ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Northern Apennines
  • Elsevier  (6)
  • Wiley  (2)
  • American Association for the Advancement of Science
  • Irkutsk : Ross. Akad. Nauk, Sibirskoe Otd., Inst. Zemnoj Kory
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • Taylor & Francis
  • 2015-2019  (2)
  • 2005-2009  (6)
  • 1975-1979
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2020-06-03
    Description: - We provide the first isotopic geochronological constraints on brittle deformation in the NA by illite K-Ar dating of brittle fault rocks - A combined structural-geochronological approach constrains a Late Miocene-Early Pliocene regional compressive stress state
    Description: The Northern Apennines (NA) orogenic wedge formed during Oligocene-Miocene convergence and westward subduction of Adria beneath the European Plate. Extension ensued in the Mid-Late Miocene in response to Adria roll-back, causing opening of the back-arc Northern Tyrrhenian Sea. Whether extension continues uninterrupted since the Mid-Late Miocene or it was punctuated by short-lived compressional events, remains, however, uncertain. We used the K-Ar method to date a set of brittle-ductile and brittle deformation zones from the Island of Elba to contribute to this debate. We dated the low-angle Zuccale Fault (ZF), the Capo Norsi-Monte Arco Thrust (CN-MAT), and the Calanchiole Shear Zone (CSZ). The CN-MAT and CSZ are moderately west dipping, top-to-the-east thrusts in the immediate footwall of the ZF. The CSZ slipped 6.14 ± 0.64 Ma (〈0.1 μm fraction) and the CN-MAT 4.90 ± 0.27 Ma ago (〈0.4 μm fraction). The ZF, although cutting the two other faults, yielded an older age of 7.58 ± 0.11 Ma (〈0.1 μm fraction). The ZF gouge, however, contains an illitic detrital contaminant from the Paleozoic age flysch deformed in its hanging wall and the age thus is a maximum faulting age. Removal of ~1% of a 300-Ma-old contaminant brings the ZF faulting age to 〈4.90 Ma. Our results provide the first direct dating of brittle deformation in the Apennines, constraining Late Miocene-Early Pliocene regional compression. They call for a refinement of current NA geodynamic models in the framework of the Northern Tyrrhenian Sea extension.
    Description: Published
    Description: 3229–3243
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: K-Ar dating fault gouge ; Northern Apennines ; Elba Island ; Neogene geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-06-06
    Description: We present the results of geological and structural investigation documenting the interaction between hydrothermal fluids and host rock leading to a vein-type ore mineralization at shallow crustal depths (〈7 km) in the mining district of the eastern Island of Elba (Italy). Sulfide- and iron-rich veins and breccia in addition to minor massive iron-ore bodies form the mineralized system. Structural mapping and analysis of vein systems, fractures, faults and associated fault rocks as well as fracture opening modes show that the main factors controlling the formation and distribution of the mineralization are lithology, deformation style and deformation intensity. Their interplay led to a positive feedback between the evolution of pore pressure through time, strain localization and the resulting mineralization. Inversion of fault and vein data defines an E-W extensional stress field at the time of faulting, which favoured fluid ingress and pervasive flow within the porous host sandstone, interstitial sulfide precipitation and reduction of the primary bulk porosity. Subsequently, cyclic channelized fluid flow during repeated fluid ingresses caused extensive veining and numerous episodes of breccia formation.
    Description: Published
    Description: 210-230
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: Hydrothermalism ; Upper crust ; Faulting ; Fluids Island of Elba ; Structural analysis ; Island of Elba ; Northern Apennines ; deformation and hydrothermal fluid circulation in upper crust
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We analyze a seismic sequence which occurred in 2000 along the Northern Apennines accretionary wedge (Italy). The sequence developed within the Cretaceous–Triassic limestones of the tectonic wedge, where methane-rich and oil reservoirs are stored. Ruptures mainly developed on WNW–ESE striking thrusts. The compressive stress field is consistent with that acting at regional scale in Northern Apennines. Seismic parameters indicate that fluids are involved in the seismogenic process. The amplitudes of the P and S phases and data from some stations evidence a P to S conversion within Vp/Vs=2.1 layer. The attenuation properties of crust show a higher attenuation zone located west of the epicentral cloud. Eight hundred aftershocks delineate a sub-vertical cloud of events between 7 and 14 km depth. The space–time evolution of the aftershocks is consistent with a diffusive spreading (diffusivity=1.9 m2/s) along vertically superimposed thrusts. Diffusion also controls the time evolution of the sequence. Fluid pressure is estimated to be roughly equal to the vertical, lithostatic stress. The overpressure within reservoirs develops by tectonic compaction processes. The fluids upraise along sub-vertical fractures related to the shortening of the wedge. The 2000 sequence occurred in an area that separates a thermal and deeper petroleum system from a shallower biogenic system. The divider of these systems controls the attenuation properties of the crust. The fluid–rock interaction at seismogenetic depth is related to hydrothermal processes more than to compaction. In accretionary wedges, seismicity activating superimposed thrusts may drive methane and oil upraising from the upper crust.
