ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phytoplankton  (4)
  • Remote sensing  (4)
  • Statistical investigations  (4)
  • Elsevier  (12)
  • 2015-2019  (8)
  • 1995-1999  (4)
  • 1950-1954
Collection
Years
Year
  • 1
    Publication Date: 2021-06-15
    Description: Extreme and inaccessible environments are a new frontier that unmanned and remotely operated ve-hicles can today safely access and monitor. The Lusi mud eruption (NE Java Island, Indonesia) representsone of these harsh environments that are totally unreachable with traditional techniques. Here boilingmud is constantly spewed tens of meters in height and tall gas clouds surround the 100 m wide activecrater. The crater is surrounded by a ~600 m diameter circular zone of hot mud that prevents anyapproach to investigate and sample the eruption site. In order to access this active crater we designedand assembled a multipurpose drone.The Lusi drone is equipped with numerous airborne devices suitable for use on board of other mul-ticopters. During the missions, three cameras can complete 1) video survey, 2) high resolution photo-grammetry of desired and preselected polygons, and 3) thermal photogrammetry surveys with infra-redcamera to locate hotfluids seepage areas or faulted zones. Crater sampling and monitoring operationscan be pre-planned with aflight software, and the pilot is required only for take-off and landing. A winchallows the deployment of gas, mud and water samplers and contact thermometers to be operated withno risk for the aircraft. During the winch operations (that can be performed automatically), the aircrafthovers at a safety height until the tasks controlled by the winch-embedded processor are completed. Thedrone is also equipped with GPS-connected CO2and CH4sensors. Gridded surveys using these devicesallowed obtaining 2D maps of the concentration and distribution of various gasses over the area coveredby theflight path.The device is solid, stable even with significant wind, affordable, and easy to transport. The Lusi dronesuccessfully operated during several expeditions at the ongoing active Lusi eruption site and proved to bean excellent tool to study other harsh or unreachable sites, where operations with more conventionalmethods are too expensive, dangerous or simply impossible
    Description: LUSI LAB project, PI A. Mazzini; esearch Council of Norway through itsCenters of Excellence funding scheme, Project Number 223272; BPLS (Badan Penanggulangan Lumpur Sidoarjo, Sidoarjo Mudflow Management Agency)
    Description: Published
    Description: 26-37
    Description: 2IT. Laboratori sperimentali e analitici
    Description: JCR Journal
    Keywords: Lusi mud eruption ; Drone-UAV ; Multirotor ; Remote sampling ; Remote sensing ; Indonesia ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-19
    Description: Syneruptive gas flux time series can, in principle, be retrieved from satellite maps of SO2 collected during and immediately after volcanic eruptions, and used to gain insights into the volcanic processes which drive the volcanic activity. Determination of the age and height of volcanic plumes are key prerequisites for such calculations. However, these parameters are challenging to constrain using satellite-based techniques. Here, we use imagery from OMI and GOME-2 satellite sensors and a novel numerical procedure based on back-trajectory analysis to calculate plume height as a function of position at the satellite measurement time together with plume injection height and time at a volcanic vent location. We applied this new procedure to three Etna eruptions (12 August 2011, 18 March 2012 and 12 April 2013) and compared our results with independent satellite and ground-based estimations. We also compare our injection height time-series with measurements of volcanic tremor, which reflects the eruption intensity, showing a good match between these two datasets. Our results are a milestone in progressing towards reliable determination of gas flux data from satellite-derived SO2 maps during volcanic eruptions, which would be of great value for operational management of explosive eruptions.
    Description: 1) European Research Council under the European Union's Seventh Framework Programme (FP/2.007-2013)/ERC Grant Agreement no. 279802, project 283 CO2Volc. 2) MEDiterranean SUpersite Volcanoes 280 (MED-SUV) WP 3.3.3
    Description: Published
    Description: 79-91
    Description: 5V. Dinamica dei processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Volcanic SO2 ; Trajectory modelling ; Remote sensing ; Volcanic tremor ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing of Environment 135 (2013): 77-91, doi:10.1016/j.rse.2013.03.025.
