ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
  • American Geophysical Union  (8)
  • Geological Society of America  (2)
  • Oxford University Press  (1)
  • Wiley-Blackwell  (1)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2015-2019  (4)
  • 2005-2009  (8)
Sammlung
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2018-03-20
    Beschreibung: Our study area is a ~50 km long section of the central-southern Apennines tectonic belt that includes the Pergola-Melandro basin and the Agri valley. This region is located between the areas interested by the 1980 Ms=6.9 Irpinia and the 1857 M=7.0 Val d’Agri earthquakes and is characterized by rare historical events and very low and sparse background seismicity. In this study we provide new seismological and geophysical information to identify the characteristics of the seismotectonics in the area, as the prevailing faulting mechanism and the fit of local to regional stress field. These data concern focal mechanisms from waveform modeling and P-wave polarities, analyses of borehole breakouts and detailed investigation of two seismic sequences. All the data cover a significantly broad range of magnitudes and depths and suggest that no important local variation in stress orientation seems to affect this area, which shows a NE-SW direction of extension consistent with that regionally observed in Southern Italy. Such local homogeneity in the stress field pattern is peculiar of the study area; the variations of orientation and/or type of stress observed in the northern Apennines or only less than 100 km toward the northwest within the same tectonic belt are absent here. Furthermore, there is a suggestion for a northeastward sense of dip of the seismogenic faults in the region, an interesting constraint to the characterization of seismic sources
    Beschreibung: Published
    Beschreibung: 575-583
    Beschreibung: 2T. Sorgente Sismica
    Beschreibung: JCR Journal
    Schlagwort(e): faulting ; seismicity ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    facet.materialart.
    Unbekannt
    Oxford University Press
    Publikationsdatum: 2017-04-04
    Beschreibung: We provide an updated present-day stress map for the Italian territory. Following the World Stress Map (WSM) Project guidelines, we list the different stress indicators, explaining the criteria used to select data. We discuss the data, which will also be included in the 2016 release of the WSM, highlighting the areas for which we have added stress information. Our map displays the minimum horizontal stress orientations inferred from crustal stress indicators down to 40 km depth using data of A–C quality, updated for earthquakes until December 2015. We have completely reviewed all data, and the data set now contains 855 entries, in contrast to the previous 715. The number of data with A–C quality of 630 corresponds to an increase of 26 per cent relative to the previous data set. In particular, the new data set contains the results of the analysis of borehole breakouts, critically reviewed data from earthquake focal mechanisms, data concerning active faults, formal inversions of focal mechanisms of seismic sequences or of restricted areas and one stress determination from overcoring. The new data set defines the stress field in areas not well covered by the previous data: the region north to the Po Plain and the central Adriatic sea, both characterized by a thrust- and strike-faulting regime, the northern Sicilian belt with a prevailing normal-faulting regime, and the Ionian sea with a strike-slip regime.
    Beschreibung: Published
    Beschreibung: 1525-1531
    Beschreibung: 2T. Tettonica attiva
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): Seismicity and tectonics ; Dynamics: seismotectonics ; Crustal structure ; Europe ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-01-04
    Beschreibung: We present a neotectonic model of ongoing lithosphere deformation and a corresponding estimate of long-term shallow seismicity across the Africa-Eurasia plate boundary, including the eastern Atlantic, Mediterranean region, and continental Europe. GPS and stress data are absent or inadequate for the part of the study area covered by water. Thus, we opt for a dynamic model based on the stress-equilibrium equation; this approach allows us to estimate the long-term behavior of the lithosphere (given certain assumptions about its structure and physics) for both land and sea areas. We first update the existing plate model by adding five quasi-rigid plates (the Ionian Sea, Adria, Northern Greece, Central Greece, and Marmara) to constrain the deformation pattern of the study area. We use the most recent datasets to estimate the lithospheric structure. The models are evaluated in comparison with updated datasets of geodetic velocities and the most compressive horizontal principal stress azimuths. We find that the side and basal strengths drive the present-day motion of the Adria and Aegean Sea plates, whereas lithostatic pressure plays a key role in driving Anatolia. These findings provide new insights into the neotectonics of the greater Mediterranean region. Finally, the preferred model is used to estimate long-term shallow seismicity, which we retrospectively test against historical seismicity. As an alternative to reliance on incomplete geologic data or historical seismic catalogs, these neotectonic models help to forecast long-term seismicity, although requiring additional tuning before seismicity rates are used for seismic hazard purposes.
