were found among biomes (forests, grasslands, savannas, and shrublands). Global resistance and resilience of EVI to droughts were largely affected by temperature and solar radiation. These findings suggest that EBFs have higher stability than other biomes despite the greater drought exposure. Thus, the conservation of EBFs is critical for stabilizing global vegetation productivity and land carbon sink under more‐intense climate extremes in the future.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019
    Description: Projected changes in coastal metacommunities driven by ocean warming and acidification based on the elements of the metacommunity structure framework of Leibold and Mikkelson (Oikos 97:237, 2002) and Presley, Higgins, and Willig (Oikos 119:908, 2010). Under present‐day conditions (a) metacommunity is structured by habitat environmental filtering. Under future climate conditions (b) metacommunity is randomly structured. Abstract Predictions of the effects of global change on ecological communities are largely based on single habitats. Yet in nature, habitats are interconnected through the exchange of energy and organisms, and the responses of local communities may not extend to emerging community networks (i.e., metacommunities). Using large mesocosms and meiofauna communities as a model system, we investigated the interactive effects of ocean warming and acidification on the structure of marine metacommunities from three shallow‐water habitats: sandy soft‐bottoms, marine vegetation, and rocky reef substrates. Primary producers and detritus—key food sources for meiofauna—increased in biomass under the combined effect of temperature and acidification. The enhanced bottom‐up forcing boosted nematode densities but impoverished the functional and trophic diversity of nematode metacommunities. The combined climate stressors further homogenized meiofauna communities across habitats. Under present‐day conditions metacommunities were structured by habitat type, but under future conditions they showed an unstructured random pattern with fast‐growing generalist species dominating the communities of all habitats. Homogenization was likely driven by local species extinctions, reducing interspecific competition that otherwise could have prevented single species from dominating multiple niches. Our findings reveal that climate change may simplify metacommunity structure and prompt biodiversity loss, which may affect the biological organization and resilience of marine communities.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019
    Description: Explaining interspecific variation in autumn bird migration phenology trends has been challenging. We performed a spatially explicit time window analysis of weather effects on mean autumn passage of four trans‐Saharan and six intra‐European passerines at the island of Heligoland (Germany) over a 55‐year period (1960–2014). Weather variables at the breeding and stopover grounds explained up to 80% of the species‐specific interannual variability in autumn passage. Overall, wind conditions were most important, but the climatic contributions to the temporal trend in autumn migration phenology consisted of a potpourri of wind, precipitation and temperature effects. Abstract Climate change has caused a clear and univocal trend towards advancement in spring phenology. Changes in autumn phenology are much more diverse, with advancement, delays, and ‘no change' all occurring frequently. For migratory birds, patterns in autumn migration phenology trends have been identified based on ecological and life‐history traits. Explaining interspecific variation has nevertheless been challenging, and the underlying mechanisms have remained elusive. Radar studies on non‐species‐specific autumn migration intensity have repeatedly suggested that there are strong links with weather. In long‐term species‐specific studies, the variance in autumn migration phenology explained by weather has, nevertheless, been rather low, or a relationship was even lacking entirely. We performed a spatially explicit time window analysis of weather effects on mean autumn passage of four trans‐Saharan and six intra‐European passerines to gain insights into this apparent contradiction. We analysed data from standardized daily captures at the Heligoland island constant‐effort site (Germany), in combination with gridded daily temperature, precipitation and wind data over a 55‐year period (1960–2014), across northern Europe. Weather variables at the breeding and stopover grounds explained up to 80% of the species‐specific interannual variability in autumn passage. Overall, wind conditions were most important. For intra‐European migrants, wind was even twice as important as either temperature or precipitation, and the pattern also held in terms of relative contributions of each climate variable to the temporal trends in autumn phenology. For the trans‐Saharan migrants, however, the pattern of relative trend contributions was completely reversed. Temperature and precipitation had strong trend contributions, while wind conditions had only a minor impact because they did not show any strong temporal trends. As such, understanding species‐specific effects of climate on autumn phenology not only provides unique insights into each species' ecology but also how these effects shape the observed interspecific heterogeneity in autumn phenological trends.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019
    Description: Abstract Aim Our aim was to collect sightings data on oceanic manta rays (Mobula birostris) within the Raja Ampat Archipelago to better understand their population dynamics within the region. These data were compared with environmental variables to seek correlates that may explain any variations in observed sightings frequency. Combined, it is hoped this knowledge will be used to aid effective management of this species in the region. Location Raja Ampat Archipelago, West Papua, Indonesia. Methods We collected and catalogued photo‐identification of individuals to create a sightings database. To generate estimates of abundance, survival, sighting probability and recruitment to the population, we used a POPAN mark–recapture model. We considered time‐varying and fixed values for each parameter and possible covariate relationships of the El Niño–Southern Oscillation (ENSO) and sex. Results A total of 588 individuals were identified over six years, of which 72.4% were female, and 28.2% of individuals were resighted. There was an exponential increase in sightings during the 2015–2016 ENSO event despite constant effort; significant correlation was found between sightings and the multivariate ENSO index and with sea surface temperatures but not with chlorophyll‐a. Mark–recapture analysis shows a clear relationship between ENSO and entry probability, and the most parsimonious model estimated a superpopulation size N of 1875 individuals. Main conclusion Oceanic manta ray distributions appear to be impacted by ENSO‐related climate phenomena. Our findings on the relationship of ENSO to manta sightings and distribution indicate that oceanic manta rays are likely sensitive to large‐scale climatic variability. This illustrates the potential impacts of climate change on oceanic manta populations and the need to consider climate impacts in developing management strategies. Continued photo‐ID, tagging and population genetics would greatly enhance knowledge and help develop management strategies that bolster conservation of the species.
    Print ISSN: 1366-9516
    Electronic ISSN: 1472-4642
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019
    Description: Abstract The microbial anaerobic oxidation of methane (AOM) is the dominant sink for methane in anoxic sediments. AOM rate measurements are essential for assessing the efficacy of the benthic methane filter to mitigate the evasion of this potent greenhouse gas to the atmosphere. Incubation techniques with trace amounts of radiolabeled substrate (typically 14CH4) represent the most sensitive approach for methane oxidation rate measurements. Yet, radiotracer application can be performed in different ways, rendering the comparability of AOM rate measurements in field and laboratory investigations problematic. We compared four different 14CH4‐based short‐term incubation approaches to quantify methane turnover rates in lake sediments. Three of the applied methods yielded similar and reliable downcore rate profiles. They provided clear evidence for AOM with maximum rates of 15 nmol cm−3 d−1 at ~ 17 cm sediment depth. Using the short‐term slurry incubation (SL) method, however, we were unable to detect the AOM activity maximum that we observed with the other approaches. We hypothesize that changes in the microbial structure and disruption of physical interactions due to mixing of sediments negatively affected the activity of AOM communities and longer incubation times are necessary to enhance the sensitivity of this approach. Minor variabilities in rate measurement that we found in the non‐SL incubations may be related to small‐scale sediment heterogeneity, differential partial methane loss during sample handling, and/or an uneven application of the radiotracer. Whole‐core incubations interfere the least with the in situ conditions, but the ultimate choice of the AOM rate measurement method will depend on the individual sampling requirements.
    Electronic ISSN: 1541-5856
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019
    Description: We analyzed the effect of forest age on the climate sensitivity of carbon storage, timber growth rate, and species richness using a unique dataset of 18,507 plots in boreal–temperate forests of eastern North America. Old forests exhibited the highest combined performance and strongest association of the investigated indicators both under baseline and changed climatic conditions. Regions east and southeast of the Great Lakes were particularly vulnerable to climate change. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions in the region will help sustain ecosystem services and biodiversity in a changing world. Abstract Climate change threatens the provisioning of forest ecosystem services and biodiversity (ESB). The climate sensitivity of ESB may vary with forest development from young to old‐growth conditions as structure and composition shift over time and space. This study addresses knowledge gaps hindering implementation of adaptive forest management strategies to sustain ESB. We focused on a number of ESB indicators to (a) analyze associations among carbon storage, timber growth rate, and species richness along a forest development gradient; (b) test the sensitivity of these associations to climatic changes; and (c) identify hotspots of climate sensitivity across the boreal–temperate forests of eastern North America. From pre‐existing databases and literature, we compiled a unique dataset of 18,507 forest plots. We used a full Bayesian framework to quantify responses of nine ESB indicators. The Bayesian models were used to assess the sensitivity of these indicators and their associations to projected increases in temperature and precipitation. We found the strongest association among the investigated ESB indicators in old forests (〉170 years). These forests simultaneously support high levels of carbon storage, timber growth, and species richness. Older forests also exhibit low climate sensitivity of associations among ESB indicators as compared to younger forests. While regions with a currently low combined ESB performance benefitted from climate change, regions with a high ESB performance were particularly vulnerable to climate change. In particular, climate sensitivity was highest east and southeast of the Great Lakes, signaling potential priority areas for adaptive management. Our findings suggest that strategies aimed at enhancing the representation of older forest conditions at landscape scales will help sustain ESB in a changing world.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019
    Description: Temperate plants are at risk of being exposed to late spring freezes—called false springs—which are a major factor determining range limits, can impose high ecological and economic damage, and may be increasing with climate change. Currently, many false spring studies simplify the myriad complexities involved in assessing false spring risks and damage. Here, we review major areas that could improve predictions: understanding how species have evolved to avoid or tolerate false springs (e.g., through shortening how long they are at risk), identifying the cues that underlie spring phenology, and studying how local climate impacts false spring risk. Abstract Temperate plants are at risk of being exposed to late spring freezes. These freeze events—often called false springs—are one of the strongest factors determining temperate plants species range limits and can impose high ecological and economic damage. As climate change may alter the prevalence and severity of false springs, our ability to forecast such events has become more critical, and it has led to a growing body of research. Many false spring studies largely simplify the myriad complexities involved in assessing false spring risks and damage. While these studies have helped advance the field and may provide useful estimates at large scales, studies at the individual to community levels must integrate more complexity for accurate predictions of plant damage from late spring freezes. Here, we review current metrics of false spring, and how, when, and where plants are most at risk of freeze damage. We highlight how life stage, functional group, species differences in morphology and phenology, and regional climatic differences contribute to the damage potential of false springs. More studies aimed at understanding relationships among species tolerance and avoidance strategies, climatic regimes, and the environmental cues that underlie spring phenology would improve predictions at all biological levels. An integrated approach to assessing past and future spring freeze damage would provide novel insights into fundamental plant biology and offer more robust predictions as climate change progresses, which are essential for mitigating the adverse ecological and economic effects of false springs.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019
    Description: As ocean warming and El Niño events increase in intensity, coral reefs, the rainforests of the marine realm, are at the forefront of their associated impacts. The frequency, intensity and spatial extent of coral bleaching are projected to increase in tandem, yet many reefs are located in poorly monitored tropical regions. By tuning marine heatwaves (MHWs) to coral bleaching conditions, we created an atlas of MHWs over the data‐poor Red Sea region, revealing hotspots of reef zones susceptible to bleaching. As this methodology may be applied to any environment, it could help optimize management plans under global environmental change. Abstract As the Earth's temperature continues to rise, coral bleaching events become more frequent. Some of the most affected reef ecosystems are located in poorly monitored waters, and thus, the extent of the damage is unknown. We propose the use of marine heatwaves (MHWs) as a new approach for detecting coral reef zones susceptible to bleaching, using the Red Sea as a model system. Red Sea corals are exceptionally heat‐resistant, yet bleaching events have increased in frequency. By applying a strict definition of MHWs on 〉30 year satellite‐derived sea surface temperature observations (1985–2015), we provide an atlas of MHW hotspots over the Red Sea coral reef zones, which includes all MHWs that caused major coral bleaching. We found that: (a) if tuned to a specific set of conditions, MHWs identify all areas where coral bleaching has previously been reported; (b) those conditions extended farther and occurred more often than bleaching was reported; and (c) an emergent pattern of extreme warming events is evident in the northern Red Sea (since 1998), a region until now thought to be a thermal refuge for corals. We argue that bleaching in the Red Sea may be vastly underrepresented. Additionally, although northern Red Sea corals exhibit remarkably high thermal resistance, the rapidly rising incidence of MHWs of high intensity indicates this region may not remain a thermal refuge much longer. As our regionally tuned MHW algorithm was capable of isolating all extreme warming events that have led to documented coral bleaching in the Red Sea, we propose that this approach could be used to reveal bleaching‐prone regions in other data‐limited tropical regions. It may thus prove a highly valuable tool for policymakers to optimize the sustainable management of coastal economic zones.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019
    Description: Global warming is rapidly advancing the timing of spring leaf‐out in temperate deciduous tree species; however, the interactive effects of temperature and daylength underlying this warming response remain unclear. Based on data from six tree species across 2,377 European phenology observation sites, we found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf‐out in all studied species. These results provide the first large‐scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf‐out phenology in temperate deciduous trees. Abstract Global warming has led to substantially earlier spring leaf‐out in temperate‐zone deciduous trees. The interactive effects of temperature and daylength underlying this warming response remain unclear. However, they need to be accurately represented by earth system models to improve projections of the carbon and energy balances of temperate forests and the associated feedbacks to the Earth's climate system. We studied the control of leaf‐out by daylength and temperature using data from six tree species across 2,377 European phenological network (www.pep725.eu), each with at least 30 years of observations. We found that, in addition to and independent of the known effect of chilling, daylength correlates negatively with the heat requirement for leaf‐out in all studied species. In warm springs when leaf‐out is early, days are short and the heat requirement is higher than in an average spring, which mitigates the warming‐induced advancement of leaf‐out and protects the tree against precocious leaf‐out and the associated risks of late frosts. In contrast, longer‐than‐average daylength (in cold springs when leaf‐out is late) reduces the heat requirement for leaf‐out, ensuring that trees do not leaf‐out too late and miss out on large amounts of solar energy. These results provide the first large‐scale empirical evidence of a widespread daylength effect on the temperature sensitivity of leaf‐out phenology in temperate deciduous trees.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019
