ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1,219)
  • Spacecraft Design, Testing and Performance  (688)
  • Aerodynamics  (531)
  • 2015-2019  (919)
  • 1955-1959  (158)
  • 1945-1949  (142)
  • 1
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-07-01
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-37381-3 , 2016 Tri-Lateral Safety and Mission Assurance Conference; 13-15 Sep. 2016; Sagamihara; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-08-18
    Description: DSG will be placed in halo orbit around themoon- Platform for international/commercialpartners to explore lunar surface- Testbed for technologies needed toexplore Mars Habitat module used to house up to 4crew members aboard the DSG- Launched on EM-3- Placed inside SLS fairing Habitat Module - Task Habitat Finite Element Model Re-modeled entire structure in NX2) Used Beam and Shell elements torepresent the pressure vessel structure3) Created a point cloud of centers of massfor mass components- Can now inspect local moments andinertias for thrust ring application8/ Habitat Structure Docking Analysis Problem: Artificial Gravity may be necessary forastronaut health in deep spaceGoal: develop concepts that show how artificialgravity might be incorporated into a spacecraft inthe near term Orion Window Radiant Heat Testing.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-40342 , Summer Intern Final Presentation; * Aug. 2017; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-17
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-40261 , NASA's Space Technology Mission Directorate (STMD) ESI Parachute FSI Workshop; 12-13 Oct. 2017; virtual; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-05-31
    Description: A 1/13-scale model of the forebody of the Republic F-105 with twin-duct wing-root inlets was tested in the Langley 4- by 4-foot supersonic pressure tunnel through a range of angle of attack from -4 deg to 15 deg at a Mach number of 2.01 and a Reynolds number of approximately 3.4 x 10(exp 6) per foot. The tests were made with four configurations which incorporated varying amounts of sweep and stagger of the inlet leading edges, modifications to the areas of the boundary-layer diverter floor plate, and modifications to the area of the boundary-layer diverter bleed slots. The highest overall pressure recovery at an angle of attack of 0 deg (average total-pressure recovery, 0.84 mass-flow ratio, 0.98) was achieved with configuration having an inlet leading-edge sweep angle of 58 deg with no leading-edge stagger. Stagger was found to improve the angle-of- attack performance, but at a sacrifice in inlet efficiency for an angle of attack of 0 deg. The boundary-layer diverter floor height, of the order of one boundary-layer thickness, was satisfactory for bypassing the fuselage boundary layer. The boundary-layer diverter-plate bleed slots were effective in increasing the total-pressure recovery of the inlet. The total-pressure-recovery contour plots, taken at the compressor-face station, indicate the existence of high-velocity "cores" throughout the inlet operating range.
    Keywords: Aerodynamics
    Type: NACA-RM-SL56L12
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-05-11
    Description: A design guide is suggested as a basis for indicating combinations of airplane design variables for which the possibilities of pitch-up are minimized for tail-behind-wing and tailless airplane configurations. The guide specifies wing plan forms that would be expected to show increased tail-off stability with increasing lift and plan forms that show decreased tail-off stability with increasing lift. Boundaries indicating tail-behind-wing positions that should be considered along with given tail-off characteristics also are suggested. An investigation of one possible limitation of the guide with respect to the effects of wing-aspect-ratio variations on the contribution to stability of a high tail has been made in the Langley high-speed 7- by 10-foot tunnel through a Mach number range from 0.60 to 0.92. The measured pitching-moment characteristics were found to be consistent with those of the design guide through the lift range for aspect ratios from 3.0 to 2.0. However, a configuration with an aspect ratio of 1.55 failed t o provide the predicted pitch-up warning characterized by sharply increasing stability at the high lifts following the initial stall before pitching up. Thus, it appears that the design guide presented herein might not be applicable when the wing aspect ratios lower than about 2.0.
    Keywords: Aerodynamics
    Type: NASA-TM-X-26
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-29
    Description: The Compass Final Report: Europa Tunnelbot, is a summary of three Compass concurrent engineering team designs for penetrating the ice of Europa and reaching the ocean, while sampling for biomarkers and communicating back to the surface. These conceptual designs, while providing complete conceptual layouts for these penetrators, or 'Tunnelbots' along with the associated communication 'Repeaters' primarily focused on the power and thermal systems needed for these devices. Trades for these systems will provide advantages and challenges for each option. These results will be used to guide power technology development.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/TP—2019-220054 , E-19649 , GRC-E-DAA-TN61831
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-29
    Description: A family of cases each containing a small separation bubble is treated by direct numerical simulation (DNS), varying two parameters: the severity of the pressure gradients, generated by suction and blowing across the opposite boundary, and the Reynolds number. Each flow contains a well-developed entry region with essentially zero pressure gradient, and all are adjusted to have the same value for the momentum thickness, extrapolated from the entry region to the centre of the separation bubble. Combined with fully defined boundary conditions this will make comparisons with other simulations and turbulence models rigorous; we present results for a set of eight Reynolds-averaged NavierStokes turbulence models. Even though the largest Reynolds number is approximately 5.5 times higher than in a similar DNS study we presented in 1997, the models have difficulties matching the DNS skin friction very closely even in the zero pressure gradient, which complicates their assessment. In the rest of the domain, the separation location per se is not particularly difficult to predict, and the most definite disagreement between DNS and models is near reattachment. Curiously, the better models tend to cluster together in their predictions of pressure and skin friction even when they deviate from the DNS, although their eddy-viscosity levels are widely different in the outer region near the bubble (or they do not rely on an eddy viscosity). Stratfords square-root law is satisfied by the velocity profiles, both at separation and reattachment. The Reynolds-number range covers a factor of two, with the Reynolds number based on the extrapolated momentum thickness equal to approximately 1500 and 3000. This allows tentative estimates of the improvements that even higher values will bring to the model comparisons. The solutions are used to assess models through pressure, skin friction and other measures; the flow fields are also used to produce effective eddy-viscosity targets for the models, thus guiding turbulence-modelling work in each region of the flow.
    Keywords: Aerodynamics
    Type: NF1676L-28495 , Journal of Fluid Mechanics (ISSN 0022-1120) (e-ISSN 1469-7645); 847; 28-70
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-06-28
    Description: An investigation of some aspects of the sonic boom has been made with the aid of wind-tunnel measurements of the pressure distributions about bodies of various shapes. The tests were made in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01 and at a Reynolds number per foot of 2.5 x 10(exp 6). Measurements of the pressure field were made at orifices in the surface of a boundary-layer bypass plate. The models which represented both fuselage and wing types of thickness distributions were small enough to allow measurements as far away as 8 body lengths or 64 chords. The results are compared with estimates made using existing theory. To the first order, the boom-producing pressure rise across the bow shock is dependent on the longitudinal development of body area and not on local details. Nonaxisymmetrical shapes may be replaced by equivalent bodies of revolution to obtain satisfactory theoretical estimates of the far-field pressures.
    Keywords: Aerodynamics
    Type: NASA-TN-D-161
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Time histories of noise pressures near ground level were measured during flight tests of fighter-type airplanes over fairly flat, partly wooded terrain in the e Mach number range between 1.13 and 1.4 and at altitudes from 25,000 to 45,000 feet. Atmospheric soundings and radar tracking studies were made for correlation with the measured noise data. The measured and calculated values of the pressure rise across the shock wave were generally in good agreement. There is a tendency for the theory to overestimate the pressure at locations remote from the track and to underestimate the pressures for conditions of high tailwind at altitude. The measured values of ground-reflection factor averaged about 1.8 f or the surface tested as compared to a theoretical value of 2.0. P o booms were measured in all cases. The observers also generally reported two booms; although, in some cases, only one boom was reported. The shock-wave noise associated with some of the flight tests was judged to be objectionable by ground observers, and in one case the cracking of a plate-glass store window was correlated in time with the passage of the airplane at an altitude of 25,000 feet.
    Keywords: Aerodynamics
    Type: NASA-TN-D-48
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-22
    Description: Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on-orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce life-cycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN26106-2 , AIAA Space and Astronautics Forum and Exposition 2015 (AIAA Space 2015); 31 Aug. - 2 Sep. 2015; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2015-09-22
    Description: Spacecraft modularity has been a topic of interest at NASA since the 1970s, when the Multi-Mission Modular Spacecraft (MMS) was developed at the Goddard Space Flight Center. Since then, modular concepts have been employed for a variety of spacecraft and, as in the case of the Hubble Space Telescope (HST) and the International Space Station (ISS), have been critical to the success of on- orbit servicing. Modularity is even more important for future robotic servicing. Robotic satellite servicing technologies under development by NASA can extend mission life and reduce lifecycle cost and risk. These are optimized when the target spacecraft is designed for servicing, including advanced modularity. This paper will explore how spacecraft design, as demonstrated by the Reconfigurable Operational spacecraft for Science and Exploration (ROSE) spacecraft architecture, and servicing technologies can be developed in parallel to fully take advantage of the promise of both.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN26106-1 , AIAA Space and Astronautics Forum and Exposition 2015 (AIAA SPACE 2015); 31 Aug. - 2 Sep. 2015; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-07-01
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-37381-2 , 2016 Tri-Lateral Safety and Mission Assurance Conference; 13-15 Sep. 2016; Sagamihara; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-05-25
    Description: A study has been made of a flare-cylinder configuration to investigate its feasibility as a reentry body of an intermediate range ballistic missile. Factors considered were heating, weight, stability, and impact velocity. A series of trajectories covering the possible range of weight-drag ratios were computed for simple truncated nose shapes of varying pointedness, and hence varying weight-drag ratios. Four trajectories were chosen for detailed temperature computation from among those trajectories estimated to be possible. Temperature calculations were made for both "conventional" (for example, copper, Inconel, and stainless steel) and "unconventional" (for example, beryllium and graphite) materials. Results of the computations showed that an impact Mach number of 0.5 was readily obtainable for a body constructed from conventional materials. A substantial increase in subsonic impact velocity above a Mach number of 0.5 was possible without exceeding material temperature limits. A weight saving of up to 134 pounds out of 822 was possible with unconventional materials. This saving represents 78 percent of the structural weight. Supersonic impact would require construction of the body from unconventional materials but appeared to be well within the range of attainability.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NACA-RM-L58C21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-L9C04
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-06-28
    Description: An analysis is presented of the influence of wing aspect ratio and tail location on the effects of compressibility upon static longitudinal stability. The investigation showed that the use of reduced wing aspect ratios or short tail lengths leads to serious reductions in high-speed stability and the possibility of high-speed instability.