    Beschreibung: Published
    Beschreibung: 5311–5342
    Beschreibung: 1T. Geodinamica e interno della Terra
    Beschreibung: 2T. Tettonica attiva
    Beschreibung: 3T. Pericolosità sismica e contributo alla definizione del rischio
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): Tectonics ; Earthquake rates ; 04. Solid Earth::04.02. Exploration geophysics::04.02.03. Heat flow ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.06. Rheology, friction, and structure of fault zones ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.07. Tectonophysics::04.07.01. Continents ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-12-15
    Beschreibung: We have analyzed a focal mechanism data set for Mount Vesuvius, consisting of 197 focal mechanisms of events recorded from 1999 to 2012. Using different approaches and a comparison between observations and numerical models, we have determined the spatial variations in the stress field beneath the volcano. The main results highlight the presence of two seismogenic volumes characterized by markedly different stress patterns. The two volumes are separated by a layer where the seismic strain release shows a significant decrease. Previous studies postulated the existence, at about the same depth, of a ductile layer allowing the spreading of the Mount Vesuvius edifice. We interpreted the difference in the stress pattern within the two volumes as the effect of a mechanical decoupling caused by the aforementioned ductile layer. The stress pattern in the top volume is dominated by a reverse faulting style, which agrees with the hypothesis of a seismicity driven by the spreading process. This agrees also with the persistent character of the seismicity located within this volume. Conversely, the stress field determined for the deep volume is consistent with a background regional field locally perturbed by the effects of the topography and of heterogeneities in the volcanic structure. Since the seismicity of the deep volume shows an intermittent behavior and has shown to be linked to geochemical variations in the fumaroles of the volcano, we hypothesize that it results from the effect of fluid injection episodes, possibly of magmatic origin, perturbing the pore pressure within the hydrothermal system.
    Beschreibung: Published
    Beschreibung: 1181–1199
    Beschreibung: 4T. Fisica dei terremoti e scenari cosismici
    Beschreibung: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Beschreibung: 5V. Sorveglianza vulcanica ed emergenze
    Beschreibung: JCR Journal
    Beschreibung: restricted
    Schlagwort(e): vesuvius ; stress inversion ; focal mechanisms ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2017-04-03
    Beschreibung: In September 2002, a series of tectonic earthquakes occurred north of Sicily, Italy, followed by three events of volcanic unrest within 150 km. On October 28, 2002, Mt. Etna erupted; on November 3, 2002, submarine degassing occurred near Panarea Island; and on December 28, 2002, Stromboli Island erupted. All of these events were considered unusual: the Mt. Etna NE-rift eruption was the largest in 55 yr, the Panarea degassing was one of the strongest ever detected there, and the Stromboli eruption, which produced a landslide and tsunami, was the largest effusive eruption in 17 yr. Here, we investigate the synchronous occurrence of these clustered unrest events, and develop a possible explanatory model. We compute short-term earthquake-induced dynamic strain changes and compare them to long-term tectonic effects. Results suggest that the earthquake-induced strain changes exceeded annual tectonic strains by at least an order of magnitude. This agitation occurred in seconds, and may have induced fluid and gas pressure migration within the already active hydrothermal and magmatic systems.