    Description: We review the causes of variations in observed and modelled historical trends in water‐use efficiency of plants and ecosystems. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. We provide recommendations for improving observation‐based estimates of water‐use efficiency, which will better inform the representation of the exchange of carbon and water in the vegetation–atmosphere continuum in vegetation models. Abstract Plant water‐use efficiency (WUE, the carbon gained through photosynthesis per unit of water lost through transpiration) is a tracer of the plant physiological controls on the exchange of water and carbon dioxide between terrestrial ecosystems and the atmosphere. At the leaf level, rising CO2 concentrations tend to increase carbon uptake (in the absence of other limitations) and to reduce stomatal conductance, both effects leading to an increase in leaf WUE. At the ecosystem level, indirect effects (e.g. increased leaf area index, soil water savings) may amplify or dampen the direct effect of CO2. Thus, the extent to which changes in leaf WUE translate to changes at the ecosystem scale remains unclear. The differences in the magnitude of increase in leaf versus ecosystem WUE as reported by several studies are much larger than would be expected with current understanding of tree physiology and scaling, indicating unresolved issues. Moreover, current vegetation models produce inconsistent and often unrealistic magnitudes and patterns of variability in leaf and ecosystem WUE, calling for a better assessment of the underlying approaches. Here, we review the causes of variations in observed and modelled historical trends in WUE over the continuum of scales from leaf to ecosystem, including methodological issues, with the aim of elucidating the reasons for discrepancies observed within and across spatial scales. We emphasize that even though physiological responses to changing environmental drivers should be interpreted differently depending on the observational scale, there are large uncertainties in each data set which are often underestimated. Assumptions made by the vegetation models about the main processes influencing WUE strongly impact the modelled historical trends. We provide recommendations for improving long‐term observation‐based estimates of WUE that will better inform the representation of WUE in vegetation models.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019
    Description: We used satellite‐derived leaf chlorophyll content (Chlleaf) to infer leaf photosynthetic capacity () that varies temporally and spatially. The new Chlleaf‐based data set was then incorporated into an established terrestrial biosphere model (i.e. BEPS) to estimate global photosynthesis. Our results show that Chlleaf‐based and its seasonally average values (Chlavg‐based ) can both effectively improve the estimates of photosynthesis when validated against observations at 124 sites of different plant functional types across the globe. This study highlights that Chlleaf is a valuable leaf physiological trait to add in future models to better simulate the terrestrial carbon cycle. Abstract The terrestrial biosphere plays a critical role in mitigating climate change by absorbing anthropogenic CO2 emissions through photosynthesis. The rate of photosynthesis is determined jointly by environmental variables and the intrinsic photosynthetic capacity of plants (i.e. maximum carboxylation rate; ). A lack of an effective means to derive spatially and temporally explicit has long hampered efforts towards estimating global photosynthesis accurately. Recent work suggests that leaf chlorophyll content (Chlleaf) is strongly related to , since Chlleaf and are both correlated with photosynthetic nitrogen content. We used medium resolution satellite images to derive spatially and temporally explicit Chlleaf, which we then used to parameterize within a terrestrial biosphere model. Modelled photosynthesis estimates were evaluated against measured photosynthesis at 124 eddy covariance sites. The inclusion of Chlleaf in a terrestrial biosphere model improved the spatial and temporal variability of photosynthesis estimates, reducing biases at eddy covariance sites by 8% on average, with the largest improvements occurring for croplands (21% bias reduction) and deciduous forests (15% bias reduction). At the global scale, the inclusion of Chlleaf reduced terrestrial photosynthesis estimates by 9 PgC/year and improved the correlations with a reconstructed solar‐induced fluorescence product and a gridded photosynthesis product upscaled from tower measurements. We found positive impacts of Chlleaf on modelled photosynthesis for deciduous forests, croplands, grasslands, savannas and wetlands, but mixed impacts for shrublands and evergreen broadleaf forests and negative impacts for evergreen needleleaf forests and mixed forests. Our results highlight the potential of Chlleaf to reduce the uncertainty of global photosynthesis but identify challenges for incorporating Chlleaf in future terrestrial biosphere models.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019
    Description: Early warning metrics from satellites of drought‐induced tree mortality could be incredibly valuable. We test several metrics in an aspen mortality event and find that these metrics can explain both tree physiological stress during the drought and subsequent mortality after the drought. Abstract Climate change‐driven drought stress has triggered numerous large‐scale tree mortality events in recent decades. Advances in mechanistic understanding and prediction are greatly limited by an inability to detect in situ where trees are likely to die in order to take timely measurements and actions. Thus, algorithms of early warning and detection of drought‐induced tree stress and mortality could have major scientific and societal benefits. Here, we leverage two consecutive droughts in the southwestern United States to develop and test a set of early warning metrics. Using Landsat satellite data, we constructed early warning metrics from the first drought event. We then tested these metrics' ability to predict spatial patterns in tree physiological stress and mortality from the second drought. To test the broader applicability of these metrics, we also examined a separate drought in the Amazon rainforest. The early warning metrics successfully explained subsequent tree mortality in the second drought in the southwestern US, as well as mortality in the independent drought in tropical forests. The metrics also strongly correlated with spatial patterns in tree hydraulic stress underlying mortality, which provides a strong link between tree physiological stress and remote sensing during the severe drought and indicates that the loss of hydraulic function during drought likely mediated subsequent mortality. Thus, early warning metrics provide a critical foundation for elucidating the physiological mechanisms underpinning tree mortality in mature forests and guiding management responses to these climate‐induced disturbances.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019
    Description: Most studies analyzing influences of climatic warming on crop yield have ignored that yield response to temperature is stage dependent. Here we integrate field census data, satellite‐derived data, statistical regressions and mechanistic models to investigate how heat stress nonlinearly influences maize yield and its components (biomass accumulation, phenological development and grain formation). Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the heat stress effects. Abstract Evidence suggests that global maize yield declines with a warming climate, particularly with extreme heat events. However, the degree to which important maize processes such as biomass growth rate, growing season length (GSL) and grain formation are impacted by an increase in temperature is uncertain. Such knowledge is necessary to understand yield responses and develop crop adaptation strategies under warmer climate. Here crop models, satellite observations, survey, and field data were integrated to investigate how high temperature stress influences maize yield in the U.S. Midwest. We showed that both observational evidence and crop model ensemble mean (MEM) suggests the nonlinear sensitivity in yield was driven by the intensified sensitivity of harvest index (HI), but MEM underestimated the warming effects through HI and overstated the effects through GSL. Further analysis showed that the intensified sensitivity in HI mainly results from a greater sensitivity of yield to high temperature stress during the grain filling period, which explained more than half of the yield reduction. When warming effects were decomposed into direct heat stress and indirect water stress (WS), observational data suggest that yield is more reduced by direct heat stress (−4.6 ± 1.0%/°C) than by WS (−1.7 ± 0.65%/°C), whereas MEM gives opposite results. This discrepancy implies that yield reduction by heat stress is underestimated, whereas the yield benefit of increasing atmospheric CO2 might be overestimated in crop models, because elevated CO2 brings yield benefit through water conservation effect but produces limited benefit over heat stress. Our analysis through integrating data and crop models suggests that future adaptation strategies should be targeted at the heat stress during grain formation and changes in agricultural management need to be better accounted for to adequately estimate the effects of heat stress.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019
    Description: Are there non‐native marine species in Antarctica? With over 500 visits from more than 180 vessels annually and rapidly changing environmental conditions, Antarctica appears to be increasingly vulnerable to impacts from non‐native marine species. We explore factors that influence the likelihood of non‐native marine species establishing in the Antarctic region, present new estimates for human activity, and make recommendations to researchers, environmental managers and policy makers. Abstract Antarctica is experiencing significant ecological and environmental change, which may facilitate the establishment of non‐native marine species. Non‐native marine species will interact with other anthropogenic stressors affecting Antarctic ecosystems, such as climate change (warming, ocean acidification) and pollution, with irreversible ramifications for biodiversity and ecosystem services. We review current knowledge of non‐native marine species in the Antarctic region, the physical and physiological factors that resist establishment of non‐native marine species, changes to resistance under climate change, the role of legislation in limiting marine introductions, and the effect of increasing human activity on vectors and pathways of introduction. Evidence of non‐native marine species is limited: just four marine non‐native and one cryptogenic species that were likely introduced anthropogenically have been reported freely living in Antarctic or sub‐Antarctic waters, but no established populations have been reported; an additional six species have been observed in pathways to Antarctica that are potentially at risk of becoming invasive. We present estimates of the intensity of ship activity across fishing, tourism and research sectors: there may be approximately 180 vessels and 500+ voyages in Antarctic waters annually. However, these estimates are necessarily speculative because relevant data are scarce. To facilitate well‐informed policy and management, we make recommendations for future research into the likelihood of marine biological invasions in the Antarctic region.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019
    Description: Global Change Biology, Volume 25, Issue 7, Page e5-e5, July 2019.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019
    Description: The effect of legumes on soil nitrogen (N) cycling was much greater than that of N enrichment in this N‐limited grassland either across (a, c) or within (b, d) the experimental year. Legume effects were also greater than those of N enrichment in alleviating potential negative effects of species richness on mineralization (a). Abstract Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17‐year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m−2 year−1) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four‐species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four‐species plots containing legumes compared to legume‐free four‐species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N‐fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019
    Description: Ecosystems can be characterized as complex systems that traverse a variety of functional and structural states in response to changing bioclimatic forcings. An ecosystem's functional state can be empirically described using Process Networks that use timeseries observations to determine the strength of process‐level functional couplings between ecosystem components by using the LaThuile FLUXNET synthesis dataset. The resulted elasticity maps provide theoretically novel resource to anticipate ecological state transitions in response to climate change and to validate process‐based models of ecological change. Tropical forests, hot deserts, savannas, and high elevations are most elastic to climate change. Abstract Ecosystems can be characterized as complex systems that traverse a variety of functional and structural states in response to changing bioclimatic forcings. A central challenge of global change biology is the robust empirical description of these states and state transitions. An ecosystem's functional state can be empirically described using Process Networks (PN) that use timeseries observations to determine the strength of process‐level functional couplings between ecosystem components. A globally extensive source of in‐situ observations of terrestrial ecosystem dynamics is the FLUXNET eddy‐covariance network that provides standardized observations of micrometeorology and carbon, water, and energy flux dynamics. We employ the LaThuile FLUXNET synthesis dataset to delineate each month's functional state for 204 sites, yielding the LaThuile PN version 1.0 database that describes the strength of an ecosystem's functional couplings from air temperature and precipitation to carbon fluxes during each site‐month. Then we calculate the elasticity of these couplings to seasonal scale forcings: air temperature, precipitation, solar radiation, and phenophase. Finally, we train artificial neural networks to extrapolate these elasticities from 204 sites to the globe, yielding maps of the estimated functional elasticity of every terrestrial ecosystem's functional states to changing seasonal bioclimatic forcings. These maps provide theoretically novel resource that can be used to anticipate ecological state transitions in response to climate change and to validate process‐based models of ecological change. These elasticity maps show that each ecosystem can be expected to respond uniquely to changing forcings. Tropical forests, hot deserts, savannas, and high elevations are most elastic to climate change, and elasticity of ecosystems to seasonal air temperature is on average an order of magnitude higher than elasticity to other bioclimatic forcings. We also observed a reasonable amount of moderate relationships between functional elasticity and structural state change across different ecosystems.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019
    Description: Global Change Biology, Volume 25, Issue 7, Page e3-e4, July 2019.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019
    Description: Plant stress resulting from soil freezing is expected to increase in northern temperate regions over the next century due to reductions in snow cover caused by climate change. Soil spatial heterogeneity can buffer the effects of plant freezing stress by increasing the availability of soil microsites that function as microrefugia. While the deliberate creation of soil microsites in ecological restoration projects could increase the frequency of microrefugia that mitigate plant community responses to increased freezing stress, the design of these microsites must be optimized, given that soil heterogeneity also has the potential to exacerbate freezing stress responses. Abstract Plant stress resulting from soil freezing is expected to increase in northern temperate regions over the next century due to reductions in snow cover caused by climate change. Within plant communities, soil spatial heterogeneity can potentially buffer the effects of plant freezing stress by increasing the availability of soil microsites that function as microrefugia. Moreover, increased species richness resulting from soil heterogeneity can increase the likelihood of stress‐tolerant species being present in a community. We used a field experiment to examine interactions between soil heterogeneity and increased freezing intensity (achieved via snow removal) on plant abundance and diversity in a grassland. Patches of topsoil were mixed with either sand or woodchips to create heterogeneous and homogeneous treatments, and plant community responses to snow removal were assessed over three growing seasons. Soil heterogeneity interacted significantly with snow removal, but it either buffered or exacerbated the snow removal response depending on the specific substrate (sand vs. woodchips) and plant functional group. In turn, snow removal influenced plant responses to soil heterogeneity; for example, adventive forb cover responded to increased heterogeneity under ambient snow cover, but this effect diminished with snow removal. Our results reveal that soil heterogeneity can play an important role in determining plant responses to changes in soil freezing stress resulting from global climate change. While the deliberate creation of soil microsites in ecological restoration projects as a land management practice could increase the frequency of microrefugia that mitigate plant community responses to increased freezing stress, the design of these microsites must be optimized, given that soil heterogeneity also has the potential to exacerbate freezing stress responses.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019
    Description: Abstract Aim Understanding biodiversity–ecosystem function (BEF) relationships in forest systems is crucial for effective forest management and restoration, yet testing these relationships is often limited by biased diversity patterns in forestry plantings (biased towards commercially valuable species) and uncontrollable diversity in mature natural forests. Multispecies reforestation plantings present a valuable opportunity to investigate BEF relationships in woody systems, especially across large environmental gradients. Location Reforestation plantings across the arable region of Australia. Time period 1951–2012. Major taxa studied Three hundred and sixty‐four woody plant species. Methods We examined relationships between productivity and diversity using inventory data from 977 plots in 386 multispecies reforestation plantings. Diversity was estimated using observed species richness and three functional diversity indices calculated from four functional traits: specific leaf area, wood density, seed mass and maximum attainable height. We modelled how plot‐level biomass accumulation (a productivity proxy) correlated with these diversity indices, as well as age since planting, plant density and three environmental variables: solar radiation, moisture availability and soil sand content. These models were fitted across Australia and, separately, within eight groups of plantings with similar environmental conditions. Results We found no correlation between diversity and productivity, regardless of the diversity metric or spatial scale used (continent‐wide or within environment groups). Instead, productivity was best explained by local environmental conditions and plant density. Main conclusions A positive relationship between diversity and productivity was not evident in planted forests across a wide range of Australian woodland and forest systems, at least in the first few decades of growth. Our findings suggest that the positive relationship between diversity and productivity commonly reported in experimental settings should not be assumed for all systems and conditions.