    Keywords: Aerodynamics
    Type: NACA-RM-A7J13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-06-28
    Description: Pressure distribution over an extended leading-edge flap on a 42 degree swept-back wing was investigated. Results indicate that the flap normal-force coefficient increased almost linearly with the angle of attack to a maximum value of 3.25. The maximum section normal-force coefficient was located about 30 percent of the flap span outboard of the inboard end and had a value of 3.75. Peak negative pressures built up at the flap leading edge as the angle of attack was increased and caused the chordwise location of the flap center of pressure to be move forward.
    Keywords: Aerodynamics
    Type: NACA-RM-L7J03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-06-28
    Description: Investigations were conducted to determine effectiveness of refrigerants in increasing thrust of turbojet engines. Mixtures of water an alcohol were injected for a range of total flows up to 2.2 lb/sec. Kerosene was injected into inlets covering a range of injected flows up to approximately 30% of normal engine fuel flow. Injection of 2.0 lb/sec of water alone produced an increase in thrust of 35.8% of rate engine conditions and kerosene produced a negligible increase in thrust. Carbon dioxide increased thrust 23.5 percent.
    Keywords: Aerodynamics
    Type: NACA-RM-E7G23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-06-28
    Description: In the course of a flight test of a supersonic research pilotless aircraft (the NACA RM-1), large-amplitude aileron oscillations, probably aileron compressibility flutter, were encountered in the transonic and supersonic speed ranges. The wing was oscillating at the same frequency as the aileron. The aircraft was equipped with 45 degree swept-back wings of symmetrical NASA 65-010 airfoil section. Completely mass-balanced ailerons with 20 degree beveled trailing edges were installed on the wings. The ailerons were free floating with no mechanical restraining force other than the friction of the aileron hinges and servomechanism bearings throughout the high-speed interval of flight.
    Keywords: Aerodynamics
    Type: NACA-RM-L6L09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-06-28
    Description: A three-dimensional investigation of straight-sided-profile plain ailerons on a wing with 30 degrees and 45 degrees of sweepback and sweepforward was made in a high-speed wind tunnel for aileron deflections from -10 degrees to 10 degrees and at Mach numbers from 0.60 to 0.96. Wing configurations of 30 degrees generally reduced the severity of the large changes in rolling-moment and aileron hinge-moment coefficients experienced by the upswept wing configurations as the result of compression shock and extended to higher Mach numbers the speeds at which such changes occurred.
    Keywords: Aerodynamics
    Type: NACA-RM-L7I15
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-06-28
    Description: On the basis of a recently developed theory for finite sweptback wings at supersonic speeds, calculations of the supersonic wave drag at zero lift were made for a series of wings having thin symmetrical biconvex sections with untapered plan forms and various angles of sweepback and aspect ratios. The results are presented in a unified form so that a single chart permits the direct determination of the wave drag for this family of airfoils for an extensive range of aspect ratio and sweepback angle for stream Mach numbers up to a value corresponding to that at which the Mach line coincides with the wing leading edge. The calculations showed that in general the wave-drag coefficient decreased with increasing sweepback. At Mach numbers for which the Mach lines are appreciably ahead of the wing leading edge, the 'wave-drag coefficient decreased to an important extent with increases in aspect ratio or slenderness ratio. At Mach numbers for which the Mach lines approach the wing leading edge (Mach numbers approaching a value equal to the secant of the angle of sweepback), the wave-drag coefficient decreased with reductions in aspect ratio or slenderness ratio. In order to check the results obtained by the theory, a comparison was made with the results of tests at the Langley Memorial Aeronautical Laboratory of sweptback wing attached to a freely falling body. The variation of the drag with Mach number and aspect ratio as given by the theory appeared to be in reasonable
    Keywords: Aerodynamics
    Type: NACA-RM-L6K29
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-06-28
    Description: No abstract available
    Keywords: Aerodynamics
    Type: NACA-RM-L7C04a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-06-28
    Description: An investigation has been conducted in the Cleveland 18- by 18-inch supersonic tunnel at a Mach number of 1.85 and angles of attack from 0 deg to 5 deg to determine optimum design configurations for a convergent-divergent type of supersonic diffuser with a subsonic diffuser of 5 deg included divergence angle. Total pressure recoveries in excess of theoretical recovery across a normal shock at a free-stream Mach number of 1.85 wore obtained with several configurations. The highest recovery for configurations without a cylindrical throat section was obtained with an inlet having an included convergence angle of 20 deg. Insertion of a 2-inch throat section between a 10 deg included angle inlet and the subsonic diffuser stabilized the shock inside the diffuser and resulted in recoveries as high as 0.838 free-stream total pressure at an angle of attack of 0 deg, corresponding to recovery of 92.4 percent of the kinetic energy of the free air stream. Use of the throat section also lessened the reduction in recovery of all configurations due to angle of attack.
    Keywords: Aerodynamics
    Type: NACA-RM-E6K21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-06-28
    Description: An exploratory wind-tunnel investigation has been made to determine the lift effects of blowing from nacelles over the upper surface of flaps on a model having a delta wing of aspect ratio 3. Several flap conditions were examined. High-pressure air was blown from an external-pipe arrangement supported above the wing to simulate jet-engine exhaust. The jet momentum- coefficient range was from 0 to 3.0 and the model angle of attack was 0 deg. The results of this limited investigation show that values of jet circulation lift coefficient larger than the Jet reaction were produced with blowing over flaps from nacelles mounted above the wing. 'I!heuse of double slotted flaps with the gap unsealed between the flaps and wing had a large detrimental effect on the lift capabilities. With these gaps sealed, larger lift coefficients were obtained when fantails were added to the nacelles. The longitudinal trim problems created by large diving moments were similar to those encountered with other jet-augmented-flap systems
    Keywords: Aerodynamics
    Type: NACA-TN-4298
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-06-28
    Description: An analysis, based on the linearized thin-airfoil theory for supersonic speeds, of the wave drag at zero lift has been carried out for a simple two-body arrangement consisting of two wedgelike surfaces, each with a rhombic lateral cross section and emanating from a common apex. Such an arrangement could be used as two stores, either embedded within or mounted below a wing, or as auxiliary bodies wherein the upper halves could be used as stores and the lower halves for bomb or missile purposes. The complete range of supersonic Mach numbers has been considered and it was found that by orienting the axes of the bodies relative to each other a given volume may be redistributed in a manner which enables the wave drag to be reduced within the lower supersonic speed range (where the leading edge is substantially subsonic). At the higher Mach numbers, the wave drag is always increased. If, in addition to a constant volume, a given maximum thickness-chord ratio is imposed, then canting the two surfaces results in higher wave drag at all Mach numbers. For purposes of comparison, analogous drag calculations for the case of two parallel winglike bodies with the same cross-sectional shapes as the canted configuration have been included. Consideration is also given to the favorable (dragwise) interference pressures acting on the blunt bases of both arrangements.
    Keywords: Aerodynamics
    Type: NACA-TN-4120
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-06-28
    Description: A simplified analysis of the velocity and deceleration history of missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.
    Keywords: Aerodynamics
    Type: NACA-TN-4047
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-06-28
    Description: A solution of the equations of the compressible laminar boundary layer including the effects of transpiration cooling is presented. The analysis applies to the flow over an isothermal porous plate with a velocity of fluid injection proportional to the reciprocal of the square root of the distance from the leading edge. The effect of several flow parameters on coolant-flow rates is discussed with the aid of representative examples. A stability analysis indicates that, although transpiration cooling requires a lower surface temperature for stable flow than does internal wall cooling, this lower temperature can be obtained with a smaller expenditure of coolant.
    Keywords: Aerodynamics
    Type: NACA-TN-3404
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-06-28
    Description: Wing was tested with full-span, partial-span, or split flaps deflected 60 Degrees and without flaps. Chordwise pressure-distribution measurements were made for all flap configurations.. Peak values of maximum lift coefficient were obtained at relatively low free-stream Mach numbers and, before critical Mach number was reached, were almost entirely dependent on Reynolds Number. Lift coefficient increased by increasing Mach number or deflecting flaps while critical pressure coefficient was reached at lower free-stream Mach numbers.
    Keywords: Aerodynamics
    Type: NACA-TN-1299
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-06-28
    Description: Theoretical analysts of lateral dynamic motion of tailless and conventional airplanes was made for fighter and heavy transport. Their reactions to a lateral gust and control power required by each for simple maneuvers were determined and compared. Both types of airplanes require almost identical aileron control power to perform a given maneuver; tailless airplane requires about 1-2 to 1-3 directional control power of conventional airplane. Tailless airplane also shows greatest displacement for a given disturbance and has least damping in oscillatory mode.
    Keywords: Aerodynamics
    Type: NACA-TN-1154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-06-28
    Description: For the normal range of engine power the impeller provided marked improvement over the standard spray-bar injection system. Mixture distribution at cruising was excellent, maximum cylinder temperatures were reduced about 30 degrees F, and general temperature distribution was improved. The uniform mixture distribution restored the normal response of cylinder temperature to mixture enrichment and it reduced the possibility of carburetor icing, while no serious loss in supercharger pressure rise resulted from injection of fuel near the impeller outlet. The injection impeller also furnished a convenient means of adding water to the charge mixture for internal cooling.
    Keywords: Aerodynamics
    Type: NACA-TN-1069
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-06-28
    Description: Behaviors of both model and full-scale airplanes were ascertained by making visual observations, by recording time histories of decelerations, and by taking motion picture records of ditchings. Results are presented in form of sequence photographs and time-history curves for attitudes, vertical and horizontal displacements, and longitudinal decelerations. Time-history curves for attitudes and horizontal and vertical displacements for model and full-scale tests were in agreement; maximum longitudinal decelerations for both ditchings did not occur at same part of run; full-scale maximum deceleration was 50 percent greater.