    Beschreibung: In press
    Beschreibung: 1.4. TTC - Sorveglianza sismologica delle aree vulcaniche attive
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.1. Fisica dei terremoti
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.5. Geologia e storia dei sistemi vulcanici
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.2. TTC - Scenari e mappe di pericolosità sismica
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: open
    Schlagwort(e): earthquake trigger ; magma and gas eruptions ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.04. Ground motion ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2017-04-04
    Beschreibung: The 2002–2003 Etna eruption is studied through earthquake distributions and surface fracturing. In September 2002, earthquake-induced surface rupture (sinistral offset 0.48 m) occurred along the E-W striking Pernicana Fault (PF), on the NE flank. In late October, a flank eruption accompanied further ( 0.77 m) surface rupturing, reaching a total sinistral offset of 1.25 m; the deformation then propagated for 18 km eastwards to the coastline (sinistral offset 0.03 m) and southwards, along the NW-SE striking Timpe (dextral offset 0.04 m) and, later, Trecastagni faults (dextral offset 0.035 m). Seismicity (〈4 km bsl) on the E flank accompanied surface fracturing: fault plane solutions indicate an overall ESEWNWextension direction, consistent with ESE slip of the E flank also revealed by ground fractures. A three-stage model of flank slip is proposed: inception (September earthquake), climax (accelerated slip and eruption) and propagation (E and S migration of the deformation).
    Beschreibung: Published
    Beschreibung: 2286
    Beschreibung: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Beschreibung: 3.2. Tettonica attiva
    Beschreibung: 3.5. Geologia e storia dei sistemi vulcanici
    Beschreibung: 3.6. Fisica del vulcanismo
    Beschreibung: 4.3. TTC - Scenari di pericolosità vulcanica
    Beschreibung: JCR Journal
    Beschreibung: reserved
    Schlagwort(e): volcano seismology ; surface fracturing ; flank slip ; eruption ; Etna ; 04. Solid Earth::04.01. Earth Interior::04.01.99. General or miscellaneous ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.11. Seismic risk ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk ; 05. General::05.02. Data dissemination::05.02.03. Volcanic eruptions
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2012-02-03
    Beschreibung: The present-day stress field and its recent tectonic evolution in the Northern Apennines are reconstructed from borehole breakout analysis and focal mechanisms of crustal earthquakes and through the comparison with paleostress data. We have considered 86 wells for breakout analysis, with depths down to 6–7 km, 125 fault plane solutions of crustal earthquakes with M〈5 that occurred between 1988 and 1995 in the Northern and Central Apennines, and data of stronger earthquakes (M≤6) reported in other studies. The Tyrrhenian coastal region and the Apenninic belt are characterized by Shmin direction mainly trending NE-SW, with predominantly normal fault plane solutions. Along the outer front of the belt and the Adriatic offshore, Shmin is oriented NW-SE, and focal solutions are thrust or strike-slip, with maximum compression around NE-SW. Conversely, south of 43°N, breakouts evidence an orthogonal direction of horizontal compression (NW-SE), following the Southern Apennine trend, where a widespread NE-SW extension was recognized by previous investigations. Comparing these results to the recent tectonic evolution inferred from structural geology, we argue that the extension-compression pair, characteristic of the post-Tortonian evolution of the mountain belt, has been migrating in time from late Miocene to Present only in the northern sector of the arc, whereas the southern sector underwent a generalized extension, at least since middle Pleistocene. The striking correspondence between the active compression front and the region with evidence of a remnant subducted slab suggests that the migrating extension-compression pair has been controlled by progressive retreat of the slab.