    Print ISSN: 1466-822X
    Electronic ISSN: 1466-8238
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019
    Description: Pinus sylvestris growth reversed its response to temperature between the non‐warming period (1958–1986) and the warming period (1987–2014). The shifting of the growing season to April during rapid warming, the presence of snow cover during early growing season, and a consequent alleviation of water‐limitation during the early growing season contribute to the reversed correlation between temperature and growth for April and May since 1987. Abstract Boreal forests are facing profound changes in their growth environment, including warming‐induced water deficits, extended growing seasons, accelerated snowmelt, and permafrost thaw. The influence of warming on trees varies regionally, but in most boreal forests studied to date, tree growth has been found to be negatively affected by increasing temperatures. Here, we used a network of Pinus sylvestris tree‐ring collections spanning a wide climate gradient the southern end of the boreal forest in Asia to assess their response to climate change for the period 1958–2014. Contrary to findings in other boreal regions, we found that previously negative effects of temperature on tree growth turned positive in the northern portion of the study network after the onset of rapid warming. Trees in the drier portion did not show this reversal in their climatic response during the period of rapid warming. Abundant water availability during the growing season, particularly in the early to mid‐growing season (May–July), is key to the reversal of tree sensitivity to climate. Advancement in the onset of growth appears to allow trees to take advantage of snowmelt water, such that tree growth increases with increasing temperatures during the rapidly warming period. The region's monsoonal climate delivers limited precipitation during the early growing season, and thus snowmelt likely covers the water deficit so trees are less stressed from the onset of earlier growth. Our results indicate that the growth response of P. sylvestris to increasing temperatures strongly related to increased early season water availability. Hence, boreal forests with sufficient water available during crucial parts of the growing season might be more able to withstand or even increase growth during periods of rising temperatures. We suspect that other regions of the boreal forest may be affected by similar dynamics.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019
    Description: We conducted a global meta‐analysis to examine changes in soil organic carbon sequestration induced by three common climate‐smart agriculture (CSA) management practices (i.e., conservation tillage, cover crops, and biochar) and associated environmental controlling factors. Our results demonstrate that croplands could serve as an improved carbon sink and provide climate benefits by adopting these CSA practices. However, climate and soil conditions, as well as the combined effects of multiple management practices, should be proactively considered in scaling up these CSA practices to local and regional levels for achieving climate mitigation and adaptation while ensuring crop security and soil health. Abstract Climate‐smart agriculture (CSA) management practices (e.g., conservation tillage, cover crops, and biochar applications) have been widely adopted to enhance soil organic carbon (SOC) sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. However, current measurements regarding the influences of CSA management practices on SOC sequestration diverge widely, making it difficult to derive conclusions about individual and combined CSA management effects and bringing large uncertainties in quantifying the potential of the agricultural sector to mitigate climate change. We conducted a meta‐analysis of 3,049 paired measurements from 417 peer‐reviewed articles to examine the effects of three common CSA management practices on SOC sequestration as well as the environmental controlling factors. We found that, on average, biochar applications represented the most effective approach for increasing SOC content (39%), followed by cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects of CSA management practices were more pronounced in areas with relatively warmer climates or lower nitrogen fertilizer inputs. Our meta‐analysis demonstrated that, through adopting CSA practices, cropland could be an improved carbon sink. We also highlight the importance of considering local environmental factors (e.g., climate and soil conditions and their combination with other management practices) in identifying appropriate CSA practices for mitigating greenhouse gas emissions while ensuring crop productivity.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019
    Description: We demonstrate that foliar water uptake (FU) occurs in six common Amazonian tree genera. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU, we estimate the contribution by FU to annual transpiration at this site has a median value of 8% (103 mm/year) and an interquartile range of 3%–15%. Our results indicate that FU is likely to be a common strategy in Amazonian rainforest and may have significant implications for the Amazon carbon budget and potentially also influence the drought tolerance of individual Amazonian trees and tree species. Abstract The absorption of atmospheric water directly into leaves enables plants to alleviate the water stress caused by low soil moisture, hydraulic resistance in the xylem and the effect of gravity on the water column, while enabling plants to scavenge small inputs of water from leaf‐wetting events. By increasing the availability of water, and supplying it from the top of the canopy (in a direction facilitated by gravity), foliar uptake (FU) may be a significant process in determining how forests interact with climate, and could alter our interpretation of current metrics for hydraulic stress and sensitivity. FU has not been reported for lowland tropical rainforests; we test whether FU occurs in six common Amazonian tree genera in lowland Amazônia, and make a first estimation of its contribution to canopy–atmosphere water exchange. We demonstrate that FU occurs in all six genera and that dew‐derived water may therefore be used to “pay” for some morning transpiration in the dry season. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU (kfu), we estimate that the contribution by FU to annual transpiration at this site has a median value of 8.2% (103 mm/year) and an interquartile range of 3.4%–15.3%, with the biggest sources of uncertainty being kfu and the proportion of time the canopy is wet. Our results indicate that FU is likely to be a common strategy and may have significant implications for the Amazon carbon budget. The process of foliar water uptake may also have a profound impact on the drought tolerance of individual Amazonian trees and tree species, and on the cycling of water and carbon, regionally and globally.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019
    Description: Increasing environmental temperatures have resulted in more frequent and more severe outbreaks of ranavirus disease in UK frogs. Future climate change could threaten larval recruitment and lead to greater impacts but the results of this study point to possible mitigation steps. Abstract The global trend of increasing environmental temperatures is often predicted to result in more severe disease epidemics. However, unambiguous evidence that temperature is a driver of epidemics is largely lacking, because it is demanding to demonstrate its role among the complex interactions between hosts, pathogens, and their shared environment. Here, we apply a three‐pronged approach to understand the effects of temperature on ranavirus epidemics in UK common frogs, combining in vitro, in vivo, and field studies. Each approach suggests that higher temperatures drive increasing severity of epidemics. In wild populations, ranavirosis incidents were more frequent and more severe at higher temperatures, and their frequency increased through a period of historic warming in the 1990s. Laboratory experiments using cell culture and whole animal models showed that higher temperature increased ranavirus propagation, disease incidence, and mortality rate. These results, combined with climate projections, predict severe ranavirosis outbreaks will occur over wider areas and an extended season, possibly affecting larval recruitment. Since ranaviruses affect a variety of ectothermic hosts (amphibians, reptiles, and fish), wider ecological damage could occur. Our three complementary lines of evidence present a clear case for direct environmental modulation of these epidemics and suggest management options to protect species from disease.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019
    Description: We measured the response of three phytoplankton communities to multifactorial combinations of temperature, nutrient and grazing treatments. Nutrients elevated net growth rates and reduced carbon:nutrient and nitrogen:phosphorus ratios of all communities. Warming effects on growth and stoichiometry depended on lake productivity: warming enhanced growth in the most productive community and caused strongest stoichiometric responses in the least productive community. Grazing reduced C:P and N:P ratios in the least productive community, suggesting consumer‐driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming, and interactions with nutrient supply and grazing, depend on lake productivity and cell size distribution. Abstract Global change involves shifts in multiple environmental factors that act in concert to shape ecological systems in ways that depend on local biotic and abiotic conditions. Little is known about the effects of combined global change stressors on phytoplankton communities, and particularly how these are mediated by distinct community properties such as productivity, grazing pressure and size distribution. Here, we tested for the effects of warming and eutrophication on phytoplankton net growth rate and C:N:P stoichiometry in two phytoplankton cell size fractions (〈30 µm and 〉30 µm) in the presence and absence of grazing in microcosm experiments. Because effects may also depend on lake productivity, we used phytoplankton communities from three Dutch lakes spanning a trophic gradient. We measured the response of each community to multifactorial combinations of temperature, nutrient, and grazing treatments and found that nutrients elevated net growth rates and reduced carbon:nutrient ratios of all three phytoplankton communities. Warming effects on growth and stoichiometry depended on nutrient supply and lake productivity, with enhanced growth in the most productive community dominated by cyanobacteria, and strongest stoichiometric responses in the most oligotrophic community at ambient nutrient levels. Grazing effects were also most evident in the most oligotrophic community, with reduced net growth rates and phytoplankton C:P stoichiometry that suggests consumer‐driven nutrient recycling. Our experiments indicate that stoichiometric responses to warming and interactions with nutrient addition and grazing are not universal but depend on lake productivity and cell size distribution.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019
    Description: In Europe, we explored latitudinal community shifts for nematodes—abundant soil organisms that include root herbivores—in the rhizospheres of climate change‐driven range‐expanding plant species. We sampled nematode communities of several range‐expanding plant species along their expansion trajectory and compared these nematode communities with those of related plant species that are native along the entire expansion gradient. We show that nematode communities change with latitude, but that the strength of nematode community shifts strongly depends on range‐expanding plant species. Abstract Current climate change has led to latitudinal and altitudinal range expansions of numerous species. During such range expansions, plant species are expected to experience changes in interactions with other organisms, especially with belowground biota that have a limited dispersal capacity. Nematodes form a key component of the belowground food web as they include bacterivores, fungivores, omnivores and root herbivores. However, their community composition under climate change‐driven intracontinental range‐expanding plants has been studied almost exclusively under controlled conditions, whereas little is known about actual patterns in the field. Here, we use novel molecular sequencing techniques combined with morphological quantification in order to examine nematode communities in the rhizospheres of four range‐expanding and four congeneric native species along a 2,000 km latitudinal transect from South‐Eastern to North‐Western Europe. We tested the hypotheses that latitudinal shifts in nematode community composition are stronger in range‐expanding plant species than in congeneric natives and that in their new range, range‐expanding plant species accumulate fewest root‐feeding nematodes. Our results show latitudinal variation in nematode community composition of both range expanders and native plant species, while operational taxonomic unit richness remained the same across ranges. Therefore, range‐expanding plant species face different nematode communities at higher latitudes, but this is also the case for widespread native plant species. Only one of the four range‐expanding plant species showed a stronger shift in nematode community composition than its congeneric native and accumulated fewer root‐feeding nematodes in its new range. We conclude that variation in nematode community composition with increasing latitude occurs for both range‐expanding and native plant species and that some range‐expanding plant species may become released from root‐feeding nematodes in the new range.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019
    Description: Large‐diameter, tall‐stature and big‐crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence, play an important role in climate change mitigation strategies. We show that the “big‐sized trees effect” overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big‐sized trees may be more susceptible to atmospheric drought. We argue that the effects of big‐sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning. Abstract Large‐diameter, tall‐stature, and big‐crown trees are the main stand structures of forests, generally contributing a large fraction of aboveground biomass, and hence play an important role in climate change mitigation strategies. Here, we hypothesized that the effects of large‐diameter, tall‐stature, and big‐crown trees overrule the effects of species richness and remaining trees attributes on aboveground biomass in tropical forests (i.e., we term the “big‐sized trees hypothesis”). Specifically, we assessed the importance of: (a) the “top 1% big‐sized trees effect” relative to species richness; (b) the “99% remaining trees effect” relative to species richness; and (c) the “top 1% big‐sized trees effect” relative to the “99% remaining trees effect” and species richness on aboveground biomass. Using environmental factor and forest inventory datasets from 712 tropical forest plots in Hainan Island of southern China, we tested several structural equation models for disentangling the relative effects of big‐sized trees, remaining trees attributes, and species richness on aboveground biomass, while considering for the full (indirect effects only) and partial (direct and indirect effects) mediation effects of climatic and soil conditions, as well as interactions between species richness and trees attributes. We found that top 1% big‐sized trees attributes strongly increased aboveground biomass (i.e., explained 55%–70% of the accounted variation) compared to species richness (2%–18%) and 99% remaining trees attributes (6%–10%). In addition, species richness increased aboveground biomass indirectly via increasing big‐sized trees but via decreasing remaining trees. Hence, we show that the “big‐sized trees effect” overrides the effects of remaining trees attributes and species richness on aboveground biomass in tropical forests. This study also indicates that big‐sized trees may be more susceptible to atmospheric drought. We argue that the effects of big‐sized trees on species richness and aboveground biomass should be tested for better understanding of the ecological mechanisms underlying forest functioning.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2019
    Description: Global Change Biology, Volume 25, Issue 8, Page i-ii, August 2019.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019
    Description: Soil fauna is a key component of terrestrial ecosystems, although its response to climate change and its consequences to ecosystem functioning deserve more attention. In a climate manipulation experiment replicated across Europe, we found that the abundance and the taxonomic, phylogenetic, and functional richness of springtails decreased within 4 years of drought. This richness decline led to phylogenetically more clustered communities sharing evolutionary conserved traits. Additionally, despite the climatic differences among our study sites, we found that taxonomic, phylogenetic, and functional richness of springtail communities were able to explain up to 30% of the variation in annual litter decomposition rates. Abstract Soil fauna play a fundamental role on key ecosystem functions like organic matter decomposition, although how local assemblages are responding to climate change and whether these changes may have consequences to ecosystem functioning is less clear. Previous studies have revealed that a continued environmental stress may result in poorer communities by filtering out the most sensitive species. However, these experiments have rarely been applied to climate change factors combining multiyear and multisite standardized field treatments across climatically contrasting regions, which has limited drawing general conclusions. Moreover, other facets of biodiversity, such as functional and phylogenetic diversity, potentially more closely linked to ecosystem functioning, have been largely neglected. Here, we report that the abundance, species richness, phylogenetic diversity, and functional richness of springtails (Subclass Collembola), a major group of fungivores and detritivores, decreased within 4 years of experimental drought across six European shrublands. The loss of phylogenetic and functional richness was higher than expected by the loss of species richness, leading to communities of phylogenetically similar species sharing evolutionary conserved traits. Additionally, despite the great climatic differences among study sites, we found that taxonomic, phylogenetic, and functional richness of springtail communities alone were able to explain up to 30% of the variation in annual decomposition rates. Altogether, our results suggest that the forecasted reductions in precipitation associated with climate change may erode springtail communities and likely other drought‐sensitive soil invertebrates, thereby retarding litter decomposition and nutrient cycling in ecosystems.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019