    Keywords: Aerodynamics
    Type: NACA-WR-L-617 , NACA-MR-L6A03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-06-28
    Description: Finite trigonometric series is fitted by harmonic analysis as an approximation function to the psi function of the Theodorsen arbitrary-airfoil potential theory. By harmonic synthesis, the corresponding conjugate trigonometric series is used as an approximation to the epsilon function. A set of coefficients of particularly simple form is obtained algebraically for direct calculation of the epsilon values from the corresponding set of psi values. Complete derivation of this process is presented.
    Keywords: Aerodynamics
    Type: NACA-WR-L-153 , NACA-ARR-L5H18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-06-28
    Description: A program of model tests has been completed at Langley tank no. 1 which will furnish a qualitative guide as to the relation of length of afterbody and depth of step. The model used for the tests was a l/12-size unpowered dynamic model of a hypothetical 160,000-pound airplane. The results showed that an increase in length of afterbody requires an accompanying increase in depth of step to maintain adequate landing stability. Changing the length of afterbody and depth of step in such a manner as to maintain a given landing stability will result in only small changes in take-off stability.
    Keywords: Aerodynamics
    Type: NACA-WR-L-684 , NACA-MR-L5I28a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-06-28
    Description: Tests show that at inlet-air temperatures of 250 deg F and 100 deg F the knock-limited performance of the base fuel of blends, leaded with 4 ml TEL per gallon and containing 20 percent spiropentane, was reduced at fuel/air ratios below 0.085. The 20 percent methylenecyclobutane reduced the knock-limited power of the base fuel at fuel/air ratios below 0.112. Di-tert-butyl ether, methyl-tert-butyl ether, and triptane increased the knock-limited power of the base fuel at all fuel/air ratios and at both temperatures.
    Keywords: Aerodynamics
    Type: NACA-WR-E-222 , NACA-RB-E6D22
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-06-28
    Description: Engine temperature data and cooling correlating analyses of the engine and oil cooler are presented in connection with an investigation of the cowling and cooling of the ranger V-770-8 engine installation in the Edo XOSE-1 airplane. Three types of baffles were installed in the course of the tests: the conventional, the turbulent-flow, and the NACA diffuser baffles. Each of the types was of merit in cooling a different region on the cylinder. Incorporation of the best features of the three types into one baffle, a method which appears to be feasible, would provide improvements in cylinder cooling.
    Keywords: Aerodynamics
    Type: NACA-WR-L-561
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-06-28
    Description: Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.
    Keywords: Aerodynamics
    Type: NACA-WR-L-51 , NACA-ACR-L5G10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-06-28
    Description: Sectional characteristics of airfoil having retractable slotted flap with plain, slot-lip, or retractable ailerons are presented for a large range of aileron deflections. The analysis indicated that pitching moments produced by spoilers were less positive than those produced by plain flaps of equal effectiveness, also that pitching moments created by the spoiler increased less with the Mach number than similar moments produced by plain flaps. Positive values of pitching moment decreased as devices were located nearer airfoil leading edge.
    Keywords: Aerodynamics
    Type: NACA-WR-L-124 , NACA-ACR-L5C24a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-06-28
    Description: Results of flight tests of a control-feel aid presented. This device consisted of a spring and dashpot connected in series between the control stick and airplane structure. The device was tested in combination with an experimental elevator and bobweight which had given unsatisfactory dynamic stability and control-feel characteristics in previous tests. The control-feel aid effected marked improvement in both the control-feel characteristics and the control-feel dynamic longitudinal stability of the airplane.
    Keywords: Aerodynamics
    Type: NACA-WR-L-730 , NACA-MR-L6E20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Available experimental two-dimensional-cascade data for conventional compressor blade sections are correlated. The two-dimensional cascade and some of the principal aerodynamic factors involved in its operation are first briefly described. Then the data are analyzed by examining the variation of cascade performance at a reference incidence angle in the region of minimum loss. Variations of reference incidence angle, total-pressure loss, and deviation angle with cascade geometry, inlet Mach number, and Reynolds number are investigated. From the analysis and the correlations of the available data, rules and relations are evolved for the prediction of the magnitude of the reference total-pressure loss and the reference deviation and incidence angles for conventional blade profiles. These relations are developed in simplified forms readily applicable to compressor design procedures.
    Keywords: Aerodynamics
    Type: NACA-RM-E56B03a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-06-28
    Description: A model of a cruciform missile configuration having a low-aspect-ratio wing equipped with flap-type controls was flight tested in order to determine stability and control characteristics while rolling at about 5 radians per second. Comparison is made with results from a similar model which rolled at a much lower rate. Results showed that, if the ratio of roll rate to natural circular frequency in pitch is not greater than about 0.3, the motion following a step disturbance in pitch essentially remains in a plane in space. The slope of normal- force coefficient against angle of attack C(sub N(sub alpha)) was the same as for the slowly rolling model at 0 degrees control deflection but C(sub N(sub alpha)) was much higher for the faster rolling model at about 5 degrees control deflection. The slope of pitching-moment coefficient against angle of attack C(sub m(sub alpha)) as determined from the model period of oscillation was the same for both models at 0 degrees control deflection but was lower for the faster rolling model at about 5 degrees control deflection. Damping data for the faster rolling model showed considerably more scatter than for the slowly rolling model.
    Keywords: Aerodynamics
    Type: NACA-RM-L55L16
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-06-28
    Description: The temperature distributions encountered in thin solid wings subjected to aerodynamic heating induce thermal stresses that may effectively reduce the stiffness of the wing. The effects of this reduction in stiffness were investigated experimentally by rapidly heating the edges of a cantilever plate. The midplane thermal stresses imposed by the nonuniform temperature distribution caused the plate to buckle torsionally, increased the deformations of the plate under a constant applied torque, and reduced the frequency of the first two natural modes of vibration. By using small-deflection theory and employing energy methods, the effect of nonuniform heating on the plate stiffness was calculated. The theory predicts the general effects of the thermal stresses, but becomes inadequate as the temperature difference increases and plate deflections become large.
    Keywords: Aerodynamics
    Type: NACA-RM-L55E20c
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-06-28
    Description: Skin-temperature measurements have been made at several locations on a flat-faced cone-cylinder nose which was flight tested on a fivestage rocket-propeller model to a Mach number of 14.64 and a free-stream Reynolds number of 2.0 x 10(exp 6), based on flat-face diameter, at an altitude of 66,300 feet. The copper nose had a 29 deg total-angle conical section which was 1.6 flat-face diameters long. The aerodynamic-heating rates determined from the temperature measurements reached 1,440 Btu/( sec) (sq ft) on the flat face. The heating rates near the center of the flat face agreed well at Mach numbers up to 13.6 with those obtained by a theory for laminar stagnation-point heating in equilibrium dissociated air (Avco Res. Rep. 1). At Mach numbers above 13.6, the heating rates at locations near the center of the flat face became progressively lower than stagnation-point theory and. were 29 percent lower at Mach number 14.6 at the end. of the test. The reason for this behavior of the heating on the central part of the flat face was not determined. Excluding the relatively low heating rates that occurred on the central part of the nose at the highest Mach numbers, the distribution of experimental heating along the innermost 0.79 of the flat-face radius, expressed as a percentage of stagnation-point heating, was in fair agreement with the distribution predicted by laminar theory. At a location of 0.71 radii from the stagnation point, the experimental heating was very near 130 percent of the theoretical stagnation-point rate at Mach numbers from 11 to 14.5. The experimental beating rates on the conical section of the nose were in good agreement with laminar-cone theory using the assumption of theoretical sharp-cone static pressure on the conical section.
    Keywords: Aerodynamics
    Type: NACA-RM-L57L03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-06-28
    Description: Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.
    Keywords: Aerodynamics
    Type: NACA-TN-1495
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-06-28
    Description: The first part of this paper reviews the present state of the problem of the instability of laminar boundary layers which has formed an important part of the general lectures by von Karman at the first and fourth Congresses and by Taylor at the fifth Congress. This problem may now be considered as essentially solved as the result of work completed since 1938. When the velocity fluctuations of the free-stream flow are less than 0.1 percent of the mean speed, instability occurs as described by the well-known Tollmien-Schlichting theory. The Tollmien-Schlichting waves were first observed experimentally by Schubauer and Skramstad in 1940. They devised methods of introducing controlled small disturbances and obtained measured values of frequency, damping, and wave length at various Reynolds numbers which agreed well with the theoretical results. Their experimental results were confirmed by Liepmann. Much theoretical work was done in Germany in extending the Tol1mien-Schlichting theory to other boundary conditions, in particular to flow along a porous wall to which suction is applied for removing part of the boundary layer. The second part of this paper summarizes the present state of knowledge of the mechanics of turbulent boundary layers, and of the methods now being used for fundamental studies of the turbulent fluctuations in turbulent boundary layers. A brief review is given of the semi-empirical method of approach as developed by Buri, Gruschwitz, Fediaevsky, and Kalikhman. In recent years the National Advisory.Commsittee for Aeronautics has sponsored a detailed study at the National Bureau of Standards of the turbulent fluctuations in a turbulent boundary layer under adverse pressure gradient sufficient to produce separation. The aims of this investigation and its present status are described.
    Keywords: Aerodynamics
    Type: NACA-TN-1168
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-06-28
    Description: An experimental investigation was conducted to determine the penetration of a circular air Jet directed perpendicularly to an air stream as a function of Jet density, Jet velocity, air-stream density, air-stream velocity, Jet diameter, and distance downstream from the Jet. The penetration was determined for nearly constant values of air-stream density at two tunnel velocities, four Jet diameters, four positions downstream of the Jet, and for a large range of Jet velocities and densities. An equation for the penetration was obtained in terms of the Jet diameter, the distance downstream from the jet, and the ratios of Jet and air-stream velocities and densities.