    Beschreibung: Published
    Beschreibung: 108-118
    Beschreibung: reserved
    Schlagwort(e): stress ; borehole breakout ; tectonics ; Italy ; Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 4086543 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2012-02-03
    Beschreibung: We have analyzed a 1500 m section at 3.9 to 5.4 km depth in a well of the southern Apennines, in order to better characterize the local active stress field and its correlation with tectonic structures. In this paper we present and discuss the results obtained from the comparison between breakouts and structural analysis from dipmeter data. We have found that the mean breakout direction is in agreement with the regional stress field that in this area is characterized by normal faulting (σ1 = σv) with NE-SW trending extension (horizontal σ3). Since the regional stress field is relatively well known in this region, we could detect and study some anomalous horizontal stress directions along the well, which we interpret as due to faults crosscutting the borehole. A detailed comparison between the breakout-inferred stress variations along depth and the faults identified by the dipmeter analysis reveals that some of these faults are associated with stress rotations, whereas others do not show any variation. The former can be interpreted either as “open” fractures or as faults that slipped recently with a near-complete stress drop, and the latter can be interpreted as “sealed” faults. In particular, we found that the main thrust faults of the area, mainly active in Pliocene times, appear to be sealed, whereas ∼E-W trending high-angle (normal?) faults determine strong stress rotations, suggesting that they are the main active structures of the region. This suggests that the study area is located in a transfer zone between the two main “Apenninic” (NW-SE trending) fault systems which ruptured in the last 150 years. This study has shown that a detailed analysis of the structural and geometrical characteristics of deep wells can be used for the reconnaissance of active structures. This approach can contribute to seismic hazard studies and, if carried out in an oil-bearing section, can help to maximize the hydrocarbon production.
    Beschreibung: Published
    Beschreibung: reserved
    Schlagwort(e): borehole breakout ; structural analysis in deep wells ; active faults ; Southern Apennines ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 1487574 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2017-04-04
    Beschreibung: Fissure eruptions may provide important information on the shallow propagation of dikes at volcanoes. Somma-Vesuvius (Italy) consists of the active Vesuvius cone, bordered to the north by the remnants of the older Somma edifice. Historical chronicles are considered to define the development of the 37 fissure eruptions between A.D. 1631 and 1944. The 1631 fissure, which reopened the magmatic conduit, migrated upward and was the only one triggered by the subvertical propagation of a dike. The other 25 fissure eruptions migrated downward, when the conduit was open, through the lateral propagation of radial dikes. We suggest two scenarios for the development of the fissures. When the summit conduit is closed, the fissures are fed by vertically propagating dikes. When the summit conduit is open, the fissures are fed by laterally propagating dikes along the volcano slopes. Consistent behaviors are found at other composite volcanoes, suggesting a general application to our model, independent of the tectonic setting and composition of magma. At Vesuvius, the historical data set and our scenarios are used to predict the consequences of the emplacement of fissures after the opening of the conduit. The results suggest that, even though the probability of opening of vents within the inhabited south and west slopes is negligible, the possibility that these are reached by a lava flow remains significant.
    Beschreibung: Published
    Beschreibung: 673-676
    Beschreibung: reserved
    Schlagwort(e): fissures ; dike propagation ; conduit ; Vesuvius ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 308433 bytes
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-04-04
    Beschreibung: Postseismic relaxation is modeled for the Irpinia earthquake, which struck southern Italy in 1980. Our goal is to understand the mechanism of surface deformation due to stress relaxation in the deep portion of the crust-lithosphere system for a shallow normal fault source and to infer the rheological properties of the lithosphere in the extensional environment of peninsular Italy. The modeling is carried out within the framework of our normal mode viscoelastic theory at high spatial resolution in order to accurately resolve the vertical surface displacements for a seismic source. The slip distribution over the faults is first inverted from coseismic leveling data, the misfit between observed and modeled vertical displacements being minimized by means of the L2 norm. Slip distribution is then used within the viscoelastic model to invert for the viscosities of the lower crust and generally of the lithosphere. Inversion is based on leveling data sampled along three lines crossing the epicentral area. Postseismic deformation in the Irpinia area is characterized by a broad region of crust upwarping in the footwall of the major fault and downwarping in the hanging wall that is responsible for the long-wavelength features of the vertical displacement pattern. The c2 analysis indicates that the Irpinia earthquake cannot constrain the rheology of the upper mantle but only of the crust; a full search in the viscosity spaces makes it possible to constrain the crustal viscosity to values of the order of 1019 Pa s, in agreement with previous studies carried out in different tectonic environments.