    Description: Worldwide, China is home to the fourth largest combined area of natural wetlands. A recent study provided a synthesis of its carbon budget. However, based on our experience of observing and simulating CH4 emissions from natural wetlands, as well as evidence in the literature, we suggest the results to be an overestimation of the CH4 release from China's marshlands, and here are the two reasons why: an overestimation of the extent of China's marshlands and an overestimation of the CH4 emission rates from the Tibetan Plateau
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019
    Description: The figure displays the effects (red = negative; blue = positive) of explanatory variables on tree sensitivity to climate, and the resulting 1970–2005 growth trends. Old‐growth boreal black spruce stands exhibited a more negative response to previous summer temperature, identified as the primary climatic driver of growth trajectories for this species. This finding suggests an exacerbated effect of heat‐induced stresses, which resulted in more negative long‐term growth trends for old‐growth stands, especially when combined with late‐frost damage. Other explanatory variables, such as regional climate, competition, and soil conditions, modified tree sensitivity to climate. Abstract Currently, there is no consensus regarding the way that changes in climate will affect boreal forest growth, where warming is occurring faster than in other biomes. Some studies suggest negative effects due to drought‐induced stresses, while others provide evidence of increased growth rates due to a longer growing season. Studies focusing on the effects of environmental conditions on growth–climate relationships are usually limited to small sampling areas that do not encompass the full range of environmental conditions; therefore, they only provide a limited understanding of the processes at play. Here, we studied how environmental conditions and ontogeny modulated growth trends and growth–climate relationships of black spruce (Picea mariana) and jack pine (Pinus banksiana) using an extensive dataset from a forest inventory network. We quantified the long‐term growth trends at the stand scale, based on analysis of the absolutely dated ring‐width measurements of 2,266 trees. We assessed the relationship between annual growth rates and seasonal climate variables and evaluated the effects of various explanatory variables on long‐term growth trends and growth–climate relationships. Both growth trends and growth–climate relationships were species‐specific and spatially heterogeneous. While the growth of jack pine barely increased during the study period, we observed a growth decline for black spruce which was more pronounced for older stands. This decline was likely due to a negative balance between direct growth gains induced by improved photosynthesis during hotter‐than‐average growing conditions in early summers and the loss of growth occurring the following year due to the indirect effects of late‐summer heat waves on accumulation of carbon reserves. For stands at the high end of our elevational gradient, frost damage during milder‐than‐average springs could act as an additional growth stressor. Competition and soil conditions also modified climate sensitivity, which suggests that effects of climate change will be highly heterogeneous across the boreal biome.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019
    Description: Invasive species threaten global biodiversity, agriculture, food security and ecosystem function. Pest risk analysis is key to biosecurity efforts, but is hampered by incomplete knowledge of invasive species distributions. We use statistical species distribution models to estimate presence probabilities for 1,739 crop pests and pathogens globally, and test model predictions for unobserved occurrences in China against observations abstracted from the Chinese literature. We show that large numbers of currently unobserved invasive species of agriculture are probably already present around the world, particularly in China, India and the former USSR. Abstract Invasive species threaten global biodiversity, food security and ecosystem function. Such incursions present challenges to agriculture where invasive species cause significant crop damage and require major economic investment to control production losses. Pest risk analysis (PRA) is key to prioritize agricultural biosecurity efforts, but is hampered by incomplete knowledge of current crop pest and pathogen distributions. Here, we develop predictive models of current pest distributions and test these models using new observations at subnational resolution. We apply generalized linear models (GLM) to estimate presence probabilities for 1,739 crop pests in the CABI pest distribution database. We test model predictions for 100 unobserved pest occurrences in the People's Republic of China (PRC), against observations of these pests abstracted from the Chinese literature. This resource has hitherto been omitted from databases on global pest distributions. Finally, we predict occurrences of all unobserved pests globally. Presence probability increases with host presence, presence in neighbouring regions, per capita GDP and global prevalence. Presence probability decreases with mean distance from coast and known host number per pest. The models are good predictors of pest presence in provinces of the PRC, with area under the ROC curve (AUC) values of 0.75–0.76. Large numbers of currently unobserved, but probably present pests (defined here as unreported pests with a predicted presence probability 〉0.75), are predicted in China, India, southern Brazil and some countries of the former USSR. We show that GLMs can predict presences of pseudoabsent pests at subnational resolution. The Chinese literature has been largely inaccessible to Western academia but contains important information that can support PRA. Prior studies have often assumed that unreported pests in a global distribution database represent a true absence. Our analysis provides a method for quantifying pseudoabsences to enable improved PRA and species distribution modelling.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019
    Description: Abstract Aim Understanding how spatial scale of study affects observed dispersal patterns can provide insights to spatiotemporal population dynamics, particularly in systems with significant long‐distance dispersal (LDD). We aimed to investigate the dispersal gradients of two rusts of wheat with spores of similar size, mass and shape, over multiple spatial scales. We hypothesized that a single dispersal kernel could fit the dispersal from all spatial scales well, and that it would be possible to obtain similar results in spatiotemporal increase of disease when modelling based on differing scales. Location Central Oregon and St. Croix Island. Taxa Puccinia striiformis f. sp. tritici, Puccinia graminis f. sp. tritici, Triticum aestivum. Methods We compared empirically derived primary disease gradients of cereal rust across three spatial scales: local (inoculum source and sampling unit = 0.0254 m, spatial extent = 1.52 m) field‐wide (inoculum source = 1.52 m, sampling unit = 0.305 m and spatial extent = 91.4 m) and regional (inoculum source and sampling unit = 152 m, spatial extent = 10.5 km). We then examined whether disease spread in spatially explicit simulations depended upon the scale at which data were collected by constructing a compartmental time‐step model. Results The three data sets could be fit well by a single power law dispersal kernel. Simulating epidemic spread at different spatial resolutions resulted in similar patterns of spatiotemporal spread. Dispersal kernel data obtained at one spatial scale can be used to represent spatiotemporal disease spread at a larger spatial scale. Main Conclusions Organisms spread by aerially dispersed small propagules that exhibit LDD may follow similar dispersal patterns over a several hundred‐ or thousand‐fold expanse of spatial scale. Given that the primary mechanisms driving aerial dispersal remains constant, it may be possible to extrapolate across scales when empirical data are unavailable at a scale of interest.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019
    Description: The response of coral‐reef communities to a major coral‐bleaching event depended on whether reefs were adjacent to islands with seabirds versus islands that lacked seabirds due to the presence of invasive rats. There was a post‐bleaching shift in benthic communities only around islands with seabirds, characterized by an increase in Halimeda and crustose coralline algae (CCA) (a). Overall fish community structure around both island types shifted following the bleaching event, characterized by a loss of planktivores and corallivores (b). However, biomass of key feeding groups, namely herbivores and piscivores, remained higher around islands with seabirds compared to islands with rats. Abstract Cross‐ecosystem nutrient subsidies play a key role in the structure and dynamics of recipient communities, but human activities are disrupting these links. Because nutrient subsidies may also enhance community stability, the effects of losing these inputs may be exacerbated in the face of increasing climate‐related disturbances. Nutrients from seabirds nesting on oceanic islands enhance the productivity and functioning of adjacent coral reefs, but it is unknown whether these subsidies affect the response of coral reefs to mass bleaching events or whether the benefits of these nutrients persist following bleaching. To answer these questions, we surveyed benthic organisms and fishes around islands with seabirds and nearby islands without seabirds due to the presence of invasive rats. Surveys were conducted in the Chagos Archipelago, Indian Ocean, immediately before the 2015–2016 mass bleaching event and, in 2018, two years following the bleaching event. Regardless of the presence of seabirds, relative coral cover declined by 32%. However, there was a post‐bleaching shift in benthic community structure around islands with seabirds, which did not occur around islands with invasive rats, characterized by increases in two types of calcareous algae (crustose coralline algae [CCA] and Halimeda spp.). All feeding groups of fishes were positively affected by seabirds, but only herbivores and piscivores were unaffected by the bleaching event and sustained the greatest difference in biomass between islands with seabirds versus those with invasive rats. By contrast, corallivores and planktivores, both of which are coral‐dependent, experienced the greatest losses following bleaching. Even though seabird nutrients did not enhance community‐wide resistance to bleaching, they may still promote recovery of these reefs through their positive influence on CCA and herbivorous fishes. More broadly, the maintenance of nutrient subsidies, via strategies including eradication of invasive predators, may be important in shaping the response of ecological communities to global climate change.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019
    Description: Irrigated agriculture alters near‐surface temperature and humidity, which may mask global climate change at the regional scale. This is the first study to quantify irrigation‐induced climate change in the Midwest United States using a 60 km transect consisting of 28 meteorological sensors across the Wisconsin Central Sands region. Irrigated agriculture decreased the diurnal temperature range and vapor pressure deficit compared to rainfed agriculture and forests. These regional climate impacts must be considered together with increased greenhouse gas emissions, groundwater quality concerns, and surface water degradation when evaluating irrigation expansion in the Midwest United States. Abstract Irrigated agriculture alters near‐surface temperature and humidity, which may mask global climate change at the regional scale. However, observational studies of irrigation‐induced climate change are lacking in temperate, humid regions throughout North America and Europe. Despite unknown climate impacts, irrigated agriculture is expanding in the Midwest United States, where unconfined aquifers provide groundwater to support crop production on coarse soils. This is the first study in the Midwest United States to observe and quantify differences in regional climate associated with irrigated agricultural conversion from forests and rainfed agriculture. To this end, we established a 60 km transect consisting of 28 stations across varying land uses and monitored surface air temperature and relative humidity for 31 months in the Wisconsin Central Sands region. We used a novel approach to quantify irrigated land use in both space and time with a database containing monthly groundwater withdrawal estimates by parcel for the state of Wisconsin. Irrigated agriculture decreased maximum temperatures and increased minimum temperatures, thus shrinking the diurnal temperature range (DTR) by an average of 3°C. Irrigated agriculture also decreased the vapor pressure deficit (VPD) by an average of 0.10 kPa. Irrigated agriculture significantly decreased evaporative demand for 25% and 66% of study days compared to rainfed agriculture and forest, respectively. Differences in VPD across the land‐use gradient were highest (0.21 kPa) during the peak of the growing season, while differences in DTR were comparable year‐round. Interannual variability in temperature had greater impacts on differences in DTR and VPD across the land‐use gradient than interannual variability in precipitation. These regional climate changes must be considered together with increased greenhouse gas emissions, changes to groundwater quality, and surface water degradation when evaluating the costs and benefits of groundwater‐sourced irrigation expansion in the Midwest United States and similar regions around the world.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019
    Description: We combined the use of a unique whole‐ecosystem warming approach coupled with microbial community analyses and functional assessments through two growth seasons. We found microbial diversity and nitrogen fixation decreased with warming treatment. Abstract Sphagnum‐dominated peatlands comprise a globally important pool of soil carbon (C) and are vulnerable to climate change. While peat mosses of the genus Sphagnum are known to harbor diverse microbial communities that mediate C and nitrogen (N) cycling in peatlands, the effects of climate change on Sphagnum microbiome composition and functioning are largely unknown. We investigated the impacts of experimental whole‐ecosystem warming on the Sphagnum moss microbiome, focusing on N2 fixing microorganisms (diazotrophs). To characterize the microbiome response to warming, we performed next‐generation sequencing of small subunit (SSU) rRNA and nitrogenase (nifH) gene amplicons and quantified rates of N2 fixation activity in Sphagnum fallax individuals sampled from experimental enclosures over 2 years in a northern Minnesota, USA bog. The taxonomic diversity of overall microbial communities and diazotroph communities, as well as N2 fixation rates, decreased with warming (p 〈 0.05). Following warming, diazotrophs shifted from a mixed community of Nostocales (Cyanobacteria) and Rhizobiales (Alphaproteobacteria) to predominance of Nostocales. Microbiome community composition differed between years, with some diazotroph populations persisting while others declined in relative abundance in warmed plots in the second year. Our results demonstrate that warming substantially alters the community composition, diversity, and N2 fixation activity of peat moss microbiomes, which may ultimately impact host fitness, ecosystem productivity, and C storage potential in peatlands.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019
    Description: Six freshly isolated strains of the Arctic diatom Thalassiosira hyalina were incubated as mono‐ and multistrain cultures under different temperature and CO2 conditions. Although strains originated from the same water sample, monocultures showed large physiological diversity. When tested all together in multistrain cultures, selection dynamics as well as bulk physiology within these artificial populations differed fundamentally between the two treatments and diverged strongly from predictions based on monoculture traits. This suggests that cells change their phenotype depending on their biological surroundings and that such intraspecific interactions need to be better understood to predict future phytoplankton ecology from experimental data. Abstract Arctic phytoplankton and their response to future conditions shape one of the most rapidly changing ecosystems on the planet. We tested how much the phenotypic responses of strains from the same Arctic diatom population diverge and whether the physiology and intraspecific composition of multistrain populations differs from expectations based on single strain traits. To this end, we conducted incubation experiments with the diatom Thalassiosira hyalina under present‐day and future temperature and pCO2 treatments. Six fresh isolates from the same Svalbard population were incubated as mono‐ and multistrain cultures. For the first time, we were able to closely follow intraspecific selection within an artificial population using microsatellites and allele‐specific quantitative PCR. Our results showed not only that there is substantial variation in how strains of the same species cope with the tested environments but also that changes in genotype composition, production rates, and cellular quotas in the multistrain cultures are not predictable from monoculture performance. Nevertheless, the physiological responses as well as strain composition of the artificial populations were highly reproducible within each environment. Interestingly, we only detected significant strain sorting in those populations exposed to the future treatment. This study illustrates that the genetic composition of populations can change on very short timescales through selection from the intraspecific standing stock, indicating the potential for rapid population level adaptation to climate change. We further show that individuals adjust their phenotype not only in response to their physicochemical but also to their biological surroundings. Such intraspecific interactions need to be understood in order to realistically predict ecosystem responses to global change.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019