    Keywords: Aerodynamics
    Type: NACA-TN-1615
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-06-28
    Description: Ice was formed on a full-scale unheated supersonic nose inlet in the NACA Lewis icing tunnel to determine its effect on compressor-face total-pressure distortion and recovery.Inlet angle of attack was varied from 0degrees to 12 degrees, free-stream Mach number from 0.17 to 0.28, and compressor-face Mach number from 0.10 to 0.47. Icing-cloud liquid-water content was varied from 0.65 to 1.8 grams per cubic meter at free-stream static air temperatures of 15 degrees and 0 degrees F. The addition of ice to the inlet components increased total-pressure-distortion levels and decreased recovery values compared withclear0air results, the losses increasing with time in ice. The combination of glaze ice, high corrected weight flow, and high angle of attack yielded the highest levels of distortion and lowest values of recovery. The general character of compressor-face distortion with an iced inlet was the same as that for the clean inlet, the total-pressure gradients being predominantly radial, with circumferential gradients occurring at angle of attack. At zero angle of attack, free-stream Mach number of 0.27, and a constant corrected weight flow of 150 pounds per second (compressor-face Mach number of 0.43), compressor-face total-pressure-distortion level increased from about 6 percent in clear air to 12 percent after 21 minutes of heavy glaze icing; concurrently, total-pressure recovery decreased from about 0.98 to 0.945. For the same operating conditions but with the inlet at 12 deg angle of attack, a change in distortion level occurred from about 9 percent in clear air to 14 percent after 2-1/4 minutes of icing, with a decrease in recovery from about 0.97 to 0.94.
    Keywords: Aerodynamics
    Type: NACA-RM-E57G09
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-06-28
    Description: A theoretical investigation was conducted on jet-induced flow deviation. Analysis is given of flow inclination induced outside cold and hot jets and jet deflection caused by angle of attack. Applications to computation of effects of jet on longitudinal stability and trim are explained. Effect of jet temperature on flow inclination was found small when thrust coefficient is used as criterion for similitude. The average jet-induced downwash over tail plane was obtained geometrically.
    Keywords: Aerodynamics
    Type: NACA-WR-L-213 , NACA-ACR-L6C13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-06-28
    Description: Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from Tests at Large Reynolds Number and Low Turbulence," by Eastman N. Jacobs, Ira R. Abbott, and Milton Davidson, March 1942 has been corrected and included in the present paper, which supersedes the previously published paper.
    Keywords: Aerodynamics
    Type: NACA-ACR-L5005 , NACA-MR-L5I12 , NACA-WR-L-560
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-06-28
    Description: Statistical methods were applied to acceleration and airspeed data obtained with the XC-35 airplane during flights in turbulent air within convective clouds in order to determine the characteristics of repeated or closely spaced gusts pertinent to design problems. Results indicated that, in turbulent air within convective cloud, gusts tend to be contiguous and are seldom found isolated in space. Over-all average spacing between repeated gusts was in good agreement with twice the average gust-gradient distance of 10 chords used in present design.
    Keywords: Aerodynamics
    Type: NACA-WR-L-39 , NACA-ARR-L5H30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-06-28
    Description: At the request of the Air Technical Service Command, U.S. Army Air Forces, a 0.22-scale model of a twin-fuselae pursuit airplane was built and tested at the Ames Aeronautical Laboratory. The tests of this model were made in order that the aerodynamic characteristics of the airplane, especially at high speed, might be predicted. The results shown in this report consist of force data for the model and critical Mach numbers of parts of the model as determined from pressure-distribution measurements. The results indicate that a diving tendency of the airplane can be expected at Mach numbers above 0.70 at lift co-efficients from 0 to 0.4. There is an indication that the Mach number at which the airpolane would first experience a diving tendency for lift coefficients from 0 to 0.2 can be increased if the critical speed of the radiator enclosures is increased, and the wing-fuselage-juncture fillets are improved.
    Keywords: Aerodynamics
    Type: NACA-WR-A-75 , NACA-MR-A6D03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-06-28
    Description: Two-dimensional data were obtained in Mach range of from 0.40 to 0.94 and Reynolds Number range of (3.4 - 4.2) X 10 Degrees. Results indicate that thickness ratio is dominating shape parameter at high Mach numbers and that aerodynamic advantages are attainable by using thinnest possible sections. Effects of jet boundaries, Reynolds Number, and Data presented are free from jet-boundary and humidity effects.
    Keywords: Aerodynamics
    Type: NACA-WR-L-143 , NACA-ACR-L5E21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-06-28
    Description: Wing section outboard of flap was tested by wake surveys in Mach range of 0.25 - 0.78 and lift coefficient range 0.06 - 0.69. Results indicated that minimum profile-drag coefficient of 0.0097 was attained for lift coefficients from 0.16 to 0.25 at Mach less than 0.67. Below Mach number at which compressibility shock occurred, variations in Mach of 0.2 had negligible effect on profile drag coefficient. Shock was not evident until critical Mach was exceeded by 0.025.
    Keywords: Aerodynamics
    Type: NACA-WR-L-98 , NACA-ACR-L6B21
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-06-28
    Description: Tests in Langley pressure tunnel of model XA-26 bomber were compared with those of A-26B (twin-engine attack bomber) and showed that static longitudinal stability, indicated by elevator-fixed neutral points, and variation of elevator deflection in straight and turning flight were good. Airplane possessed improved stability at low speeds which was attributed to pronounced stalling at root of production wing. At rudder-force reversal at speeds higher than those in flight tests, agreement in rudder-fixed and rudder-free static directional stability was good. Hinge moment obtained at zero sideslip was satisfactory for determining aileron forces in sideslip.
    Keywords: Aerodynamics
    Type: NACA-WR-L-99 , NACA-ARR-L5H11a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-05-11
    Description: The flow about slender flat-top wing-body configurations traveling at high supersonic speeds and small angles of attack is investigated analytically. In the case of conical configurations, approximate algebraic solutions to the flow field are obtained. In the case of configurations which are conical at the vertex but curved in the stream direction, these solutions are combined with a slender-body approximation to the generalized shock-expansion method to obtain the flow downstream of the vertex. Surface pressures were obtained experimentally at Mach numbers from 3.0 to 6.0 and angles of attack up to 6 deg for several flat-top wing-body configurations. These configurations consisted of half-bodies of revolution mounted beneath thin highly swept wings. Three different bodies were employed. The two conical bodies consisted of one-half of a fineness-ratio-5 cone and one-half of a fineness-ratio-2-1/2 cone. The body of the third configuration consisted of one-half of a fineness-ratio-5 ogive. For the ogive configuration, the leading edges of the wing were curved and designed to just maintain the theoretically determined bow shock along the leading edge at a Mach number of 5.0 and an angle of attack of 3 deg. The predictions of the conical flow theory of this paper for the surface pressures are found to be in good agreement with experiment at Mach numbers of 5.0 and 6.0 up to angles of attack of approximately 3 deg. Estimated lift, drag, and pitching-moment coefficients, as well as maximum lift-drag ratio, are also in good agreement with existing experimental data at a Mach number of 5.0 for a conical configuration having an arrow plan-form wing. It is also found that the generalized shock-expansion method yields reasonable good agreement with experiment for the surface pressures on the half-ogive configuration at a Mach number of 5.0 and an angle of attack of 3 deg.
    Keywords: Aerodynamics
    Type: NACA-RM-A58F02
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-05-11
    Description: A pressure-distribution investigation of a wing-body combination has been conducted in the Langley 4- by 4-foot supersonic pressure tunnel at a Mach number of 2.01. The model configuration consisted of an ogive-circular-cylinder body (fineness ratio of approximately ii) and a wing with 45 deg of sweepback at the quarter-chord line, an aspect ratio of 4, and a taper ratio of 0.2. Data were obtained on high-, mid-, and low-wing configurations and for the body and wing alone for a range of angles of attack and yaw from 0 deg to 15 deg. The tabulated pressure coefficients are presented in this report.
    Keywords: Aerodynamics
    Type: NASA-MEMO-10-15-58L
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-06-28
    Description: The origins, development, implementation, and application of AEROM, NASA's patented reduced-order modeling (ROM) software, are presented. Full computational fluid dynamic (CFD) aeroelastic solutions and ROM aeroelastic solutions, computed at several Mach numbers using the NASA FUN3D CFD code, are presented in the form of root locus plots in order to better reveal the aeroelastic root migrations with increasing dynamic pressure. The method and software have been applied successfully to several con figurations including the Lockheed-Martin N+2 supersonic configuration and the Royal Institute of Technology (KTH, Sweden) generic wind-tunnel model, among others. The software has been released to various organizations with applications that include CFD-based aeroelastic analyses and the rapid modeling of high- fidelity dynamic stability derivatives. Recent results obtained from the application of the method to the AGARD 445.6 wing will be presented that reveal several interesting insights.
    Keywords: Aerodynamics
    Type: NF1676L-29554 , Aerospace (e-ISSN 2226-4310); 5; 2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-05-11
    Description: Heat-transfer measurements were made on a simulated glide-rocket shape in free flight at Mach numbers up to 10 and free-stream Reynolds numbers of 2 x 10 based on distance along surface from apex and 3 x 10 based on nominal leading-edge diameter. The model simulated the bottom of a 75 deg delta wing at 8O deg angle of attack. The data indicated that for the test conditions a modified three-dimensional stagnation-point theory will predict to reasonable engineering accuracy the heating on a highly swept wing leading edge, the heating being reduced by sweep by the 3/2 power of the cosine of the sweep angle. The data also indicate that laminar heating rates over the windward surface of a highly swept flat glider wing at moderate angles of attack can be predicted with reasonable engineering accuracy by flat-plate theory using wedge local flow conditions and basing Reynolds numbers on lengths from the wing leading edge parallel to the surface center line.