    Description: Photosynthetic production of organic matter by microscopic oceanic phytoplankton fuels ocean ecosystems and contributes roughly half of the Earth's net primary production. For 13 years, the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) mission provided the first consistent, synoptic observations of global ocean ecosystems. Changes in the surface chlorophyll concentration, the primary biological property retrieved from SeaWiFS, have traditionally been used as a metric for phytoplankton abundance and its distribution largely reflects patterns in vertical nutrient transport. On regional to global scales, chlorophyll concentrations covary with sea surface temperature (SST) because SST changes reflect light and nutrient conditions. However, the ocean may be too complex to be well characterized using a single index such as the chlorophyll concentration. A semi-analytical bio-optical algorithm is used to help interpret regional to global SeaWiFS chlorophyll observations from using three independent, well-validated ocean color data products; the chlorophyll a concentration, absorption by CDM and particulate backscattering. First, we show that observed long-term, global-scale trends in standard chlorophyll retrievals are likely compromised by coincident changes in CDM. Second, we partition the chlorophyll signal into a component due to phytoplankton biomass changes and a component caused by physiological adjustments in intracellular chlorophyll concentrations to changes in mixed layer light levels. We show that biomass changes dominate chlorophyll signals for the high latitude seas and where persistent vertical upwelling is known to occur, while physiological processes dominate chlorophyll variability over much of the tropical and subtropical oceans. The SeaWiFS data set demonstrates complexity in the interpretation of changes in regional to global phytoplankton distributions and illustrates limitations for the assessment of phytoplankton dynamics using chlorophyll retrievals alone.
    Description: The authors would like to acknowledge the NASA Ocean Biology and Biogeochemistry program for its long-term support of satellite ocean color research and the Orbital Sciences Corporation and GeoEye who were responsible for the launch, satellite integration and on-orbit management the SeaWiFS mission.
    Keywords: Ocean color ; SeaWiFS ; Phytoplankton ; Colored dissolved organic matter ; Decadal trends
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 118 (2015): 122-135, doi:10.1016/j.dsr2.2015.02.008.
    Description: A coupled biophysical model is used to examine the impact of changes in sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms (MUPBs) in the Chukchi Sea of the Arctic Ocean over the period 1988–2013. The model is able to reproduce the basic features of the ICESCAPE (Impacts of Climate on EcoSystems and Chemistry of the Arctic Pacific Environment) observed MUPB during July 2011. The simulated MUPBs occur every year during 1988–2013, mainly in between mid-June and mid-July. While the simulated under-ice blooms of moderate magnitude are widespread in the Chukchi Sea, MUPBs are less so. On average, the area fraction of MUPBs in the ice-covered areas of the Chukchi Sea during June and July is about 8%, which has been increasing at a rate of 2% yr–1 over 1988–2013. The simulated increase in the area fraction as well as primary productivity and chlorophyll a biomass is linked to an increase in light availability, in response to a decrease in sea ice and snow cover, and an increase in nutrient availability in the upper 100 m of the ocean, in conjunction with an intensification of ocean circulation. Simulated MUPBs are temporally sporadic and spatially patchy because of strong spatiotemporal variations of light and nutrient availability. However, as observed during ICESCAPE, there is a high likelihood that MUPBs may form at the shelf break, where the model simulates enhanced nutrient concentration that is seldom depleted between mid-June and mid-July because of generally robust shelf-break upwelling and other dynamic ocean processes. The occurrence of MUPBs at the shelf break is more frequent in the past decade than in the earlier period because of elevated light availability there. It may be even more frequent in the future if the sea ice and snow cover continues to decline such that light is more available at the shelf break to further boost the formation of MUPBs there.
    Description: This work is supported by the NASA Cryosphere Program and Climate and Biological Response Program and the NSF Office of Polar Programs (Grant Nos. NNX12AB31G; NNX11AO91G; ARC-0901987).
    Keywords: Arctic Ocean ; Chukchi Sea ; Phytoplankton ; Blooms ; Sea ice ; Snow depth ; Light availability ; Nutrient availability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Remote Sensing of Environment 217 (2018): 126-143, doi:10.1016/j.rse.2018.08.010.
    Description: Diatoms dominate global silica production and export production in the ocean; they form the base of productive food webs and fisheries. Thus, a remote sensing algorithm to identify diatoms has great potential to describe ecological and biogeochemical trends and fluctuations in the surface ocean. Despite the importance of detecting diatoms from remote sensing and the demand for reliable methods of diatom identification, there has not been a systematic evaluation of algorithms that are being applied to this end. The efficacy of these models remains difficult to constrain in part due to limited datasets for validation. In this study, we test a bio-optical algorithm developed by Sathyendranath et al. (2004) to identify diatom dominance from the relationship between ratios of remote sensing reflectance and chlorophyll concentration. We evaluate and refine the original model with data collected at the Martha's Vineyard Coastal Observatory (MVCO), a near-shore location on the New England shelf. We then validated the refined model with data collected in Harpswell Sound, Maine, a site with greater optical complexity than MVCO. At both sites, despite relatively large changes in diatom fraction (0.8–82% of chlorophyll concentration), the magnitude of variability in optical properties due to the dominance or non-dominance of diatoms is less than the variability induced by other absorbing and scattering constituents of the water. While the original model performance was improved through successive re-parameterizations and re-formulations of the absorption and backscattering coefficients, we show that even a model originally parameterized for the Northwest Atlantic and re-parameterized for sites such as MVCO and Harpswell Sound performs poorly in discriminating diatom-dominance from optical properties.