    Beschreibung: Published
    Beschreibung: 1-16
    Beschreibung: partially_open
    Schlagwort(e): Lithospheric rheology ; Irpinia earthquake ; 04. Solid Earth::04.01. Earth Interior::04.01.05. Rheology ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 419 bytes
    Format: 623618 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    Publikationsdatum: 2017-04-04
    Beschreibung: The Neapolitan volcanic region is located within the graben structure of the Campanian Plain (CP), which developed between the western sector of the Appenine Chain and the eastern margin of the Tyrrhenian Sea. Two volcanic areas, spaced less than 10 km apart, are situated within the CP: the Somma-Vesuvius Volcano (SVV) and the Phlegraean Volcanic District (PVD). SVV is a typical stratovolcano, whereas PVD, including Campi Flegrei, Procida, and Ischia, is composed mostly of monogenetic centers. This contrast is due to different magma supply systems: a widespread fissure-type system beneath the PVD and a central-type magma supply system for the SVV. Volcanological, geophysical, and geochemical data show that magma viscosity, magma supply rate, and depth of magma storage are comparable at PVD and SVV, whereas different structural arrangements characterize the two areas. On the basis of geophysical data and magma geochemistry, an oblique-extensional tectonic regime is proposed within the PVD, whereas in the SVVarea a compressive stress regime dominates over extension. Geophysical data suggest that the area with the maximum deformation rate extends between the EW-running 41st parallel and the NE-running Magnaghi-Sebeto fault systems. The PVD extensional area is a consequence of the Tyrrhenian Sea opening and is decoupled from the surrounding areas (Roccamonfina and Somma-Vesuvius) which are still dominated by Adriatic slab dynamics. Spatially, we argue that the contribution of the asthenospheric wedge become much less important from W-NW to E-SE in the CP. The development of the two styles of volcanism in the CP reflects the different tectonic regimes acting in the area.
    Beschreibung: Published
    Beschreibung: 1-25
    Beschreibung: partially_open
    Schlagwort(e): Volcanic styles ; Tectonic setting ; Neapolitan volcanic region ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 428 bytes
    Format: 1655376 bytes
    Format: text/html
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 12
    Publikationsdatum: 2017-04-04
    Beschreibung: We present an updated present-day stress data compilation for the Italian region and discuss it with respect to the geodynamic setting and the seismicity of the area. We collected and analyzed 190 new stress data from borehole breakouts, seismicity, and active faults and checked in detail the previous compilation [Montone et al., 1999]. Our improved data set consists of 542 data, 362 of which with a reliable quality for stress maps. The Italian region is well sampled, allowing the computation of constrained smoothed stress maps; for surrounding regions we added the World Stress Map 2003 release data. These maps depict the active stress conditions and, in the areas where the data are sparse, contribute to understand the relationship between active stress, past tectonic setting, and the seismicity of the study region. The new data are particularly representative along the northern Apennine front, from the Po Plain to offshore the Adriatic, and along the southern Tyrrhenian Sea, north of Sicily, where they point out a compressive tectonic regime. In the Alps both compressive and transcurrent regimes are observed. Our data also confirm that the whole Apenninic belt and the Calabrian arc are extending. Along the central Adriatic coast, changes from one stress regime to another are shown by abrupt variations in the minimum horizontal stress directions. Other gentler stress rotations, as, for instance, from the southern Apennines to the Calabrian arc or along the northern Apennines, follow the curvature of the arcs and are not associated to a stress regime variation.
    Beschreibung: Published
    Beschreibung: (B10410)
    Beschreibung: partially_open
    Schlagwort(e): active stress ; earthquakes ; borehole breakouts ; crust and lithosphere ; 04. Solid Earth::04.07. Tectonophysics::04.07.99. General or miscellaneous ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Format: 3452579 bytes
    Format: 711 bytes
    Format: application/pdf
    Format: text/html
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...