    Description: We present a fine‐resolution assessment of the persistence of global plant biodiversity under land‐use and climate change scenarios, using generalized dissimilarity modelling and the species–area relationship. We estimate the number of species committed to extinction has increased by 60% globally during the 20th century; this value is projected to decrease slightly by 2050 under a sustainable land‐use scenario and to greatly increase under more intensive land‐use change scenarios. Alarmingly, the additional impact from climate change might largely surpass that of land use; sustainable land‐use planning might not be sufficient to prevent biodiversity loss, without a stabilization of climate to pre‐industrial times.  Abstract Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, we present a fine‐resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to 〉52 million records of 〉254 thousand plant species, with the species–area relationship, to estimate the effect of land‐use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land‐use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio‐economic development can potentially bring extinction risk back to pre‐2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land‐use change. In this case, the estimated number of species committed to extinction increases by 3.7–4.5 times compared to land‐use‐only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land‐use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre‐industrial times is observed.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019
    Description: We study how climate change may affect an important Neotropical ecosystem: the aquatic food webs inside bromeliad plants. To explore potential mechanisms, we combine common garden experiments and food web manipulations with space‐for‐time community transplants along an elevational gradient. Our study experimentally disentangles the multiple mechanisms by which climate change impacts ecosystems, and demonstrates how a single species can act as a biotic multiplier for climate change, drastically affecting the food web response. Abstract Predicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental change further hampers meaningful predictions. As multiple climatic variables shift in concert, their potential interactions further complicate ecosystem responses. Despite awareness of these complexities, we still lack controlled experiments that manipulate multiple climatic stressors, species interactions, and prior exposure of species to future climatic conditions. Particularly studies that address how changes in water availability interact with other climatic stressors to affect aquatic ecosystems are still rare. Using aquatic insect communities of Neotropical tank bromeliads, we combined controlled manipulations of drought length and species interactions with a space‐for‐time transplant (lower elevations represent future climate) and a common garden approach. Manipulating drought length and experiment elevation revealed that adverse effects of drought were amplified at the warmer location, highlighting the potential of climatic stressors to synergistically affect communities. Manipulating the presence of omnivorous tipulid larvae showed that negative interactions from tipulids, presumably from predation, arose under drought, and were stronger at the warmer location, stressing the importance of species interactions in mediating community responses to climate change. The common garden treatments revealed that prior community exposure to potential future climatic conditions did not affect the outcome. In this powerful experiment, we demonstrated how complexities arise from the interplay of biotic and abiotic mechanisms of climate change. We stress that single species can steer ecological outcomes, and suggest that focusing on such disproportionately influential species may improve attempts at making meaningful predictions of climate change impacts on food webs.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019
    Description: Since 1990, the IPCC has produced five Assessment Reports (ARs) including agriculture. Using a database of the ca. 2,100 cited experiments and simulations in the five ARs, our conclusions are that crop yields decline but with large statistical variation. Livestock effects have almost been quantitatively absent. Mitigation assessments need better to link emissions and their mitigation with food production and security; agriculture has been dealt with inconsistently between the IPCC five ARs. IPCC needs to examine interactions between crop resource use efficiencies and include production and nonproduction aspects of food security. Abstract Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has produced five Assessment Reports (ARs), in which agriculture as the production of food for humans via crops and livestock have featured in one form or another. A constructed database of the ca. 2,100 cited experiments and simulations in the five ARs was analyzed with respect to impacts on yields via crop type, region, and whether adaptation was included. Quantitative data on impacts and adaptation in livestock farming have been extremely scarce in the ARs. The main conclusions from impact and adaptation are that crop yields will decline, but that responses have large statistical variation. Mitigation assessments in the ARs have used both bottom‐up and top‐down methods but need better to link emissions and their mitigation with food production and security. Relevant policy options have become broader in later ARs and included more of the social and nonproduction aspects of food security. Our overall conclusion is that agriculture and food security, which are two of the most central, critical, and imminent issues in climate change, have been dealt with an unfocussed and inconsistent manner between the IPCC five ARs. This is partly a result of not only agriculture spanning two IPCC working groups but also the very strong focus on projections from computer crop simulation modeling. For the future, we suggest a need to examine interactions between themes such as crop resource use efficiencies and to include all production and nonproduction aspects of food security in future roles for integrated assessment models.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019
    Description: We provide a description of regime shifts of forest carbon sinks in Mediterranean forests (Pinus halepensis Mill.) over 1950–2012. We demonstrate that non‐stationary effects of ocean surface temperature determine the onset of regime shifts of forest carbon uptake. ENSO effects regulated by ocean multidecadal variability (AMO–AMOC) are key in the emergence of multidecadal changes in forest carbon sink activity. The reported negative effects of ocean surface temperature (SST) trends on forest carbon uptake for the last decades are unprecedented over the last 150 years. Abstract The mechanisms translating global circulation changes into rapid abrupt shifts in forest carbon capture in semi‐arid biomes remain poorly understood. Here, we report unprecedented multidecadal shifts in forest carbon uptake in semi‐arid Mediterranean pine forests in Spain over 1950–2012. The averaged carbon sink reduction varies between 31% and 37%, and reaches values in the range of 50% in the most affected forest stands. Regime shifts in forest carbon uptake are associated with climatic early warning signals, decreased forest regional synchrony and reduced long‐term carbon sink resilience. We identify the mechanisms linked to ocean multidecadal variability that shape regime shifts in carbon capture. First, we show that low‐frequency variations of the surface temperature of the Atlantic Ocean induce shifts in the non‐stationary effects of El Niño Southern Oscillation (ENSO) on regional forest carbon capture. Modelling evidence supports that the non‐stationary effects of ENSO can be propagated from tropical areas to semi‐arid Mediterranean biomes through atmospheric wave trains. Second, decadal changes in the Atlantic Multidecadal Oscillation (AMO) significantly alter sea–air heat exchanges, modifying in turn ocean vapour transport over land and land surface temperatures, and promoting sustained drought conditions in spring and summer that reduce forest carbon uptake. Third, we show that lagged effects of AMO on the winter North Atlantic Oscillation also contribute to the maintenance of long‐term droughts. Finally, we show that the reported strong, negative effects of ocean surface temperature (AMO) on forest carbon uptake in the last decades are unprecedented over the last 150 years. Our results provide new, unreported explanations for carbon uptake shifts in these drought‐prone forests and review the expected impacts of global warming on the profiled mechanisms.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019
    Description: Coral bleaching and mortality following marine heatwaves are transforming coral reefs, but the long‐term effects of habitat turnover for coral reef fishes remain unclear. Using a 23‐year time series spanning a severe marine heatwave, we show that reef fish communities persisted in altered compositions 〉15 years after mass coral mortality. After bleaching, herbivore dominance was typical of all reefs, and new macroalgal habitats were most dissimilar to their historic compositions. Frequent and severe bleaching events caused by ocean warming will prevent reef fish communities from recovering to their prebleaching state. Abstract Ecological communities are reorganizing in response to warming temperatures. For continuous ocean habitats this reorganization is characterized by large‐scale species redistribution, but for tropical discontinuous habitats such as coral reefs, spatial isolation coupled with strong habitat dependence of fish species imply that turnover and local extinctions are more significant mechanisms. In these systems, transient marine heatwaves are causing coral bleaching and profoundly altering habitat structure, yet despite severe bleaching events becoming more frequent and projections indicating annual severe bleaching by the 2050s at most reefs, long‐term effects on the diversity and structure of fish assemblages remain unclear. Using a 23‐year time series spanning a thermal stress event, we describe and model structural changes and recovery trajectories of fish communities after mass bleaching. Communities changed fundamentally, with the new emergent communities dominated by herbivores and persisting for 〉15 years, a period exceeding realized and projected intervals between thermal stress events on coral reefs. Reefs which shifted to macroalgal states had the lowest species richness and highest compositional dissimilarity, whereas reefs where live coral recovered exceeded prebleaching fish richness, but remained dissimilar to prebleaching compositions. Given realized and projected frequencies of bleaching events, our results show that fish communities historically associated with coral reefs will not re‐establish, requiring substantial adaptation by managers and resource users.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019
    Description: Many populations face large changes in seasonal climate, yet the demographic mechanisms that mediate the impact of these changes on population dynamics remain largely unknown. We demonstrate a widely applicable method to facilitate better understanding of the mechanisms through which climatic variables drive population responses. In a well‐studied mammal population we found that a single axis accounts for most of the (co)variation in survival and reproduction and when we attribute seasonal impacts of climatic variables to this axis we find that the direction and magnitude of their effects changes over the course of a year. Abstract Predicting how species will be affected by future climatic change requires the underlying environmental drivers to be identified. As vital rates vary over the lifecycle, structured population models derived from statistical environment–demography relationships are often used to inform such predictions. Environmental drivers are typically identified independently for different vital rates and demographic classes. However, these rates often exhibit positive temporal covariance, suggesting that vital rates respond to common environmental drivers. Additionally, models often only incorporate average weather conditions during a single, a priori chosen time window (e.g. monthly means). Mismatches between these windows and the period when the vital rates are sensitive to variation in climate decrease the predictive performance of such approaches. We used a demographic structural equation model (SEM) to demonstrate that a single axis of environmental variation drives the majority of the (co)variation in survival, reproduction, and twinning across six age–sex classes in a Soay sheep population. This axis provides a simple target for the complex task of identifying the drivers of vital rate variation. We used functional linear models (FLMs) to determine the critical windows of three local climatic drivers, allowing the magnitude and direction of the climate effects to differ over time. Previously unidentified lagged climatic effects were detected in this well‐studied population. The FLMs had a better predictive performance than selecting a critical window a priori, but not than a large‐scale climate index. Positive covariance amongst vital rates and temporal variation in the effects of environmental drivers are common, suggesting our SEM–FLM approach is a widely applicable tool for exploring the joint responses of vital rates to environmental change.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019
    Description: Elevated pCO2 and warming may promote algal growth and toxin production, and thereby possibly support the proliferation and toxicity of HABs. Using a meta‐analytic approach we found that elevated pCO2 increased growth rates of dinoflagellate HAB species, while this was not the case for non‐HAB phytoplankton species. Warming also led to higher growth rates, but mainly for species isolated at higher latitudes. These results warn for a greater potential of dinoflagellate HAB development in future coastal waters, particularly in temperate regions. Abstract Elevated pCO2 and warming may promote algal growth and toxin production, and thereby possibly support the proliferation and toxicity of harmful algal blooms (HABs). Here, we tested whether empirical data support this hypothesis using a meta‐analytic approach and investigated the responses of growth rate and toxin content or toxicity of numerous marine and estuarine HAB species to elevated pCO2 and warming. Most of the available data on HAB responses towards the two tested climate change variables concern dinoflagellates, as many members of this phytoplankton group are known to cause HAB outbreaks. Toxin content and toxicity did not reveal a consistent response towards both tested climate change variables, while growth rate increased consistently with elevated pCO2. Warming also led to higher growth rates, but only for species isolated at higher latitudes. The observed gradient in temperature growth responses shows the potential for enhanced development of HABs at higher latitudes. Increases in growth rates with more CO2 may present an additional competitive advantage for HAB species, particularly as CO2 was not shown to enhance growth rate of other non‐HAB phytoplankton species. However, this may also be related to the difference in representation of dinoflagellate and diatom species in the respective HAB and non‐HAB phytoplankton groups. Since the proliferation of HAB species may strongly depend on their growth rates, our results warn for a greater potential of dinoflagellate HAB development in future coastal waters, particularly in temperate regions.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019
    Description: This study addresses how nutrient addition regulates biological nitrogen (N) fixation (BNF) in terrestrial ecosystems and uncovers the latitude patterns and drivers of BNF in response to nutrient enrichment. We found a negative effect of N addition, a positive effect of Micro addition, and an inconsistent effect of P addition on terrestrial BNF and also observed a less sensitivity of BNF to nutrient addition in low‐latitude biomes than in mid‐/high‐latitude biomes. Our findings indicate that certain types of global change (warming, elevated precipitation and N deposition) may reduce the nutrient constraints of BNF in mid‐/high‐latitude biomes. Abstract Biological nitrogen (N) fixation (BNF), an important source of N in terrestrial ecosystems, plays a critical role in terrestrial nutrient cycling and net primary productivity. Currently, large uncertainty exists regarding how nutrient availability regulates terrestrial BNF and the drivers responsible for this process. We conducted a global meta‐analysis of terrestrial BNF in response to N, phosphorus (P), and micronutrient (Micro) addition across different biomes (i.e, tropical/subtropical forest, savanna, temperate forest, grassland, boreal forest, and tundra) and explored whether the BNF responses were affected by fertilization regimes (nutrient‐addition rates, duration, and total load) and environmental factors (mean annual temperature [MAT], mean annual precipitation [MAP], and N deposition). The results showed that N addition inhibited terrestrial BNF (by 19.0% (95% confidence interval [CI]: 17.7%‒20.3%); hereafter), Micro addition stimulated terrestrial BNF (30.4% [25.7%‒35.3%]), and P addition had an inconsistent effect on terrestrial BNF, i.e., inhibiting free‐living N fixation (7.5% [4.4%‒10.6%]) and stimulating symbiotic N fixation (85.5% [25.8%‒158.7%]). Furthermore, the response ratios (i.e., effect sizes) of BNF to nutrient addition were smaller in low‐latitude (〈30°) biomes (8.5%‒36.9%) than in mid‐/high‐latitude (≥30°) biomes (32.9%‒61.3%), and the sensitivity (defined as the absolute value of response ratios) of BNF to nutrients in mid‐/high‐latitude biomes decreased with decreasing latitude (p ≤ 0.009; linear/logarithmic regression models). Fertilization regimes did not affect this phenomenon (p 〉 0.05), but environmental factors did affect it (p 〈 0.001) because MAT, MAP, and N deposition accounted for 5%‒14%, 10%‒32%, and 7%‒18% of the variance in the BNF response ratios in cold (MAT 〈 15°C), low‐rainfall (MAP 〈 2,500 mm), and low‐N‐deposition (〈7 kg ha−1 year−1) biomes, respectively. Overall, our meta‐analysis depicts a global pattern of nutrient impacts on terrestrial BNF and indicates that certain types of global change (i.e., warming, elevated precipitation and N deposition) may reduce the sensitivity of BNF in response to nutrient enrichment in mid‐/high‐latitude biomes.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019