    Description: This work was supported by: a Woods Hole Oceanographic Institution Summer Student Fellowship (NSF REU award #1156952) and a Bowdoin College Grua/O'Connell Research Award to SJK; grants to HMS from NASA (Ocean Biology and Biogeochemistry program and Biodiversity and Ecological Forecasting program), NSF (Ocean Sciences), the Gordon and Betty Moore Foundation, the Simons Foundation, and NOAA through the Cooperative Institute for the North Atlantic Region (CINAR) under Cooperative Agreement NA14OAR4320158; and grants to CSR from NASA (Ocean Biology and Biogeochemistry program).
    Keywords: Phytoplankton ; Community structure ; Ocean color ; Diatoms
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Coastal Engineering 136 (2018): 147-160, doi:10.1016/j.coastaleng.2018.01.003.
    Description: The performance of a linear depth inversion algorithm, cBathy, applied to coastal video imagery was assessed using observations of water depth from vessel-based hydrographic surveys and in-situ altimeters for a wide range of wave conditions (0.3 〈 significant wave height 〈 4.3 m) on a sandy Atlantic Ocean beach near Duck, North Carolina. Comparisons of video-based cBathy bathymetry with surveyed bathymetry were similar to previous studies (root mean square error (RMSE) = 0.75 m, bias = −0.26 m). However, the cross-shore locations of the surfzone sandbar in video-derived bathymetry were biased onshore 18–40 m relative to the survey when offshore wave heights exceeded 1.2 m or were greater than half of the bar crest depth, and broke over the sandbar. The onshore bias was 3–4 m when wave heights were less than 0.8 m and were not breaking over the sandbar. Comparisons of video-derived seafloor elevations with in-situ altimeter data at three locations onshore of, near, and offshore of the surfzone sandbar over ∼1 year provide the first assessment of the cBathy technique over a wide range of wave conditions. In the outer surf zone, video-derived results were consistent with long-term patterns of bathymetric change (r2 = 0.64, RMSE = 0.26 m, bias = −0.01 m), particularly when wave heights were less than 1.2 m (r2 = 0.83). However, during storms when wave heights exceeded 3 m, video-based cBathy over-estimated the depth by up to 2 m. Near the sandbar, the sign of depth errors depended on the location relative to wave breaking, with video-based depths overestimated (underestimated) offshore (onshore) of wave breaking in the surfzone. Wave speeds estimated by video-based cBathy at the initiation of wave breaking often were twice the speeds predicted by linear theory, and up to three times faster than linear theory during storms. Estimated wave speeds were half as fast as linear theory predictions at the termination of wave breaking shoreward of the sandbar. These results suggest that video-based cBathy should not be used to track the migration of the surfzone sandbar using data when waves are breaking over the bar nor to quantify morphological evolution during storms. However, these results show that during low energy conditions, cBathy estimates could be used to quantify seasonal patterns of seafloor evolution.
    Description: This research was funded by the U.S. Army Corps of Engineers Coastal Field Data Collection Program, the Deputy Assistant Secretary of the Army for Research and Technology under ERDC's research program titled “Force Projection Entry Operations, STO D.GRD.2015.34”, the U.S. Naval Research Laboratory base program from the Office of Naval Research, a Vannevar Bush Faculty Fellowship funded by the Assistant Secretary of Defense for Research and Engineering, and the National Science Foundation.
    Keywords: Remote sensing ; Beach morphology ; Depth inversion ; Bathymetry estimation ; Video imaging ; Surfzone
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Protist 167 (2016): 106–120, doi:10.1016/j.protis.2016.01.003.