    Description: Published
    Description: 99-109
    Description: 3.1. Fisica dei terremoti
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: partially_open
    Keywords: seismicity ; fluids ; accretionary wedge ; thrust ; geodynamics ; Northern Apennines ; 04. Solid Earth::04.04. Geology::04.04.01. Earthquake geology and paleoseismology ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The controversial relationship between the orogenic segments of the Western Alps and the Northern Apennines is here explored integrating recently published 3D tomographic models of subduction with new and re-interpreted geological observations from the eclogitic domain of the Voltri Massif (Ligurian Alps, Italy), where the two belts joint each other. The Voltri Massif is here described as an extensional domain accommodating the opposing outward migration of the Alpine and Apennine thrust fronts, since about 30–35 Ma. Using tomographic images of the upper mantle and paleotectonic reconstructions, we propose that this extensional setting represents the surface manifestation of an along strike change in polarity of the subducted oceanic slab whose polarity changed laterally in space and in time. Our tectonic model suggests that the westward shift of the Alpine thrust front from the Oligocene onward was the consequence of the toroidal asthenospheric flow induced by the retreat of the Apenninic slab.
    Description: Published
    Description: 34–50
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Western Alps ; Northern Apennines ; Voltri Massif ; Tomography ; Kinematic reconstruction ; Extensional detachment ; Toroidal flow ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Elsevier
    In:  Capponi, G., et al., Comment on “Subduction polarity reversal at the junction between the Western Alps and the Northern Apennines, Italy, by G. Vignaroli..., Tectonophysics (2008), doi:10.1016/j.tecto.2008.10.019
    Publication Date: 2017-04-04
    Description: Reply to comment
    Description: We first would like to thank Capponi et al. (2008) for their comments and criticisms on our paper, offering us the opportunity to discuss the data and the model presented in Vignaroli et al. (2008a) and clarify the geological rationale behind our manuscript. Vignaroli et al. (2008a) presented a large-scale reconstruction on the evolution of the Western Alpine-Northern Apennine junction, based on shallow geological information derived from the Northern Apennines, the Western and Ligurian Alps coupled with deep mantle structures from seismic tomography and tectonic reconstructions. The aim of this paper is then to give an alternative, though simplified, tectonic solution to the long-standing debate concerning the polarity of the subduction zone in the central Mediterranean and its linkage with the Alpine orogeny and the formation of the arcs belt. We condensed and simplified the huge wealth of geological information using cross-sections along the three orogenic segments. One of the main points of the paper is that the Voltri Massif of the Ligurian Alps is reinterpreted as an eclogitic-bearing domain exhumed by means of ductile-to-brittle extensional detachment tectonics with a top-to-the-W sense of shear. In this view, the orogenic architecture and evolution of the Ligurian Alps presents affinities (both for geometry and timing of deformation) with the widely accepted extensional structures recognized in the Western Alps, in the Northern Apennines and, in general, in Alpine-type orogenic belts of the Mediterranean. The detailed comment made by Capponi et al. (2008) is indeed centred on the tectonic structure of the Voltri Massif (probably this comment should have been addressed to our companion paper, Vignaroli et al., 2008b, focused on the Voltri Massif structures and available on-line on March 2008). The main point of the comment is that the exhumation of High-Pressure (HP) metamorphic units exposed in the Voltri Massif was produced by thrusts rather than by syn- orogenic extensional detachments. In this reply, we would first like to make some general considerations on the criteria/concepts adopted for the interpretation of the exhumation-related structures and we will then discuss point-by-point the criticism of Capponi et al. (2008).