    Description: Exposure of a temperate heath/grassland to elevated CO2 (eCO2), warming, and drought, in all combinations for 8 years resulted in a progressive increase in soil carbon stocks under eCO2. The response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions Abstract Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m−2 year−1), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m−2 year−1. Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long‐term measurements of changes in soil C in response to the three major climate change‐related global changes, eCO2, warming, and changes in precipitation patterns, are, therefore, urgently needed.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019
    Description: In this study, we analysed the relationship between changes in mean precipitation, precipitation variability, farming practices and grazing cattle using a system dynamics approach for a semi‐arid Australian rangeland system. Forage production and animal stocking rates were significantly affected by drought events as well as by long‐term climate trends. Decreases in the annual precipitation means or increases in the interannual (year‐to‐year) and intra‐annual (month‐to‐month) precipitation variability, all reduced herd sizes. Climate contributed the most to the variance in stocking rates, followed by forage productivity levels and feeding supplementation practices (with or without urea and molasses). While intensification strategies and favourable climates increased long‐term herd sizes, they also resulted in larger reductions in animal numbers during droughts and raised total enteric methane emissions. Abstract Grazing livestock are an important source of food and income for millions of people worldwide. Changes in mean climate and increasing climate variability are affecting grasslands' carrying capacity, thus threatening the livelihood of millions of people as well as the health of grassland ecosystems. Compared with cropping systems, relatively little is known about the impact of such climatic changes on grasslands and livestock productivity and the adaptation responses available to farmers. In this study, we analysed the relationship between changes in mean precipitation, precipitation variability, farming practices and grazing cattle using a system dynamics approach for a semi‐arid Australian rangeland system. We found that forage production and animal stocking rates were significantly affected by drought intensities and durations as well as by long‐term climate trends. After a drought event, herd size recovery times ranged from years to decades in the absence of proactive restocking through animal purchases. Decreases in the annual precipitation means or increases in the interannual (year‐to‐year) and intra‐annual (month‐to‐month) precipitation variability, all reduced herd sizes. The contribution of farming practices versus climate effect on herd dynamics varied depending on the herd characteristics considered. Climate contributed the most to the variance in stocking rates, followed by forage productivity levels and feeding supplementation practices (with or without urea and molasses). While intensification strategies and favourable climates increased long‐term herd sizes, they also resulted in larger reductions in animal numbers during droughts and raised total enteric methane emissions. In the face of future climate trends, the grazing sector will need to increase its adaptability. Understanding which farming strategies can be beneficial, where, and when, as well as the enabling mechanisms required to implement them, will be critical for effectively improving rangelands and the livelihoods of pastoralists worldwide.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019
    Description: Cover crops significantly (p 〈 0.001) decreased N leaching and significantly (p 〈 0.001) increased soil organic carbon sequestration without having significant (p 〉 0.05) effects on direct N2O emissions. Cover crops could mitigate net greenhouse gas balance by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of the cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting legume–non‐legume mixed cover crops. However, cover crop management need to be adapted to specific soil, management and regional climatic conditions. Abstract Cover crops play an increasingly important role in improving soil quality, reducing agricultural inputs and improving environmental sustainability. The main objectives of this critical global review and systematic analysis were to assess cover crop practices in the context of their impacts on nitrogen leaching, net greenhouse gas balances (NGHGB) and crop productivity. Only studies that investigated the impacts of cover crops and measured one or a combination of nitrogen leaching, soil organic carbon (SOC), nitrous oxide (N2O), grain yield and nitrogen in grain of primary crop, and had a control treatment were included in the analysis. Long‐term studies were uncommon, with most data coming from studies lasting 2–3 years. The literature search resulted in 106 studies carried out at 372 sites and covering different countries, climatic zones and management. Our analysis demonstrates that cover crops significantly (p 〈 0.001) decreased N leaching and significantly (p 〈 0.001) increased SOC sequestration without having significant (p 〉 0.05) effects on direct N2O emissions. Cover crops could mitigate the NGHGB by 2.06 ± 2.10 Mg CO2‐eq ha−1 year−1. One of the potential disadvantages of cover crops identified was the reduction in grain yield of the primary crop by ≈4%, compared to the control treatment. This drawback could be avoided by selecting mixed cover crops with a range of legumes and non‐legumes, which increased the yield by ≈13%. These advantages of cover crops justify their widespread adoption. However, management practices in relation to cover crops will need to be adapted to specific soil, management and regional climatic conditions.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019
    Description: We manipulated the rate and frequency of nitrogen inputs for six consecutive years in a temperate grassland in northern China and measured aboveground net primary productivity (ANPP) and belowground net primary productivity (BNPP) from 2012 to 2014. We found that in the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition. As N addition increased beyond 10 g N m−2 year−1, increases in ANPP dampened and decreases in BNPP ceased altogether. Abstract Nitrogen (N) enrichment often increases aboveground net primary productivity (ANPP) of the ecosystem, but it is unclear if belowground net primary productivity (BNPP) track responses of ANPP. Moreover, the frequency of N inputs may affect primary productivity but is rarely studied. To assess the response patterns of above‐ and belowground productivity to rates of N addition under different addition frequencies, we manipulated the rate (0–50 g N m−2 year−1) and frequency (twice vs. monthly additions per year) of NH4NO3 inputs for six consecutive years in a temperate grassland in northern China and measured ANPP and BNPP from 2012 to 2014. In the low range of N addition rates, BNPP showed the greatest negative response and ANPP showed the greatest positive responses with increases in N addition (〈10 g N m−2 year−1). As N addition increased beyond 10 g N m−2 year−1, increases in ANPP dampened and decreases in BNPP ceased altogether. The response pattern of net primary productivity (combined above‐ and belowground; NPP) corresponded more closely to ANPP than to BNPP. The N effects on BNPP and BNPP/NPP (fBNPP) were not dependent on N addition frequency in the range of N additions typically associated with N deposition. BNPP was more sensitive to N addition frequency than ANPP, especially at low rates of N addition. Our findings provide new insights into how plants regulate carbon allocation to different organs with increasing N rates and changing addition frequencies. These root response patterns, if incorporated into Earth system models, may improve the predictive power of C dynamics in dryland ecosystems in the face of global atmospheric N deposition.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019
    Description: Abstract Population monitoring must be accurate and reliable to correctly classify population status. For sea turtles, nesting beach surveys are often the only population‐level surveys that are accessible. However, process and observation errors, compounded by delayed maturity, obscure the relationship between trends on the nesting beach and the population. We present a simulation‐based tool, monitoring strategy evaluation (MoSE), to test the relationships between monitoring data and assessment accuracy, using green sea turtles, Chelonia mydas, as a case study. To explore this first application of MoSE, we apply different treatments of population impacts to virtual true populations, and sample the nests or nesters, with observation error, to test if the observation data can be used to diagnose population status accurately. Based on the observed data, we examine population trend and compare it to the known values from the operating model. We ran a series of scenarios including harvest impacts, cyclical breeding probability, and sampling biases, to see how these factors impact accuracy in estimating population trend. We explored the necessary duration of monitoring for accurate trend estimation and the probability of a false trend diagnosis. Our results suggest that disturbance type and severity can have important and persistent effects on the accuracy of population assessments drawn from monitoring nesting beaches. The underlying population phase, age classes disturbed, and impact severity influenced the accuracy of estimating population trend. At least 10 yr of monitoring data is necessary to estimate population trend accurately, and 〉20 yr if juvenile age classes were disturbed and the population is recovering. In general, there is a greater probability of making a false positive trend diagnosis than a false negative, but this depends on impact type and severity, population phase, and sampling duration. Improving detection rates to 90% does little to lower probability of a false trend diagnosis with shorter monitoring spans. Altogether, monitoring strategies for specific populations may be tailored based on the impact history, population phase, and environmental drivers. The MoSE is an important framework for analysis through simulation that can comprehensively test population assessments for accuracy and inform policy recommendations regarding the best monitoring strategies.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2019
    Description: Ecological Applications, Volume 29, Issue 5, July 2019.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019
    Description: Abstract Aim To identify the effect of multiple, temporally close, forcing events (i.e. climate‐driven habitat fragmentations/homogenizations) in shaping current patterns of biodiversity in alpine areas. Given their spatial configuration, alpine areas have been traditionally seen as islands surrounded by an “ocean” of unsuitable lands. A quantitative assessment of the effects of Holocene climate fluctuations on islands area and inter‐island connectivity is crucial to finely reconstruct past biodiversity dynamics and forecast species responses to future changes. Location Italy. Taxa Carabidae (Ground beetles), Chrysomelidae (Leaf beetles), Elateridae (Click beetles), Orthoptera (Grasshoppers and Crickets) and Papilionoidea (Butterflies and Skippers). Methods A total of 1,077 species for 128,093 records were analysed and a classification based on their functional traits allowed identifying groups of good and poor dispersers within each taxon. A dynamic discrete model of ecosystem evolution provided the spatio‐temporal context to test two competing (transient equilibria vs. nonequilibrium) dynamics based on different colonization capabilities. In the transient equilibria dynamic the species are able to respond to island evolution through successful dispersal and colonization events, whereas in the nonequilibrium dynamic ineffective immigration constrains the current species richness to that generated by the strongest island contraction. Results With the exception of Elateridae, good dispersers (Chrysomelidae and Papilionoidea) responded to environmental changes by establishing a series of transient equilibria. In contrast, the nonequilibrium dynamic better described patterns of species richness in poor dispersers (Carabidae and Orthoptera). Main conclusions Our approach could be used as the basis for the development of spatially and temporally explicit models of island evolution and could be a valuable tool for quantifying the sensitivity of single taxa to climate‐driven habitat changes. It also represents a further step towards the forecasting of future responses to climate change and the accompanying development of conservation strategies that more effectively respond to the detrimental impacts of climate change on biodiversity.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019
    Description: Abstract Lakes are conduits of greenhouse gases to the atmosphere; however, most efflux estimates for individual lakes are based on extrapolations from a limited number of locations. Within‐lake variability in carbon dioxide (CO2) and methane (CH4) arises from differences in water sources, mixing, atmospheric exchange, and biogeochemical transformations, all of which vary across multiple temporal and spatial scales. We asked, how variable are CO2 and CH4 across the surface of a single lake, how do spatial patterns change seasonally, and how well does the typical sampling location represent the entire lake surface? During the 2016 ice‐free period, we mapped surface water concentrations of CO2 and CH4 approximately weekly in Lake Mendota (USA) and modeled diffusive gas exchange. During stratification, CO2 was generally lower than atmospheric saturation (mean 19.81 μM) and relatively homogenous (mean coefficient of variation 0.12), whereas CH4 was routinely extremely supersaturated (mean 0.29 μM) with greater spatial heterogeneity (mean coefficient of variation 0.65). During fall mixis, concentrations of both gases increased and became more spatially variable, but their spatial arrangements differed. In this system, samples collected from the lake center reasonably well represented the spatially weighted mean CO2 concentration but overestimated annual CO2 efflux by 21%. For CH4, the lake center underestimated annual diffusive efflux by only 8.6% but poorly represented lakewide concentrations and fluxes on any given day. Upscaling from a single site to the whole lake requires consideration of spatial variation to assess lakewide carbon dynamics due to heterogeneity in within‐lake processing, transport to the lake surface, and exchange with the atmosphere.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019
    Description: Abstract Soil microorganisms are known to survive periods of aridity and to recover rapidly after wetting events, with the ability to transition between a dormant state in dry conditions and an active state in wet conditions. Though this dynamic behavior has been previously incorporated into soil carbon respiration modeling frameworks, a direct comparison between this active‐dormant transition mechanism and a more simplified first‐order model has yet to be made. Here, we demonstrate the necessary extent of model complexity needed to reproduce transient carbon respiration rates obtained from a set of soil incubation experiments implemented over a range of soil depths and time intervals. Two approaches are tested, one uses simplified first‐order kinetics, whereas the other employs a transition between active and dormant biomass. The performance of each model is evaluated using an Akaike Information Criterion (AIC) based on the accuracy with which they reproduce an experimental dataset consisting of two sets of time series soil incubations collected across a range of time and depth resolutions. Based on the AIC evaluation and model‐data comparison, we conclude that a dormancy‐enabled model featuring two distinct microbial strategists performs best for the majority of the soil profile (above 108 cm) for both high and low depth resolution and sampling frequency, despite the added parameters required. In contrast, the first‐order model achieves better AIC scores when simulating our deepest soils (112–165 cm), where moisture fluctuations are expected to be less prevalent. These results guide how and where we choose to apply more cost intensive models.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019
    Description: Abstract Global atmospheric methane growth rates have wildly fluctuated over the past three decades, which may be driven by the proportion of tropical land surface saturated by water. The El Niño/Southern Oscillation Event (ENSO) cycle drives large‐scale climatic trends globally, with El Niño events typically bringing drier weather than La Niña. In a lowland tropical wet forest in Costa Rica, we measured methane flux bimonthly from March 2016 to June 2017 and using an automated chamber system. We observed a strong drying trend for several weeks during the El Niño in 2016, reducing soil moisture below normal levels. In contrast, soil conditions had high water content prior to the drought and during the moderate La Niña that followed. Soil moisture varied across the period studied and significantly impacted methane flux. Methane consumption was greater during the driest part of the El Niño period, while during La Niña and other time periods, soils had lower methane consumption. The mean methane flux observed was −0.022 mg CH4‐C m−2 hr−1, and methane was consumed at all timepoints, with lower consumption in saturated soils. Our data show that month studied, and the correlation between soil type and month significantly drove methane flux trends. Our data indicate that ENSO cycles may impact biogenic methane fluxes, mediated by soil moisture conditions. Climate projections for Central America show dryer conditions and increased El Niño frequency, further exacerbating predicted drought. These trends may lead to negative climate feedbacks, with drier conditions increasing soil methane consumption from the atmosphere.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019