    Description: Arranging organisms into functional groups aids ecological research by grouping organisms (irrespective of phylogenetic origin) that interact with environmental factors in similar ways. Planktonic protists traditionally have been split between photoautotrophic “phytoplankton” and phagotrophic “microzooplankton”. However, there is a growing recognition of the importance of mixotrophy in euphotic aquatic systems, where many protists often combine photoautotrophic and phagotrophic modes of nutrition. Such organisms do not align with the traditional dichotomy of phytoplankton and microzooplankton. To reflect this understanding, we propose a new functional grouping of planktonic protists in an eco-physiological context: (i) phagoheterotrophs lacking phototrophic capacity, (ii) photoautotrophs lacking phagotrophic capacity, (iii) constitutive mixotrophs (CMs) as phagotrophs with an inherent capacity for phototrophy, and (iv) non-constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting specific (SNCM) or general non-specific (GNCM) prey. For the first time, we incorporate these functional groups within a foodweb structure and show, using model outputs, that there is scope for significant changes in trophic dynamics depending on the protist functional type description. Accordingly, to better reflect the role of mixotrophy, we recommend that as important tools for explanatory and predictive research, aquatic food-web and biogeochemical models need to redefine the protist groups within their frameworks.
    Description: This work was funded by grants to KJF and AM from the Leverhulme Trust (International Network Grant F00391 V) and NERC (UK) through its iMARNET programme NE/K001345/1.
    Keywords: Plankton functional types (PFTs) ; Phagotroph ; Phototroph ; Mixotroph ; Phytoplankton ; Microzooplankton
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Luis, K. M. A., Rheuban, J. E., Kavanaugh, M. T., Glover, D. M., Wei, J., Lee, Z., & Doney, S. C. Capturing coastal water clarity variability with Landsat 8. Marine Pollution Bulletin, 145, (2019): 96-104, doi: 10.1016/j.marpolbul.2019.04.078.
    Description: Coastal water clarity varies at high temporal and spatial scales due to weather, climate, and human activity along coastlines. Systematic observations are crucial to assessing the impact of water clarity change on aquatic habitats. In this study, Secchi disk depths (ZSD) from Boston Harbor, Buzzards Bay, Cape Cod Bay, and Narragansett Bay water quality monitoring organizations were compiled to validate ZSD derived from Landsat 8 (L8) imagery, and to generate high spatial resolution ZSD maps. From 58 L8 images, acceptable agreement was found between in situ and L8 ZSD in Buzzards Bay (N = 42, RMSE = 0.96 m, MAPD = 28%), Cape Cod Bay (N = 11, RMSE = 0.62 m, MAPD = 10%), and Narragansett Bay (N = 8, RMSE = 0.59 m, MAPD = 26%). This work demonstrates the value of merging in situ ZSD with high spatial resolution remote sensing estimates for improved coastal water quality monitoring.
    Description: This work was supported by the John D. and Catherine T. MacArthur Foundation (grant 14-106159-000-CFP) and by the National Science Foundation grant DGE 1249946, Integrative Graduate Education and Research Traineeship (IGERT): Coasts and Communities – Natural and Human Systems in Urbanizing Environments. Lastly, we are indebted to the Massachusetts Water Resources Authority, Buzzards Bay Coalition, Provincetown Center for Coastal Studies, Narragansett Bay Commission, and the numerous citizen scientists responsible for collecting the in situ measurements used in this study. Comments and suggestions from our anonymous reviewer were greatly appreciated.
    Keywords: Water quality ; Secchi disk depth ; Remote sensing ; Landsat
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Elsevier
    In:  Oxford, xxii+320 pp., 1st ed., Elsevier, vol. 13, no. 3, pp. 632 pp., (ISBN 0-8493-0068-1)
    Publication Date: 1995
    Keywords: Seismology ; Earthquake hazard ; Earthquake risk ; Earthquake engineering, engineering seismology ; Recurrence of earthquakes ; Statistical investigations ; Strong motions ; Taiwan ; SAF ; bridges ; landslides ; floods ; socio-economic ; impact
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Elsevier
    In:  Amsterdam, 292 pp., Elsevier, vol. 1, no. Publ. No. 12, pp. 127, (ISBN 0-521-66034-3, ISBN 0-521-66948-0 paper)
    Publication Date: 1999
    Description: The book presents multivariate statistical methods useful in geological analysis. The essential distinction between multivariate analysis as applied to full-space data (measurements on lengths, heights, breadths etc.) and compositional data is emphasized with particular reference to geochemical data. Each of the methods is accompanied by a practically oriented computer program and backed up by appropriate examples. The computer programs are provided on a compact disk together with trial data-sets and examples of the output. An important feature of this book is the graphical system developed by Dr. Savazzi which is entitled Graph Server.
    Keywords: Data analysis / ~ processing ; Statistical investigations ; Textbook of geology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...