    Keywords: Aerodynamics
    Type: NACA-RM-L58G03
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-05-11
    Description: Chemical sublimation has been employed for boundary-layer-flow visualization on the wings of a supersonic fighter airplane in level flight at speeds near a Mach number of 2.0. The tests have shown that laminar flow can be obtained over extensive areas of the wing with practical wing-surface conditions. In addition to the flow visualization tests, a method of continuously monitoring the conditions of the boundary layer has been applied to flight testing, using heated temperature resistance gages installed in a Fiberglas "glove" installation on one wing. Tests were conducted at speeds from a Mach number of 1.2 to a Mach number of 2.0, at altitudes from 35,000 feet to 56,000 feet. Data obtained at all angles of attack, from near 0 deg to near 10 deg, have shown that the maximum transition Reynolds number on the upper surface of the wing varies from about 2.5 x 10(exp 6) at a Mach number of 1.2 to about 4 x 10(exp 6) at a Mach number of 2.0. On the lower surface, the maximum transition Reynolds number varies from about 2 x 10(exp 6) at a Mach number of 1.2 to about 8 x 10(exp 6) at a Mach number of 2.0.
    Keywords: Aerodynamics
    Type: NACA-RM-H58E28
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-06-28
    Description: An investigation was made of the static longitudinal stability, and control and stall characteristics of XBTK-1 dive bomber. Results indicate that the longitudinal stability will probably be satisfactory for all contemplated flight conditions at the rear-most CG location with elevator both fixed and free. Power effects were small. Sufficient elevator control will be available to trim in any flight condition above the ground. Increasing the slotted flap deflection above 30 degrees only slightly increased the max. lift coefficient.
    Keywords: Aerodynamics
    Type: NACA-WR-L-785 , NACA-MR-L5D27a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-06-28
    Description: Availability data obtained on SNB-1 trainer-class airplanes were analyzed and results presented as flight envelopes which predict occurrences of large values of air speed and acceleration. Comparison is made with SNJ-4 trainer-class airplane data analyzed by the same method. It is concluded that flight envelopes are satisfactory; that the two types show large differences in flight loads and speeds experience; and that SNB-1 will seldom, if ever, exceed design limit load factor and restricted speed, which SNJ-4 can be expected to exceed design-limit load factor and restricted speed in a very small number of flight hours.
    Keywords: Aerodynamics
    Type: NACA-WR-L-759 , NACA-MR-L6F27a
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-06-28
    Description: The data presented have no bearing on performance characteristics of airplane, which were considered exceptionally good in previous tests. Some of the undesirable features of lateral and directional stability and control characteristics of the F-8 are listed. Directional stability, with rudder fixed, did not sufficiently restrict aileron yaw; rudder control was inadequate during take-off and landing, and was insufficient to fly airplane with one engine; in clean condition, power of ailerons was slightly below minimum value specified; it was difficult to trim airplane in rough air.
    Keywords: Aerodynamics
    Type: NACA-WR-L-593 , NACA-MR-L5D19
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-06-28
    Description: Results are reported of knock-limited tests of five aromatics, each individually blended with selected base fuels and tested with and without TEL, using 17.6, F-4, and F-3 small-scale engines. The five aromatics rated in the following order of decreasing antiknock effectiveness at fuel/air ratio 0.10: m-xylene, 1-isopropyl-4-methylbenzene, n-propylbenzene, isobutylbenzene, and n-butylbenzene.
    Keywords: Aerodynamics
    Type: NACA-WR-E-237 , NACA-ARR-E6C05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-06-28
    Description: Data are presented of the flow conditions in the vicinity of an NACA D sub S -type cowling. Tests were made of a 1/2 scale-nacelle model at inlet-velocity ratios ranging from 0.23 to 1.02 and angles of attack from 6 deg to 10 deg. The velocity and direction of flow in the vertical plane of symmetry of the cowling were determined from orifices and tufts installed on a board aligned with the flow. Diagrams showing velocity ratio contours and lines of constant flow angles are given.
    Keywords: Aerodynamics
    Type: NACA-WR-L-747 , NACA-MR-L6H14
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-06-28
    Description: In Mach range of 0.25 - 0.69, boundary-layer measurements were made on upper wing surface at 25% semi-span, pressure-distribution measurements made on upper surface at 63% semi-span, and wake surveys made at 63% semi-span. The minimum profile-drag coefficient of 0.0062 was indicated for smooth section at 63% semi-span. Critical mach number was exceeded by 0.04, but no compressibility shocks appeared. In slipstream, boundary layer transition occurred as far back as 20% chord on upper surface at low lift coefficients.
    Keywords: Aerodynamics
    Type: NACA-WR-L-86 , NACA-ARR-L5H11A
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: Lift, drag, internal flow, and pressure distribution measurements were made on a low-drag airfoil incorporating various air inlet designs. Two leading-edge air inlets are developed which feature higher lift coefficients and critical Mach than the basic airfoil. Higher lift coefficients and critical speeds are obtained for leading half of these inlet sections but because of high suction pressures near exist, slightly lower critical speeds are obtained for the entire inlet section than the basic airfoil.
    Keywords: Aerodynamics
    Type: NACA-WR-L-727 , NACA-ACR-L6B18
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-28
    Description: Tests were made to determine whether spring-tab ailerons tended to oscillate or flutter in speed ranges up to 400 mph. Flight tests showed spring-tab ailerons had desirable light stick forces and no tendency to overbalance. No flutter tendencies were indicated up to 400 mph, and any oscillations following abrupt control deflections were heavily damped. Recommendations were made for modifications to increase aileron effectiveness at low speeds without affecting lateral control at high speeds by increasing available deflection and modifying spring-tab arrangement.
    Keywords: Aerodynamics
    Type: NACA-WR-L-149 , NACA-ARR-L5C23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-06-28
    Description: Critical Mach number as function of lift coefficient is determined for certain moderately thick NACA low-drag airfoils. Results, given graphically, included calculations on same airfoil sections with plain flaps for small flap deflections. Curves indicate optimum critical conditions for airfoils with flaps in such form that they can be compared with corresponding results for zero flap deflections. Plain flaps increase life-coefficient range for which critical Mach number is in region of high values characteristic of low-drag airfoils.
    Keywords: Aerodynamics
    Type: NACA-WR-W-2 , NACA-ACR-6A30
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2019-06-28
    Description: Force and flight tests were performance on an all-wing model with windmilling propellers. Tests were conducted with deflected and retracted flaps, with and without auxiliary vertical tail surfaces, and with different centers of gravity and trim coefficients. Results indicate serious reduction of stick-fixed longitudinal stability because of wing-tip stalling at high lift coefficient. Directional stability without vertical tail is undesirably low. Low effective dihedral should be maintained. Elevator and rudder control system is satisfactory.
    Keywords: Aerodynamics
    Type: NACA-WR-L-50 , NACA-ACR-L5A13
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-06-28
    Description: Propellers with trailing-edge extensions were studied to determine aerodynamic characteristics. Trailing-edge extension increased power absorbed by propeller with little loss in efficiency. Power coefficient for maximum efficiency was greater for 20% camber type extension than for 20% straight type extension over range of advance ratio of 1.0 to 2.5 although camber type was less efficient. Efficiency was about the same for cruising and high-speed at a high power coefficient for propeller with extension.
    Keywords: Aerodynamics
    Type: NACA-WR-L-582
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-06-28
    Description: Investigations were made to determine the cowling and cooling characteristics of the Ranger V-770-8 engine installation in an observation seaplane. Final cowl configurations possessed ample engine and oil-cooler pressure drops for cooling in the critical normal-power climb condition with any of the three baffle configurations tested. The indicated critical Mach number of the cowling was found to be 0.70 as determined by the pressure on the lower lip of the inlet.
    Keywords: Aerodynamics
    Type: NACA-WR-L-562 , NACA-MR-L5I12b
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-06-28
    Description: An analysis was made to determine the effect of rolling pull-out maneuvers on the wing and aileron loads of a typical fighter airplane, the P-47B. The results obtained indicate that higher loads are imposed upon wings and ailerons because of the rolling pull-out maneuver, than would be obtained by application of the loading requirements to which the airplane was designed. An increase of 102 lb or 15 percent of wing weight would be required if the wing were designed for rolling pull-out maneuver. It was also determined that the requirements by which the aileron was originally designed were inadequate.
    Keywords: Aerodynamics
    Type: NACA-WR-L-270
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-06-28
    Description: The aerodynamic forces on an oscillating airfoil or airfoil-aileron combination of three independent degrees of freedom have been determined. The problem resolves itself into the solution of certain definite integrals, which have been identified as Bessel functions of the first and second kind and of zero and first order. The theory, being based on potential flow and the Kutta condition, is fundamentally equivalent to the conventional wing-section theory relating to the steady case. The air forces being known, the mechanism of aerodynamic instability has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been analyzed in detail. An exact solution, involving potential flow and the adoption of the Kutta condition, has been arrived at. The solution is of a simple form and is expressed by means of an auxiliary parameter K.
    Keywords: Aerodynamics
    Type: NACA-TR-496
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-06-28
    Description: A two-blade rotor having a diameter of 4 feet and a solidity of 0.037 was subjected to sharp-edge vertical gusts while being operated at various forward speeds to study the effect of the gusts on the blade periodic bending moments and flapping angles. Variables studied included gust velocity, collective pitch angle, flapping hinge offset, and tip-speed ratio. Dimensionless coefficients are derived for the periodic components of the incremental changes in blade flapping angles and bending moments which arise when a rotor blade penetrates a sharp-edge gust. Mental changes in both the flapping angles and bending moments are essentially proportional to gust velocity, and the coefficients express the ratio of these increments to gust velccity. The results show that the flapping coefficient usually increases with an increase in collective pitch angle, is generally dependent on tip-speed ratio, and is essentially independent of the amount of flapping hinge offset. The bending-moment coefficient is also dependent on collective pitch angle and tip-speed ratio. Expected reductions in bending moments are realized by the use of flapping hinges, and further reductions in bending moments are achieved as the amount of flapping hinge offset is increased. Comparison of the experimental results of this investigation with limited available theoretical results shows substantial agreement but indicates that the assumption that the response of the rotor to a sharp-edge gust is independent of the collective pitch angle prior to gust entry is probably inadequate.