    Description: In press
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: partially_open
    Keywords: Western Alps ; Northern Apennines ; Voltri Massif ; kinematic reconstruction ; subduction ; extensional detachment ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: Many of the mountain belts displaying a curved shape are "oroclines", i.e. are produced after progressive bending of an originally straight fold and thrust belt. The bending process was previously explained as a consequence of several possible events taking place in the crustal orogenic wedge, such as occurrence of obstacles, non-coaxial deformation, and mouvements on wrench faults. Recent paleomagnetic results from the northern Apenninic Arc document that this belt is properly an orocline and results from Late Messinian-Early Pliocene bending of a Messinian straight belt-foredeep system. Tomographic images in turn show the presence of a high-velocity body, interpreted as subducted slab, in the upper mantle beneath the northern Apennines, between 35 and 670 km depth. Down to 100 km, this body displays an arcuate shape which closely mirrors the geological outlines, while it appears to be straight (and parallel to the Messinian pre-rotated belt) at depth. We explore here the possibility that the arcuate shape of the northern Apennines is a consequence, closely following in time, on much deeper processes than previously suggested, i.e. the lateral bending of the subducting Adriatic plate.
    Description: Published
    Description: 53-64
    Description: JCR Journal
    Description: reserved
    Keywords: paleomagnetism ; seismic tomography ; Northern Apennines ; orocline ; 04. Solid Earth::04.05. Geomagnetism::04.05.06. Paleomagnetism ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We present here the new observations of seismic anisotropy obtained from SKS birefringence analysis. We studied 27 teleseismic earthquakes recorded by the temporary seismic network of RETREAT project in the Northern Apennines region. For each station–event couple we calculate the anisotropic parameters (delay time and fast-polarization direction) by minimizing the energy in the transverse component. Our measurements confirm the existence of two domains. The Tuscany domain, on the south-west with respect to the Apennines, shows mostly NW–SE fast axes directions, with a rotation toward E–W direction moving toward the Tyrrhenian Sea. The Adria domain, north-east of the Apennines orogen, shows more scattered measurements, with prevailing N–S to NNE–SSW directions; also with back-azimuthal dependence. The transition between the two domains is abrupt in the nothern part of the study region but more gradual in the southern part. Measured delay times (1.8 s on average) suggest that the detected anisotropy is located principally in the asthenosphere. Beneath the Adria domain, where the presence of a double-layer structure seems consistent, a lithospheric contribution is plausible. An interpretation in terms of ongoing mantle deformation suggests a differential evolution of the trench-retreat process along the Northern Apennines orogen. The orogen-parallel anisotropy in the study region is beneath the inner part of the belt instead of beneath its crest and no orogen-normal measurements are found in the Tuscany side. Compared to the anisotropy pattern of the typical slab retreat seen in southern part of the Northern Apennines, in the northernmost one the anisotropy suggests that an oblique trench-retreat has occurred, possibly linked to Northern Apennines retreat since 5 Ma.
    Description: Published
    Description: 68-82
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: seismic anisotropy ; mantle deformation ; Northern Apennines ; 04. Solid Earth::04.01. Earth Interior::04.01.02. Geological and geophysical evidences of deep processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-08-25
    Description: We examine the tectonic evolution and structural characteristics of the Quaternary intermontane Mugello, Casentino, and Sansepolcro basins, in the Northern Apennines fold-andthrust belt. These basins have been classically interpreted to have developed under an extensional regime, and to mark the extension-compression transition. The results of our study have instead allowed framing the formation of these basins into a compressive setting tied to the activity of backthrust faults at their northeastern margin. Syndepositional activity of these structures is manifested by consistent architecture of sediments and outcrop-scale deformation. After this phase, the Mugello and Sansepolcro basins experienced a phase of normal faulting extending from the middle Pleistocene until Present. Basin evolution can be thus basically framed into a two-phase history, with extensional tectonics superposed onto compressional structures. Analysis of morphologic features has revealed the occurrence of fresh fault scarps and interaction of faulting with drainage systems, which have been interpreted as evidence for potential ongoing activity of normal faults. Extensional tectonics is also manifested by recent seismicity, and likely caused the strong historical earthquakes affecting the Mugello and Sansepolcro basins. Qualitative comparison of surface information with depth-converted seismic data suggests the basins to represent discrete subsiding areas within the seismic belt extending along the axial zone of the Apennines. The inferred chronology of deformation and the timing of activity of normal faults have an obvious impact on the elaboration of seismic hazard models.
    Description: Published
    Description: 336-356
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Description: open
    Keywords: Northern Apennines ; Basin evolution ; structural analysis ; active tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...