ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2019
    Beschreibung: We demonstrate that foliar water uptake (FU) occurs in six common Amazonian tree genera. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU, we estimate the contribution by FU to annual transpiration at this site has a median value of 8% (103 mm/year) and an interquartile range of 3%–15%. Our results indicate that FU is likely to be a common strategy in Amazonian rainforest and may have significant implications for the Amazon carbon budget and potentially also influence the drought tolerance of individual Amazonian trees and tree species. Abstract The absorption of atmospheric water directly into leaves enables plants to alleviate the water stress caused by low soil moisture, hydraulic resistance in the xylem and the effect of gravity on the water column, while enabling plants to scavenge small inputs of water from leaf‐wetting events. By increasing the availability of water, and supplying it from the top of the canopy (in a direction facilitated by gravity), foliar uptake (FU) may be a significant process in determining how forests interact with climate, and could alter our interpretation of current metrics for hydraulic stress and sensitivity. FU has not been reported for lowland tropical rainforests; we test whether FU occurs in six common Amazonian tree genera in lowland Amazônia, and make a first estimation of its contribution to canopy–atmosphere water exchange. We demonstrate that FU occurs in all six genera and that dew‐derived water may therefore be used to “pay” for some morning transpiration in the dry season. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU (kfu), we estimate that the contribution by FU to annual transpiration at this site has a median value of 8.2% (103 mm/year) and an interquartile range of 3.4%–15.3%, with the biggest sources of uncertainty being kfu and the proportion of time the canopy is wet. Our results indicate that FU is likely to be a common strategy and may have significant implications for the Amazon carbon budget. The process of foliar water uptake may also have a profound impact on the drought tolerance of individual Amazonian trees and tree species, and on the cycling of water and carbon, regionally and globally.
    Print ISSN: 1354-1013
    Digitale ISSN: 1365-2486
    Thema: Biologie , Energietechnik , Geographie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019
    Beschreibung: We demonstrate that foliar water uptake (FU) occurs in six common Amazonian tree genera. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU, we estimate the contribution by FU to annual transpiration at this site has a median value of 8% (103 mm/year) and an interquartile range of 3%–15%. Our results indicate that FU is likely to be a common strategy in Amazonian rainforest and may have significant implications for the Amazon carbon budget and potentially also influence the drought tolerance of individual Amazonian trees and tree species. Abstract The absorption of atmospheric water directly into leaves enables plants to alleviate the water stress caused by low soil moisture, hydraulic resistance in the xylem and the effect of gravity on the water column, while enabling plants to scavenge small inputs of water from leaf‐wetting events. By increasing the availability of water, and supplying it from the top of the canopy (in a direction facilitated by gravity), foliar uptake (FU) may be a significant process in determining how forests interact with climate, and could alter our interpretation of current metrics for hydraulic stress and sensitivity. FU has not been reported for lowland tropical rainforests; we test whether FU occurs in six common Amazonian tree genera in lowland Amazônia, and make a first estimation of its contribution to canopy–atmosphere water exchange. We demonstrate that FU occurs in all six genera and that dew‐derived water may therefore be used to “pay” for some morning transpiration in the dry season. Using meteorological and canopy wetness data, coupled with empirically derived estimates of leaf conductance to FU (kfu), we estimate that the contribution by FU to annual transpiration at this site has a median value of 8.2% (103 mm/year) and an interquartile range of 3.4%–15.3%, with the biggest sources of uncertainty being kfu and the proportion of time the canopy is wet. Our results indicate that FU is likely to be a common strategy and may have significant implications for the Amazon carbon budget. The process of foliar water uptake may also have a profound impact on the drought tolerance of individual Amazonian trees and tree species, and on the cycling of water and carbon, regionally and globally.
    Print ISSN: 1354-1013
    Digitale ISSN: 1365-2486
    Thema: Biologie , Energietechnik , Geographie
    Publiziert von Wiley
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...