    Keywords: Aerodynamics
    Type: NASA-TN-D-31
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-06-15
    Description: Boundary-layer transition in hypersonic flows over a straight cone can be predicted using measured freestream spectra, receptivity, and threshold values for the wall pressure fluctuations at the transition onset points. Simulations are performed for hypersonic boundary-layer flows over a 7-degree half-angle straight cone with varying bluntness at a freestream Mach number of 10. The steady and the unsteady flow fields are obtained by solving the two-dimensional Navier-Stokes equations in axisymmetric coordinates using a 5th-order accurate weighted essentially nonoscillatory (WENO) scheme for space discretization and using a third-order total-variation-diminishing (TVD) Runge-Kutta scheme for time integration. The calculated N-factors at the transition onset location increase gradually with increasing unit Reynolds numbers for flow over a sharp cone and remain almost the same for flow over a blunt cone. The receptivity coefficient increases slightly with increasing unit Reynolds numbers. They are on the order of 4 for a sharp cone and are on the order of 1 for a blunt cone. The location of transition onset predicted from the simulation including the freestream spectrum, receptivity, and the linear and the weakly nonlinear evolutions yields a solution close to the measured onset location for the sharp cone. The simulations overpredict transition onset by about twenty percent for the blunt cone.
    Keywords: Aerodynamics
    Type: NF1676L-26446 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 56; 1; 193-208
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-08-01
    Description: Bio-inspired artificial hair sensors have the potential to detect aerodynamic flow features such as stagnation point, flow separation, and flow reattachment that could be beneficial for ight control and performance enhancement of aircraft. In this work, elastic microfence structures were tested on a at-plate setup. The microfences were fabricated from a two-part silicone molded against a template patterned by laser ablation. The response of the microfences to different freestream velocities and to flow reversal at the sensor were recorded via an optical microscope.
    Keywords: Aerodynamics
    Type: NF1676L-28893 , (ISSN 0957-0233) (e-ISSN 1361-6501)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-26
    Description: Optimal initial conditions for transient growth in a two-dimensional boundary layer flow correspond to stationary, counter-rotating vortices that subsequently develop into streamwise elongated streaks, which are characterized by an alternating pattern of low and high streamwise velocity. For incompressible flows, previous studies have shown that boundary layer modulation due to streaks below a threshold amplitude level can stabilize the Tollmien-Schlichting instability waves, resulting in a delay in the onset of laminar-turbulent transition. In the supersonic regime, the linearly, most-amplified waves become three-dimensional, corresponding to oblique, first-mode waves. This change in the character of dominant instabilities leads to an important change in the transition process, which is now dominated by oblique breakdown via nonlinear interactions between pairs of first-mode waves that propagate at equal but opposite angles with respect to the free stream. Because the oblique breakdown process is characterized by a rapid amplification of stationary streamwise streaks, artificial excitation of such streaks may be expected to promote transition in a supersonic boundary layer. Indeed, suppression of those streaks has been shown to delay the onset of transition in prior literature. Consistent with those findings, the present study shows that optimally growing stationary streaks indeed destabilize the first-mode waves, but only when the spanwise wavelength of the instability waves is equal to or smaller than twice the streak spacing. Transition in a benign disturbance environment typically involves first-mode waves with significantly longer spanwise wavelengths, and hence, these waves are stabilized by the optimal growth streaks. Thus, as long as the amplification factors for the destabilized, short wavelength instability waves remain below the threshold level for transition, a significant net stabilization is achieved, yielding a transition delay that is comparable to the length of the laminar region in the uncontrolled case.
    Keywords: Aerodynamics
    Type: NF1676L-26301 , Journal of Fluid Mechanics (ISSN 0022-1120) (e-ISSN 1469-7645); 831; 524-553
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-06-22
    Description: A hypersonic flowfield model that treats electronic levels of the dominant afterbody radiator, N, as individual species is presented. This model allows electron-ion recombination rate and two-temperature modeling improvements, the latter which are shown to decrease afterbody radiative heating by up to 30%. This increase is primarily due to the addition of the electron-impact-excitation energy-exchange term to the energy equation governing the vibrational-electronic-electron temperature. This model also allows the validity of the often applied quasi-steady state (QSS) approximation to be assessed. The QSS approximation is shown to fail throughout most of the afterbody region for lower electronic states, although this impacts the radiative intensity reaching the surface by less than 15%. By computing the electronic state populations of N within the flowfield solver, instead of through the QSS approximation in the radiation solver, the coupling of nonlocal radiative transition rates to the species continuity equations becomes feasible. Implementation of this higher- fidelity level of coupling between the flowfield and radiation solvers is shown to increase the afterbody radiation by up to 50% relative to the conventional model.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-28417 , Physical Review Fluids (e-ISSN 2469-990X); 3; 1; 013402
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-06-22
    Description: Project Link! is a NASA-led effort to study the feasibility of multi-aircraft aerial docking systems. In these systems, a group of vehicles physically link to each other during flight to form a larger ensemble vehicle with increased aerodynamic performance and mission utility. This paper presents a dynamic model and control architecture for a system of fixed-wing vehicles with this capability. The dynamic model consists of the 6 degree-of-freedom fixed-wing aircraft equations of motion, a spring-damper-magnet system to represent the linkage force between constituent vehicles, and the NASA-Burnham-Hallock wingtip vortex model to represent the close-proximity aerodynamic interactions between constituents before the linking occurs. The control architecture consists of a guidance algorithm to autonomously drive the constituents towards their linking partners and an inner-loop angular rate controller. A simulation was constructed from the model, and the flight dynamic modes of the linked system were compared to the individual vehicles. Simulation results for both before and after linking are presented.
    Keywords: Aerodynamics
    Type: NF1676L-28271 , Journal of Guidance, Control, and Dynamics (ISSN 0731-5090) (e-ISSN 1533-3884); 41; 11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-06-21
    Description: Structural optimization with a flutter constraint for a vehicle designed to fly in the transonic regime is a particularly difficult task. In this speed range, the flutter boundary is very sensitive to aerodynamic nonlinearities, typically requiring high-fidelity Navier-Stokes simulations. However, the repeated application of unsteady computational fluid dynamics to guide an aeroelastic optimization process is very computationally expensive. This expense has motivated the development of methods that incorporate aspects of the aerodynamic nonlinearity, classical tools of flutter analysis, and more recent methods of optimization. While it is possible to use doublet lattice method aerodynamics, this paper focuses on the use of an unsteady high-fidelity aerodynamic reduced order model combined with successive transformations that allows for an economical way of utilizing high-fidelity aerodynamics in the optimization process. This approach is applied to the common research model wing structural design. The high-fidelity aerodynamics produces a heavier wing than that optimized with doublet lattice aerodynamics. It is found that the optimized lower wing skin thickness distribution using high-fidelity aerodynamics differs significantly from that using doublet lattice aerodynamics.
    Keywords: Aerodynamics
    Type: NF1676L-27633 , Journal of Aircraft (ISSN 0021-8669) (e-ISSN 1533-3868); 55; 4; 1522-1530
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-11
    Description: Femtosecond laser electronic excitation tagging (FLEET) velocimetry was used to study the flowfield around a symmetric, transonic airfoil in the NASA Langley 0.3-m TCT facility. A nominal Mach number of 0.85 was investigated with a total pressure of 125 kPa and total temperature of 280 K. Two-components of velocity were measured along vertical profiles at different locations above, below, and aft of the airfoil at angles of attack of 0, 3.5, and 7. Velocity profiles within the wake showed sufficient accuracy, precision, and sensitivity to resolve both the mean and fluctuating velocities and general flow physics such as shear layer growth. Evidence of flow separation is found at high angles of attack. Velocity measurements were assessed for their accuracy, precision, dynamic range, spatial resolution, and overall measurement uncertainty as they relate to the present experiments. Measurement precisions as low as 1 m/s were observed, while the velocity dynamic range was found to be nearly a factor of 500. The spatial resolution of between 1 mm and 5 mm was found to be primarily limited by the FLEET spot size and advection of the flow. Overall measurement uncertainties ranged from 3 to 4 percent.