    Description: Abstract The dynamics of soil phosphorus (P) control its bioavailability. Yet it remains a challenge to quantify soil P dynamics. Here we developed a soil P dynamics (SPD) model. We then assimilated eight data sets of 426‐day changes in Hedley P fractions into the SPD model, to quantify the dynamics of six major P pools in eight soil samples that are representative of a wide type of soils. The performance of our SPD model was better for labile P, secondary mineral P, and occluded P than for nonoccluded organic P (Po) and primary mineral P. All parameters describing soil P dynamics were approximately constrained by the data sets. The average turnover rates were labile P 0.040 g g−1 day−1, nonoccluded Po 0.051 g g−1 day−1, secondary mineral P 0.023 g g−1 day−1, primary mineral P 0.00088 g g−1 day−1, occluded Po 0.0066 g g−1 day−1, and occluded inorganic P 0.0065 g g−1 day−1, in the greenhouse environment studied. Labile P was transferred on average more to nonoccluded Po (transfer coefficient of 0.42) and secondary mineral P (0.38) than to plants (0.20). Soil pH and organic C concentration were the key soil properties regulating the competition for P between plants and soil secondary minerals. The turnover rate of labile P was positively correlated with that of nonoccluded Po and secondary mineral P. The pool size of labile P was most sensitive to its turnover rate. Overall, we suggest data assimilation can contribute significantly to an improved understanding of soil P dynamics.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019
    Description: Abstract Ecosystem water use efficiency (WUE) acts as an integrated functional indicator for understanding land‐atmosphere interactions. The temporal patterns in the daily variations of WUE and their underlying drivers during different seasons in alpine meadow ecosystems, which are particularly vulnerable to changing climate, still remain poorly understood in spite of increasing efforts. In this study, we investigated the potential divergence in the response of WUE to climatic and biological drivers during different seasons at two alpine meadow ecosystems in the northeastern Tibetan Plateau using continuous eddy‐covariance measurements of carbon and water fluxes between 2013 and 2015. We found that variations in CO2 concentration exert significantly positive effects on variations in WUE in spring, but not in summer and autumn. Notably, vapor pressure deficit (VPD) overrode other factors playing a dominant role in regulating daily variations in WUE during all seasons in these alpine meadow ecosystems. Variations in VPD explained 29.5 to 52.3% of the variance in WUE between different seasons. We further showed that carbon gain and water loss processes responded divergently to different drivers; higher VPD significantly increased ecosystem evapotranspiration; whereas, variations in soil moisture and leaf area index significantly and positively affected gross primary productivity. Our findings highlighted the increasing importance of atmospheric drought in shaping land‐atmosphere interactions in alpine meadow ecosystems, particularly in a warming climate.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019
    Description: Abstract The Great Plains of North America often experience prolonged droughts that have major economic and environmental impacts. Temperature reconstructions are thus crucial to help decipher the mechanisms responsible for drought occurrences. Long‐chain alkenones (LCAs), lipids produced by three major phylogenetic groups (Groups I, II, and III) of haptophyte algae within the order Isochrysidales, are increasingly used for temperature reconstructions in lacustrine settings. However, to select the most appropriate calibration of the LCA‐based temperature proxy, it is first essential to identify the LCA‐producing haptophyte species present. Here we used next‐generation sequencing to target the 18S rRNA haptophyte gene from sediments with distinct LCA profiles to identify the LCA‐producer(s) from five Canadian prairie lakes. In total, 374 operational taxonomic units (OTUs) were identified across the studied samples, of which 234 fell within the Phylum Haptophyta. Among the most abundant OTUs, three were characterized as LCA‐producers, one falling within the Group I haptophytes and two within the Group II haptophytes. The OTU from Group I haptophytes was associated with a single, highly specific LCA profile, whereas Group II OTUs showed higher variability in LCA distributions. Our study revealed that most of the LCA‐producing OTUs thriving in the Canadian lakes are included within the genus Isochrysis, which helps guide selection of the most appropriate calibration for down‐core temperature reconstructions. Our findings also suggest that the temperature dependency is likely consistent within different taxa from Group I and Group II haptophytes, but that other environmental parameters may influence the accuracy of the calibration.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019
    Description: Abstract Aim Mega‐diverse coral reef ecosystems are declining globally, necessitating conservation prioritizations to protect biodiversity and ecosystem services of sites with high functional integrity to promote persistence. In practice however, the design of marine‐protected area (MPA) systems often relies on broad classifications of habitat class and size, making the tacit assumption that all reefs are of comparable condition. We explored the impact of this assumption through a novel, pragmatic approach for incorporating variability in coral cover in a large‐scale regional spatial prioritization plan. Location The Coral Triangle. Methods We developed a spatially explicit predictive model of hard coral cover based on freely available macro‐ecological data to generate a complete regional map of coral cover as a proxy for reef condition. We then incorporate this information in spatial conservation prioritization software Marxan to design an MPA system that meets specific conservation objectives. Results We discover prioritizations using area‐based representation of reef habitat alone may overestimate the conservation benefit, defined as the amount of hard coral cover protected, by up to 64%. We find substantial differences in conservation priorities and an overall increase in habitat quality metrics when accounting for predicted coral cover. Main conclusions This study shows that including habitat condition in a large‐scale marine spatial prioritization is feasible within time and resource constraints, and calls for increased implementation, and evaluation, of such ecologically relevant planning approaches to enhance potential conservation effectiveness.
    Print ISSN: 1366-9516
    Electronic ISSN: 1472-4642
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2019
    Description: Journal of Vegetation Science, Volume 30, Issue 4, Page i-iv, July 2019.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019
    Description: Abstract Revegetation of pioneer plants is a critical phase in community establishment for mudflats in seriously degraded coastal wetlands. We tested a hypothesis of the importance of a “power balance” among propagule resilience and sedimentary and tidal disturbances for vegetation reestablishment. Our experiment used three types of propagules (seeds, seedlings, and corms) of native Scirpus species in the fringing flats with similar tidal flows and varying sedimentary intensities in the Yangtze Estuary. Regardless of the initial planting densities, the seed germination rate was extremely low in the field situation. Although the incubated seedlings were planted directly on the bare flat, the wave movement easily flushed the seedlings, even at the site with moderate sedimentary accretion. Failure of the revegetation practice using the seed and seedling materials indicated that the combined “growing and anchoring power” of young seedlings and “stabilizing power” of the sediment were insufficient to withstand the “dislodging power” of the tidal energy. In contrast, the planting approach with underground propagules (corms) proved to be feasible for vegetation establishment at the sites with moderate and low‐level sedimentary intensities. The successful practice improved the tipping point of plant survival and tussock formation could be surpassed when the combined growing and anchoring power of seedlings that developed from corms with the stabilizing power of the sediment was greater than the dislodging power of the wave energy. However, at the site with high‐level sedimentary intensity, the excessive sediment converted to the burying stress power as seedlings developed from the corms, revealing a burial threshold for seedling survival. The risk of seedling establishment was high when the burying stress power of the sediment far outweighed the combination of the growing power of the seedlings and the sediment removal power of the tidal current and surpassed the tipping point of vegetation die‐off. Additionally, we checked the practice cost of the different approaches to ensure a highly cost‐effective revegetation planning based on site suitability. This study highlights that understanding of the propagule–sediment–tide power balance offers a tool for improvement of the revegetation and management of site‐specific sedimentary and hydrological environments for many degraded coastal ecosystems.
    Print ISSN: 1051-0761
    Electronic ISSN: 1939-5582
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019
    Description: Abstract Gross primary productivity (GPP) plays an important role in mediating the feedback between land carbon (C) cycle and climate warming. However, knowledge about the mechanisms regulating the response of GPP to warming is still limited. Based on a four‐year field manipulative experiment, we examined the warming effects on GPP and the potential mechanisms in a typical alpine steppe on the Tibetan Plateau. Our results revealed that elevated temperature significantly increased GPP over the study period. The warming‐induced increase in GPP was driven by the increased leaf area index, which was derived from the increase in aboveground biomass of forb. By contrast, warming had no significant effects on photosynthesis per leaf area, likely due to the offset of warming‐induced increase in leaf nitrogen concentration and decrease in soil moisture. These results demonstrate that leaf area rather than leaf photosynthetic rate determines the response of ecosystem productivity to climate warming in this alpine steppe. More studies in other ecosystems are called for to test the observed mechanisms responsible for warming effects on GPP, so as to improve predictions of terrestrial C cycle under changing environment.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019
    Description: Abstract Ecotones can increase free‐living species richness, but little is known about how parasites respond to ecotones. Here, we use parasite communities in raccoons (Procyon lotor) to test the hypothesis that parasite communities can be divided into core and satellite species, each with fundamentally different responses to ecotones. We used published parasite surveys to classify parasites as common core or rare satellite species, and then surveyed raccoons in coastal California to examine how proximity to two aquatic ecotones altered parasite communities. Raccoons near ecotones had more satellite and fewer core parasite species. Specifically, the marine ecotone increased parasite diversity by adding satellite species to a persistent core community, whereas the freshwater ecotone shifted the community from core to satellite species without a net change in parasite richness. We hypothesize that increased parasite richness at the marine ecotone resulted from increased diet diversity, but that raccoons were sinks for some parasites. Increased exposure to rare parasites at ecotones has implications for wildlife health and provides insight into observed associations between ecotones and emerging disease.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019
    Description: Abstract A recent paper by Pillai and Gouhier (2019) (PG) in Ecology argues that biodiversity–ecosystem functioning (BEF) effects calculated by the additive partitioning approach introduced by Loreau and Hector (2001) (LH) are flawed and overestimate biodiversity effects. Biodiversity effects are based on the null expectation that the addition of more species has no effect on function and on ‘average' species affect functioning the same in mixture as in monoculture assuming no intra or interspecific density effects on performance. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Wiley
    In: Ecology
    Publication Date: 2019
    Description: Ecology, Volume 100, Issue 7, July 2019.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019
    Description: The Bulletin of the Ecological Society of America, Volume 100, Issue 3, July 2019.
    Print ISSN: 0012-9623
    Electronic ISSN: 2327-6096
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019
    Description: Abstract Local and global measurements of parasite prevalence and abundance are critical for understanding the dynamics that underlie the diversity, distribution, and evolution of infectious diseases. Here we present a dataset of gut helminths found in 1) raccoons throughout their range, based on primary literature from 1925‐ 2017 and 2) raccoons in Santa Barbara County, CA surveyed from 2012‐2015. The range‐wide dataset has 1256 parasite entries from 217 literature sources across three continents and 32 states in the USA. This dataset includes a list of all recorded raccoon gut helminths (n=100) and their presence and prevalence in surveyed raccoon populations. The Santa Barbara dataset includes gut helminth data from 182 raccoons from one Southern California County. In addition to presence and abundance data for 13 parasite species, this dataset includes measurements of 7465 individual raccoon roundworms (Baylisascaris procyonis). For both range‐wide and Santa Barbara datasets, we include information on parasite site of infection in host, sampling method and sample size. We also provide geographic coordinates for infected raccoon populations (range‐wide database) and individuals (Santa Barbara). In the associated metadata, we include sampling methods and summary figures for both the range‐wide and Santa Barbara raccoon gut helminth records. There are no copyright or proprietary restrictions for research and/or teaching purposes. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019
    Description: Abstract Natural floodplains are characterized by a complex habitat mosaic. However, damming, water storage, and hydropower production affect many floodplains by altering their natural habitat diversity. Field sampling data and imaging spectroscopy are used in combination with statistical models to assess resource allocation strategies of willow stands in perialpine floodplains. Three contrasting floodplain reaches located along two rivers in Switzerland serve as test beds: The Sarine River is partitioned into an upstream and downstream segment under the influence of a dam and a hydropower plant, while the Sense River represents an undisturbed, natural floodplain. Airborne imaging spectrometer data allow mapping of spatially distributed Competitor/Stress tolerator/Ruderal (CSR) strategies using a partial least square modeling approach. Using cross validation, we demonstrate that a statistical modeling approach can reveal variations in CSR scores based on the StrateFy model. Such intraspecific variation of CSR scores cannot be captured by a strategy categorization based solely on the species. Results reveal that willows shifted toward more competition and less stress tolerance along hydrologically altered reaches compared to the willows strategy along the natural control. Moreover, the overall distribution of strategies indicates that stress factors (i.e., limiting growth factors), rather than disturbance (i.e., events leading to partial or total destruction), shape the plant traits of alluvial willow trees. Detailed assessments of resource allocation strategies contribute to a more complete understanding of the continuous and reciprocal shaping between flow regimes, landforms, and alluvial vegetation.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019
    Description: Abstract Aim Most of the fundamental questions in conservation biogeography require the description of species geographic boundaries and the identification of discrete biological units within these boundaries. International conservation efforts and institutions rely mainly on traditional taxonomic approaches for defining these boundaries, resulting in significant cryptic diversity going undetected and often extinct. Here, we combine high‐throughput genomic data with publicly available environmental data to identify cryptic diversity in the threatened bird's‐eye primrose (Primula farinosa). We aim to characterize evolutionary lineages and test whether they co‐occur with changes in environmental conditions. These lineages can be used as intraspecific units for conservation to enhance assessments regarding the status of threatened species. Location Europe and temperate Asia (latitude, 40–65°N; longitude, 10°E–115°W). Methods We genotyped 93 individuals from 71 populations at 1,220 loci (4,089 SNPs) across the Eurasian distribution of P. farinosa. We used phylogenomic and population structure approaches to identify intraspecific lineages. We further extracted statistically derived and remotely sensed environmental information, that is land cover, climate and soil characteristics, to define the biotic and abiotic environment inhabited by each lineage and test for niche similarities among lineages. Additionally, we tested for isolation by distance among populations and applied linear and polynomial regressions to identify lineage‐environment associations. Results Analyses of genomic data revealed six major lineages within P. farinosa corresponding to distinct geographic areas. Niche similarity tests indicated that lineages occupy distinct abiotic and biotic space. Isolation by distance indicated that geography alone cannot explain genetic divergence within P. farinosa, while lineage‐environment associations suggested potential adaptation to different abiotic conditions across lineages. However, relationships with the land cover classes, a proxy for habitat, were weaker. Main conclusion Our results highlight the need for incorporating intraspecific diversity in global assessments of species conservation status and the utility of genomic and publicly available environmental data in conservation biogeography.
    Print ISSN: 1366-9516
    Electronic ISSN: 1472-4642
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019
    Description: Abstract Aims Phylogenetic endemism describes the extent to which unique phylogenetic lineages are constrained to restricted geographic areas. Previous studies indicate that species endemism is related to both past and modern climate, but studies of phylogenetic endemism are relatively rare and mainly focused on smaller regions. Here, we provide the first assessment of the patterns of species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere as well as the relative importance of modern climate and glacial–interglacial climate change as drivers of these patterns. Location Northern Hemisphere. Major taxa Angiosperm trees. Methods Using tree assemblages at the scale of 100 km × 100 km grid cells and simultaneous autoregressive (SAR) models, we assessed the relationships between species endemism, phylogenetic endemism and modern climate variables, Last Glacial Maximum (LGM) to present temperature velocity. Results Species and phylogenetic endemism were associated with both modern climate and glacial–interglacial climate change, with higher values in areas with stable historical climate and warmer and wetter modern conditions. Notably, the multivariate SAR analyses showed that the combinations of variables with highest Akaike’s information criterion (AIC) weight always included both LGM–present climate instability and modern climate, that is, modern precipitation and temperature. Main conclusions Our results show that high phylogenetic endemism is partially dependent on long‐term climate stability, highlighting the threat posed by future climate changes to the preservation of rare, phylogenetically distinct lineages of trees.
    Print ISSN: 1466-822X
    Electronic ISSN: 1466-8238
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019
    Description: Abstract Oxygen deficient zones (ODZs) in the tropical ocean exert a profound influence on global biogeochemical cycles, but the factors that regulate their long‐term structure and sensitivity to oceanic change remain poorly understood. We analyzed hydrographic observations and a high‐resolution physical/biogeochemical model to diagnose the primary pathways that ventilate the tropical Pacific ODZs. Historical and recent autonomous observations reveal pronounced and widespread O2 peaks, termed secondary oxygen maxima (SOMs), within the depths of the broader O2 minimum layer, especially at the equatorward edge of both northern and southern ODZs. In the northern ODZ, Lagrangian particle tracking in an eddy‐permitting numerical model simulation attributes these features to intrusions of the Northern Subsurface Countercurrent along the equatorial edge of the ODZ. Zonal subsurface jets also ventilate the poleward edge of the northern ODZ but induce a smaller O2 flux and do not yield detectable SOMs. Along the ODZ's eastern boundary, oxygenation is achieved by the seasonal cycle of upwelling of low‐O2 water onto the continental shelf, followed by downwelling of O2‐replenished near‐surface waters back into the ODZ. Waters entering the northern Pacific ODZ originate from the extratropics in both hemispheres, but two thirds are from the Southern Hemisphere and arrive later and with a wider range of transit times. These results suggest that predicting future changes in the large Pacific ODZs will require a better understanding of the climate sensitivity of the narrow zonal jets and seasonal dynamics of coastal upwelling that supply their O2.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019
    Description: Limnology and Oceanography Bulletin, EarlyView.
    Print ISSN: 1539-607X
    Electronic ISSN: 1539-6088
    Topics: Biology , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019
    Description: Abstract The role of copepod Calanus sinicus on the production of dimethylsulfide (DMS)/dimethylsulfoniopropionate (DMSP) in Jiaozhou Bay was evaluated in field measurements and laboratory experiments. Samples at 10 sites in the bay were collected monthly from June 2010 to May 2011 (except for March 2011), and zooplankton species composition was analyzed. Effects of C. sinicus grazing on DMS/DMSP production at different conditions (i.e., algal diets, food concentrations, and salinities) were assessed in the laboratory. Data from the field experiment showed that C. sinicus was the dominant copepod in Jiaozhou Bay (up to 123 individuals m−3 in May 2011) and preferred to graze on diatom. DMS and DMSP concentrations not only depend on phytoplankton abundance, but also phytoplankton species and bacterial abundance. In the laboratory experiment, compared with Gymnodinium sp. or Emiliania huxleyi, C. sinicus feeding on Isochrysis galbana and Chaetoceros curvisetus exhibited increased DMS concentration, whereas high salinity inhibited DMS production. Copepod ingested 0.5%‐35% of DMSP in filtered phytoplankton, and copepod DMSP ingestion turnover rate in Jiaozhou Bay was up to 29 pmol L−1 d−1. Although the microbial DMSP consumption rate was 10‐2620 fold of copepod turnover rate, copepod grazing was still one of the important routes in DMSP loss processes through food chain. This study indicated that DMSP was transferred from phytoplankton to copepod body, fecal pellet, and seawater through copepod grazing. Our results provided important information to understand the biogeochemical cycle of DMSP in Jiaozhou Bay.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019
    Description: Abstract Dissimilatory nitrate/nitrite reduction processes play an important role in controlling nitrogen loading in river environments. However, the relative importance of climatic temperature regime and biogeochemical controls to dissimilatory nitrate/nitrite reduction processes remains unclear. We used nitrogen isotope tracer approach to investigate geographical variabilities of denitrification, anaerobic ammonium oxidation (anammox), and dissimilatory nitrate reduction to ammonium (DNRA) in river sediments from temperate to tropical climates of China. Denitrification, anammox, and DNRA varied greatly across the climatic gradient, with potential rates of 1.47–25.7, 0.54–3.4, and 0.15–7.17 nmol N g−1 h−1, respectively. Mean measured rates throughout the sampling sites were 9.73 nmol N g−1 h−1 for denitrification, 1.29 nmol N g−1 h−1 for anammox, and 1.61 nmol N g−1 h−1 for DNRA. Denitrification and DNRA rates increased significantly from temperate to tropical climates, while no significantly spatial difference was observed for anammox rates along the climatic gradient. Mean annual temperature, total organic carbon, dissolved organic carbon, pH, NH4+, NO3–, C/N, Fe2+, and functional genes were the crucial factors affecting denitrification, anammox, and DNRA. High dissolved organic carbon and NO3– availability determined nitrogen removal capacity in river sediments. Mean annual temperature was the most important factor explaining the geographical variances of denitrification and DNRA, while the critical predictor of anammox variance was sediment pH along the climatic gradient. Our results highlight that biogeochemical controls and climatic temperature regime are important coregulators affecting the geographical variabilities of dissimilatory nitrate/nitrite reduction processes in river sediments at the continental‐scale variation.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019
    Description: Abstract Nitrification is susceptible to changes in light and pH and, thus, could be influenced by recent sea ice reductions and acidification in the Arctic Ocean. We investigated the sensitivity of nitrification to light, pH, and substrate availability in a natural nitrifier community of the Arctic Ocean. Nitrification was active near the bottom of the shelf region (〈60 m) and in the halocline layer (50–200 m) of the Arctic basin, where ammonium was abundant, but was low in the ammonium‐depleted Atlantic layer (〉250 m). In pH control experiments, nitrification rates significantly declined when the pH was manipulated to be 0.22 lower than the controls. However, nitrification was relatively insensitive to changes in pH compared to changes in light. Light control experiments showed that nitrification was inhibited by a light intensity above 0.11 mol photons m−2 day−1, which was presumably the light threshold. A light intensity greater than the light threshold extended to the shelf bottom and upper halocline layer, limiting nitrification in these waters. Satellite data analyses indicated that the area where light levels inhibit nitrification has increased throughout the Arctic Ocean due to the recent sea ice reduction, which may lead to a declining trend in nitrification. Our results suggest that stronger light levels in the future Arctic Ocean could further suppress nitrification and alter the composition of inorganic nitrogen, with implications for the structure of ecosystems.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019
    Description: Abstract High rates of carbon burial observed in wetland sediments have garnered attention as a potential “natural fix” to reduce the concentration of carbon dioxide (CO2) in Earth's atmosphere. A carbon accumulation rate (CAR) can be determined through various methods that integrate a carbon stock over different time periods, ranging from decades to millennia. Our goal was to assess how CAR changed over the lifespan of a salt marsh. We applied a geochronology to a series of salt marsh cores using both 14C and 210Pb markers to calculate CARs that were integrated between 35 to 2,460 years before present. CAR was 39 g C m‐2 y‐1 when integrated over millennia, but was upwards of 148 g C m‐2 y‐1 for the past century. We present additional evidence to account for this variability by linking it to changes in relative sea‐level rise (RSLR), where higher rates of RSLR were associated with higher CARs. Thus, the true CAR calculated for a wetland should integrate recent timescales that capture the influence of contemporary RSLR. Therefore, caution should be exercised not to utilize a CAR calculated over inappropriate time scales as a current assessment or forecasting tool for the climate change mitigation potential of a wetland.
    Print ISSN: 2169-8953
    Electronic ISSN: 2169-8961
    Topics: Biology , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2019
    Description: Front cover: The cover image is based on the Original Article The herbivorous fish family Kyphosidae (Teleostei: Perciformes) represents a recent radiation from higher latitudes by Steen Knudsen et al., https://doi.org/10.1111/jbi.13634.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019
    Description: Abstract Aim The geographic range and ecological niche of species are widely used concepts in ecology, evolution and conservation and many modelling approaches have been developed to quantify each. Niche and distribution modelling methods require a litany of design choices; differences among subdisciplines have created communication barriers that increase isolation of scientific advances. As a result, understanding and reproducing the work of others is difficult, if not impossible. It is often challenging to evaluate whether a model has been built appropriately for its intended application or subsequent reuse. Here, we propose a standardized model metadata framework that enables researchers to understand and evaluate modelling decisions while making models fully citable and reproducible. Such reproducibility is critical for both scientific and policy reports, while international standardization enables better comparison between different scenarios and research groups. Innovation Range modelling metadata (RMMS) address three challenges: they (a) are designed for convenience to encourage use, (b) accommodate a wide variety of applications, and (c) are extensible to allow the research community to steer them as needed. RMMS are based on a metadata dictionary that specifies a hierarchical structure to catalogue different aspects of the range modelling process. The dictionary balances a constrained, minimalist vocabulary to improve standardization with flexibility for users to modify and extend. To facilitate use, we have developed an R package, rangeModelMetaData, to build templates, automatically fill values from common modelling objects, check for inconsistencies with standards, and suggest values. Main conclusions Range Modelling Metadata tools foster cross‐disciplinary advances in biogeography, conservation and allied disciplines by improving evaluation, model sharing, model searching, comparisons and reproducibility among studies. Our initially proposed standards here are designed to be modified and extended to evolve with research trends and needs.
    Print ISSN: 1466-822X
    Electronic ISSN: 1466-8238
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019
    Description: Abstract Aim To test two prominent, alternate hypotheses that provide explanations for the great accumulation of endemic species in the Kimberley bioregion in north‐western Australia, using an extensively sampled, region wide phylogeny of northern Australia's most species‐rich freshwater fish family, Terapontidae. Specifically, we test whether the Kimberley may act as (1) a “museum” accumulating taxa and endemic species over time or (2) a “cradle” of more recent diversification and neoendemism. Location The Australian monsoonal tropics. Taxon Grunters (Terapontidae). Methods We obtained a robust and well‐supported Bayesian phylogeny for the family using DNA sequences from mtDNA and nuclear gene regions. We performed molecular phylogenetic analyses using species tree methods including molecular dating analysis, ancestral range reconstruction and diversification analysis. Results Based on our phylogeny, the combined molecular clock estimates and likelihood‐based historical‐biogeographic reconstructions suggest that terapontids recently transitioned into the Kimberley from the east during the late‐Miocene. We found that 80% of Kimberley terapontids diversified within the Kimberley in the last 3 Ma. Furthermore, diversification analyses identified a single significant shift in diversification rates ~1.4 Ma that corresponds with a change in global climate midway through the Pleistocene that was predominantly driven by speciation in the Kimberley. Main conclusions The weight of evidence suggests that the Kimberley has been a “cradle” of evolution for Terapontidae, rather than a “museum”. Our analysis provides strong evidence for a geologically recent transition of terapontids into the Kimberley from regions to the east during the late‐Miocene followed by a significant increase in speciation rates during the Pleistocene, driven by speciation in the Kimberley. The results provide important insight into the evolutionary and biogeographical processes that have shaped the regions unique biota, which will inform land managers working to protect and conserve both species and the processes responsible for generating and sustaining them.
    Print ISSN: 0305-0270
    Electronic ISSN: 1365-2699
    Topics: Biology , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019
    Description: Abstract Aim China's Grain for Green Program (GFGP) is the largest reforestation programme in the world and has been operating since 1999. The GFGP has promoted the establishment of tree plantations over the restoration of diverse native forests. In a previous study, we showed that native forests support a higher species richness and abundance of birds and bees than do GFGP plantations and that mixed‐species GFGP plantations support a higher level of bird (but not bee) diversity than do any individual GFGP monocultures (although still below that of native forests). Here, we use metabarcoding of arthropod diversity to test the generality of these results. Location Sichuan, China. Methods We sampled arthropod communities using pan traps in the land cover types concerned under the GFGP. These land use types include croplands (the land cover being reforested under the GFGP), native forests (the reference ecosystem as the benchmark for the GFGP’s biodiversity effects) and the dominant GFGP reforestation outcomes: monoculture and mixed‐species plantations. We used COI‐amplicon sequencing (“metabarcoding”) of the arthropod samples to quantify and assess the arthropod community profiles associated with each land cover type. Results Native forests support the highest overall levels of arthropod species diversity, followed by mixed‐species plantations, followed by bamboo and other monocultures. Also, the arthropod community in native forests shares more species with mixed‐species plantations than it does with any of the monocultures. Together, these results broadly corroborate our previous conclusions on birds and bees but show a higher arthropod biodiversity value of mixed‐species plantations than previously indicated by bees alone. Main conclusion In our previous study, we recommended that GFGP should prioritize the conservation and restoration of native forests. Also, where plantations are to be used, we recommended that the GFGP should promote mixed‐species arrangements over monocultures. Both these recommendations should result in more effective protection of terrestrial biodiversity, which is an important objective of China's land‐sustainability spending. The results of this study strengthen these recommendations because our policy prescriptions are now also based on a dataset that includes over 500 species‐resolution taxa, ranging across the Arthropoda.
    Print ISSN: 1366-9516
    Electronic ISSN: 1472-4642
    Topics: Biology
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...