    Keywords: Aerodynamics
    Type: NF1676L-26518 , AIAA Journal (ISSN 0001-1452) (e-ISSN 1533-385X); 55; 12; 4142-4154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-08-01
    Description: The InSight spacecraft was proposed to be a build-to-print copy of the Phoenix vehicle due to the knowledge that the lander payload would be similar and the trajectory would be similar. However, the InSight aerothermal analysts, based on tests performed in CO2 during the Mars Science Laboratory mission (MSL) and completion of Russian databases, considered radiative heat flux to the aftbody from the wake for the first time for a US Mars mission. The combined convective and radiative heat flux was used to determine if the as-flown Phoenix thermal protection system (TPS) design would be sufficient for InSight. All analyses showed that the design would be adequate. Once the InSight lander was successfully delivered to Mars on November 26, 2018, work began to reconstruct the atmosphere and trajectory in order to evaluate the aerothermal environments that were actually encountered by the spacecraft and to compare them to the design environments.The best estimated trajectory (BET) reconstructed for the InSight atmospheric entry fell between the two trajectories considered for the design, when looking at the velocity versus altitude values. The maximum heat rate design trajectory (MHR) flew at a higher velocity and the maximum heat load design trajectory (MHL) flew at a lower velocity than the BET. For TPS sizing, the MHL trajectory drove the design. Reconstruction has shown that the BET flew for a shorter time than either of the design environments, hence total heat load on the vehicle should have been less than used in design. Utilizing the BET, both DPLR and LAURA were first run to analyze the convective heating on the vehicle with no angle of attack. Both codes were run with axisymmetric, laminar flow in radiative equilibrium and vibrational non-equilibrium with a surface emissivity of 0.8. Eight species Mitcheltree chemistry was assumed with CO2, CO, N2, O2, NO, C, N, and O. Both codes agreed within 1% on the forebody and had the expected differences on the aftbody. The NEQAIR and HARA codes were used to analyze the radiative heating on the vehicle using full spherical ray-tracing. The codes agreed within 5% on most aftbody points of interest.The LAURA code was then used to evaluate the conditions at angle of attack at the peak heating and peak pressure times. Boundary layer properties were investigated to confirm that the flow over the forebody was laminar for the flight.Comparisons of the aerothermal heating determined for the reconstructed trajectory to the design trajectories showed that the as-flown conditions were less severe than design
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN70187 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-08-01
    Description: In 2012 during the entry, descent, and landing of the Mars Science Laboratory (MSL), the MSL Entry, Descent, and Landing Instrumentation (MEDLI) sensor suite was collecting in-flight heatshield pressure and temperature data. The data collected by the MEDLI instruments has since been used for reconstruction of vehicle aerodynamics, atmospheric conditions, aerothermal heating, and Thermal Protection System (TPS) performance as well as material response model validation and refinement. The Mars Entry, Descent, and Landing Instrumentation 2 (MEDLI2) sensor suite for the Mars 2020 heatshield and backshell is being designed to expand on the measurements and knowledge gained from MEDLI. Similar to MEDLI, MEDLI2 will measure the pressure and temperature of the heatshield. MEDLI2 will additionally measure the temperature, pressure, total heat flux, and radiative heat flux on the backshell.Since the backshell instrumentation is new to MEDLI2, Do No Harm (DNH) testing was conducted on instrumented backshell TPS (SLA-561V) panels. The panels consisted of four pressure port holes, one Mars Entry Atmospheric Data System (MEADS) pressure port plug, one MEDLI2 Integrated Sensor Plug (MISP) thermal plug, and one heat flux sensor. DNH testing was conducted to ensure the performance of the TPS was not degraded due to sensor integration and to characterize any TPS performance changes. The testing consisted of environmental testing vibration, shock, thermal vacuum (TVAC) cycling and bounding aerothermal (arc jet) testing. During arc jet testing, the heat flux sensors embedded in the SLA-561V panels exhibited an unexpected temporary reduction in the heat flux sensor temperature and response. After review of the test results, it was determined that this unexpected response was confined to the two heat flux sensors that experienced the greatest thermal shock condition. This condition consisted of a liquid nitrogen (LN2) bath that induced temperatures of approximately -190C, and then a transition (thermal shock) to an arc jet test at a heat rate of approximately 21 W/cm2. Both heat flux sensors that were exposed to this thermal shock experienced a blister in the thermal coating during the arc jet test.Two heat flux sensor thermal shock test series were performed to investigate the cause of the blistering and subsequent energy release. In these tests, the heat flux sensor was first cold soaked in either a dry ice or LN2 bath to induce temperatures of approximately -78C or -190C, respectively. Then the sensors were thermally shocked using two propane torches with a heat rate of either approximately 8 W/cm2 or 21 W/cm2. The key findings indicated that there is a correlation between thermal shock and the blistering observed in the DNH test series, and that the cause appeared to be rooted in the heat flux sensor epoxy that encapsulates the sensor thermopile.Since the heat flux sensors are required to measure heat fluxes up to 15 W/cm2 during the Mars 2020 entry, a third test series was designed to determine if blistering is an issue at this maximum expected flight heat flux. Results from all three thermal shock test series and a discussion about whether or not blistering of the heat flux sensor thermal coating could be an issue for the Mars 2020 mission will be presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN70038 , International Planetary Probe Workshop (IPPW) 2019; Jul 08, 2019 - Jul 12, 2019; Oxford; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-20
    Description: Seeker is an automated extravehicular free-flying inspector CubeSat designed and built in-house at the Johnson Space Center (JSC). As a Class 1E project funded by the International Space Station (ISS) Program, Seeker had a streamlined process to flight certification, but the vehicle had to be designed, developed, tested, and delivered within approximately one year after authority to pro-ceed (ATP) and within a $1.8 million budget. These constraints necessitated an expedited Guidance, Navigation, and Control (GNC) development schedule, development began with a navigation sensor trade study using Linear Covariance (LinCov) analysis and a rapid sensor downselection process, resulting in the use of commercial off-the-shelf (COTS) sensors which could be procured quickly and subjected to in-house environmental testing to qualify them for flight. A neural network was used to enable a COTS camera to provide bearing measurements for visual navigation. The GNC flight software (FSW) algorithms utilized lean development practices and leveraged the Core Flight Software (CFS) architecture to rapidly develop the GNC system, tune the system parameters, and verify performance in simulation. This pace was anchored by several Hardware-Software Integration (HSI) milestones, which forced the Seeker GNC team to develop the interfaces both between hardware and software and between the GNC domains early in the project and to enable a timely delivery.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS 19-065 , JSC-E-DAA-TN64897 , AAS Guidance and Control Conference; Feb 01, 2019 - Feb 06, 2019; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN48936 , The International Conference for High Performance Computing, Networking, Storage and Analysis (SC17); Nov 12, 2017 - Nov 17, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-20
    Description: The Orion Crew Module is a component of NASAs Multi-Purpose Crew Vehicle that will be used for future missions to low Earth orbit and beyond. Ten water impact tests of the Orion Ground Test Article (GTA) were conducted at the Hydro Impact Basin at NASA Langley Research Center in 2016 and were designed to provide data for the validation of the LS-DYNA model used to determine the Crew Module structural loads during ocean splashdown, and the determination of an acceptable Model Uncertainty Factor to apply to simulation results used to drive the design. Post-test data obtained from the onboard sensors were used to reconstruct the GTA trajectories both before and after water impact. Results from one vertical test and two swing tests are presented and compared to videos taken for each test.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NF1676L-27423 , AIAA SciTech 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-06-27
    Description: An experimental investigation has been made in the Langley stability tunnel to determine the aerodynamic characteristics of the Army Chemical Corps model E-112 bomblets with span-chord ratio of 2:1. A detailed analysis has not been made; however, the results showed that all the models were spirally unstable and that a large gap between the model tips and end plates tended to reduce the instability.
    Keywords: Aerodynamics
    Type: NACA-RM-SL56L20
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-19
    Description: Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling for two locations (500W ea.), one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M16-5396 , American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-19
    Description: The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M16-5594 , AIAA Young Professionals Symposium; Oct 20, 2016 - Oct 21, 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-19
    Description: The NASA Engineering and Safety Center (NESC) has sponsored a Pathfinder Study to investigate how Model Based Systems Engineering (MBSE) and Model Based Engineering (MBE) techniques can be applied by NASA spacecraft development projects. The objectives of this Pathfinder Study included analyzing both the products of the modeling activity, as well as the process and tool chain through which the spacecraft design activities are executed. Several aspects of MBSE methodology and process were explored. Adoption and consistent use of the MBSE methodology within an existing development environment can be difficult. The Pathfinder Team evaluated the possibility that an "MBSE Template" could be developed as both a teaching tool as well as a baseline from which future NASA projects could leverage. Elements of this template include spacecraft system component libraries, data dictionaries and ontology specifications, as well as software services that do work on the models themselves. The Pathfinder Study also evaluated the tool chain aspects of development. Two chains were considered: 1. The Development tool chain, through which SysML model development was performed and controlled, and 2. The Analysis tool chain, through which both static and dynamic system analysis is performed. Of particular interest was the ability to exchange data between SysML and other engineering tools such as CAD and Dynamic Simulation tools. For this study, the team selected a Mars Lander vehicle as the element to be designed. The paper will discuss what system models were developed, how data was captured and exchanged, and what analyses were conducted.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-36119 , AIAA Space 2016 Conference; Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-19
    Description: Orbital debris in the millimeter size range can pose a hazard to current and planned spacecraft due to the high relative impact speeds in Earth orbit. Fortunately, orbital debris has a relatively short life at lower altitudes due to atmospheric effects; however, at higher altitudes orbital debris can survive much longer and has resulted in a band of high flux around 700 to 1,500 km above the surface of the Earth. While large orbital debris objects are tracked via ground based observation, little information can be gathered about small particles except by returned surfaces, which until the Orion Exploration Flight Test number one (EFT-1), has only been possible for lower altitudes (400 to 500 km). The EFT-1 crew module backshell, which used a porous, ceramic tile system with surface coatings, has been inspected post-flight for potential micrometeoroid and orbital debris (MMOD) damage. This paper describes the pre- and post-flight activities of inspection, identification and analysis of six candidate MMOD impact craters from the EFT-1 mission.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-35493 , AIAA Annual Technical Symposium; May 06, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-19
    Description: Existing DoD and NASA satellite breakup models are based on a key laboratory-based test, Satellite Orbital debris Characterization Impact Test (SOCIT), which has supported many applications and matched on-orbit events involving older satellite designs reasonably well over the years. In order to update and improve the break-up models and the NASA Size Estimation Model (SEM) for events involving more modern satellite designs, the NASA Orbital Debris Program Office has worked in collaboration with the University of Florida to replicate a hypervelocity impact using a satellite built with modern-day spacecraft materials and construction techniques. The spacecraft, called DebriSat, was intended to be a representative of modern LEO satellites and all major designs decisions were reviewed and approved by subject matter experts at Aerospace Corporation. DebriSat is composed of 7 major subsystems including attitude determination and control system (ADCS), command and data handling (C&DH), electrical power system (EPS), payload, propulsion, telemetry tracking and command (TT&C), and thermal management. To reduce cost, most components are emulated based on existing design of flight hardware and fabricated with the same materials. All fragments down to 2 mm is size will be characterized via material, size, shape, bulk density, and the associated data will be stored in a database for multiple users to access. Laboratory radar and optical measurements will be performed on a subset of fragments to provide a better understanding of the data products from orbital debris acquired from ground-based radars and telescopes. The resulting data analysis from DebriSat will be used to update break-up models and develop the first optical SEM in conjunction with updates into the current NASA SEM. The characterization of the fragmentation will be discussed in the subsequent presentation.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-34253 , Non-Resolves Space Object Identification Workshop; Sep 21, 2015 - Sep 22, 2015; Maui, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-07-19
    Description: The Exploration Flight Test 1 (EFT-1) was the first flight of the Orion Multi-Purpose Crew Vehicle (MPCV). The flight was launched on December 5, 2014, by a Delta IV Heavy rocket and lasted 4.5 hours. The EFT-1 trajectory involved one low altitude orbit and one high altitude orbit with an apogee of almost 6000 km. As a result of this particular flight profile, the Orion MPCV passed through intense regions of trapped protons and electron belts. In support of the radiation measurements aboard the EFT-1, the Space Radiation Analysis Group (SRAG) provided a Battery-operated Independent Radiation Detector (BIRD) based on Timepix radiation monitoring technology similar to that employed by the ISS Radiation Environmental Monitors (REM). In addition, SRAG provided a suite of optically and thermally stimulated luminescence detectors, with 2 Radiation Area Monitor (RAM) units collocated with the BIRD instrument for comparison purposes, and 6 RAM units distributed at different shielding configurations within the Orion MPCV. A summary of the EFT-1 Radiation Area Monitors (RAM) mission dose results obtained from measurements performed in the Space Radiation Dosimetry Laboratory at the NASA Johnson Space Center will be presented. Each RAM included LiF:Mg,Ti (TLD-100), (6)LiF:Mg,Ti (TLD-600), (7)LiF:Mg,Ti (TLD-700), Al2O3:C (Luxel trademark), and CaF2:Tm (TLD-300). The RAM mission dose values will be compared with the BIRD instrument total mission dose. In addition, a similar comparison will be shown for the ISS environment by comparing the ISS RAM data with data from the six Timepix-based REM units deployed on ISS as part of the NASA REM Technology Demonstration.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-34218 , Workshop on Radiation Monitoring for the International Space Station; Sep 08, 2015 - Sep 10, 2015; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-07-19
    Description: Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M15-4255 , International Symposium on Materials in the Space Environment (ISMSE); Jun 22, 2015 - Jun 26, 2015; Pau; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: How crews get into or out of their ascent vehicle has profound implications for Mars surface architecture. Extravehicular Activity (EVA) hatches and Airlocks have the benefit of relatively low mass and high Technology Readiness Level (TRL), but waste consumables with a volume depressurization for every ingress/egress. Perhaps the biggest drawback to EVA hatches or Airlocks is that they make it difficult to keep Martian dust from being tracked back into the ascent vehicle, in violation of planetary protection protocols. Suit ports offer the promise of dust mitigation by keeping dusty suits outside the cabin, but require significant cabin real estate, are relatively high mass, and current operational concepts still require an EVA hatch to get the suits outside for the first EVA, and back inside after the final EVA. This is primarily because current designs don't provide enough structural support to protect the suits from ascent/descent loads or potential thruster plume impingement. For architectures involving more than one surface element-such as an ascent vehicle and a rover or surface habitat-a retractable tunnel is an attractive option. By pushing spacesuit don/doff and EVA operations to an element that remains on the surface, ascended vehicle mass and dust can be minimized. What's more, retractable tunnels provide operational flexibility by allowing surface assets to be re-configured or built up over time. Retractable tunnel functional requirements and design concepts being developed as part of the National Aeronautics and Space Administration's (NASA) Evolvable Mars Campaign (EMC) work will add a new ingress/egress option to the surface architecture trade space.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-33760 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-20
    Description: Space debris poses a major risk to spacecraft. In low earth orbit, impact velocities can be 10 - 11 km/s and as high as 15 km/s. For debris shield design, it would be desirable to be able to launch projectiles of known shape and mass to these velocities. The design of the proposed 10 - 11 km/sec gun uses, as a starting point, the Ames 1.28/0.22 two stage gun, which has achieved muzzle velocities of 10 - 11.3 km/sec. That gun is scaled up to a 0.3125 launch tube diameter. The gun is then optimized with respect to maximum pressures by varying the pump tube length to diameter ratio (L/D), the piston mass and the hydrogen pressure. A pump tube L/D of 36.4 is selected giving the best overall performance. Piezometric ratios for the optimized guns are found to be ~2.3, much more favorable than for more traditional two stage light gas guns, which range from 4 to 6. (The piezometric ratio for a gun is defined as the maximum projectile base pressure divided by the constant projectile base pressure which, acting over the entire barrel length, would produce the same muzzle velocity.) The maximum powder chamber pressures are 20 to 30 ksi. To reduce maximum pressures, the desirable range of the included angle of the cone of the high pressure coupling is found to be 7.3 to 14.6 degrees. Lowering the break valve rupture pressure is found to lower the maximum projectile base pressure, but to raise the maximum gun pressure. For the optimized gun with a pump tube L/D of 36.4, increasing the muzzle velocity by decreasing the projectile mass and increasing the powder loads is studied. It appears that saboted spheres could be launched to 10.25 and possibly as high as 10.8 km/sec, and that disc-like plastic models could be launched to 11.05 km/s. The use of a tantalum liner to greatly reduce bore erosion and increase muzzle velocity is discussed. With a tantalum liner, CFD code calculations predict muzzle velocities as high as 12 to 13 km/s.
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN35142 , Aeroballistic Range Association Meeting; Oct 03, 2016 - Oct 06, 2016; Toledo; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-20
    Description: Distributed Spacecraft Missions (DSMs) are gaining momentum in their application to Earth Observation (EO) missions owing to their unique ability to increase observation sampling in spatial, spectral, angular and temporal dimensions simultaneously. DSM design includes a much larger number of variables than its monolithic counterpart, therefore, Model-Based Systems Engineering (MBSE) has been often used for preliminary mission concept designs, to understand the trade-offs and interdependencies among the variables. MBSE models are complex because the various objectives a DSM is expected to achieve are almost always conflicting, non-linear and rarely analytical. NASA Goddard Space Flight Center (GSFC) is developing a pre-Phase A tool called Tradespace Analysis Tool for Constellations (TAT-C) to initiate constellation mission design. The tool will allow users to explore the tradespace between various performance, cost and risk metrics (as a function of their science mission) and select Pareto optimal architectures that meet their requirements. This paper will describe the different types of constellations that TAT-Cs Tradespace Search Iterator is capable of enumerating (homogeneous Walker, heterogeneous Walker, precessing type, ad-hoc) and their impact on key performance metrics such as revisit statistics, time to global access and coverage. We will also discuss the ability to simulate phased deployment of the given constellations, as a function of launch availabilities and/or vehicle capability, and show the impact on performance. All performance metrics are calculated by the Data Reduction and Metric Computation module within TAT-C, which issues specific requests and processes results from the Orbit and Coverage module. Our TSI is also capable of generating tradespaces for downlinking imaging data from the constellation, based on permutations of available ground station networks - known (default) or customized (by the user). We will show the impact of changing ground station options for any given constellation, on data latency and required communication bandwidth, which in turn determines the responsiveness of the space system.
    Keywords: Spacecraft Design, Testing and Performance
    Type: GSFC-E-DAA-TN65923 , International Astronautical Congress (IAC); Sep 25, 2017 - Sep 29, 2017; Adelaide; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-20
    Description: This work is a simulation technology demonstrator, of sweep jets used to suppress boundary layer separation and increase maximum achievable load coefficients. A sweep jet is a discrete Coanda jet that oscillates in the plane parallel to an aerodynamic surface. It injects mass and momentum in the approximate stream wise direction. It also generate turbulent eddies at the oscillation frequency, which are typically large relative to boundary layer turbulence, and which augmenting mixing across the boundary layer to attack flow separation. Simulations of a fluidic oscillator, the sweep jet emerging from the oscillator, and the suppression of boundary layer separation by an array of sweep jets are performed. Simulation results are compared to data from a dedicated CFD validation experiment of a single oscillator and its sweep jet, and from a study of a full-scale Boeing 757 vertical tail augmented with an array of sweep jets.2, 20 A critical step in the work is the development of realistic time-dependent sweep-jet in flow boundary conditions, derived from the results of the single-oscillator simulations, which create the sweep jets in the full-tail simulations. Simulations were performed using the Over flow CFD solver, with high-order spatial discretization and a range of turbulence modeling. Good results were obtained for all flows simulated, when suitable turbulence modeling was used.
    Keywords: Aerodynamics
    Type: ARC-E-DAA-TN28318 , 2016 AIAA Science and Technology Forum and Exposition; Jan 04, 2016 - Jan 08, 2016; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: ARC-E-DAA-TN26416 , Composites and Advanced Materials Expo (CAMX); Oct 26, 2015 - Oct 29, 2015; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-19
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M19-7384 , International Association for the Advancement of Space Safety (IAASS) Conference; May 15, 2019 - May 17, 2019; El Segundo, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-20
    Description: The existing database of transition measurements in hypersonic ground facilities has established that the onset of boundary layer transition over a circular cone at zero angle of attack shifts downstream as the nosetip bluntness is increased with respect to a sharp cone. However, this trend is reversed at suciently large values of the nosetip Reynolds number, so that the transition onset location eventually moves upstream with a further increase in nosetip bluntness. This transition reversal phenomenon, which cannot be ex- plained on the basis of linear stability theory, was the focus of a collaborative investigation under the NATO STO group AVT-240 on Hypersonic Boundary-Layer Transition Predic- tion. The current paper provides an overview of that e ort, which included wind tunnel measurements in three di erent facilities and theoretical analysis related to modal and nonmodal ampli cation of boundary layer disturbances. Because neither rst and second- mode waves nor entropy-layer instabilities are found to be substantially ampli ed to ini- tiate transition at large bluntness values, transient (i.e., nonmodal) disturbance growth has been investigated as the potential basis for a physics-based model for the transition reversal phenomenon. Results of the transient growth analysis indicate that disturbances that are initiated within the nosetip or in the vicinity of the juncture between the nosetip and the frustum can undergo relatively signi cant nonmodal ampli cation and that the maximum energy gain increases nonlinearly with the nose radius of the cone. This nding does not provide a de nitive link between transient growth and the onset of transition, but it is qualitatively consistent with the experimental observations that frustum transition during the reversal regime was highly sensitive to wall roughness, and furthermore, was dominated by disturbances that originated near the nosetip.
    Keywords: Aerodynamics
    Type: NF1676L-27370 , AIAA SciTech 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: M18-7132
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...