ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Saccharomyces cerevisiae  (243)
  • Springer  (243)
  • Essen : Verl. Glückauf
  • Krefeld : Geologischer Dienst Nordhein-Westfalen
  • 2015-2019
  • 2005-2009
  • 1990-1994  (243)
  • 1965-1969
Collection
Keywords
Publisher
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of molecular evolution 38 (1994), S. 363-368 
    ISSN: 1432-1432
    Keywords: Saccharomyces cerevisiae ; 2-μm circle ; DNA sequencing ; Horizontal transmission ; Site-specific recombination ; Selfish DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We compared the nucleotide substitution pattern over the entire genome of two unique variants of the 6,300-bp selfish DNA (2 μm) plasmid in Saccharomyces cerevisiae. The DNA sequence of the left-unique region is identical among 2-μm variants, while the right-unique region shows substantial divergence. This chimeric pattern cannot be explained by neutral or Darwinian selection models. We propose that horizontal transmission of the 2-μm plasmid coupled with a directed, polarized gene conversion maintains the DNA sequence of the left-unique region, whereas the right-unique region is subject to random drift and Darwinian selection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 162 (1994), S. 211-214 
    ISSN: 1432-072X
    Keywords: Killer toxin ; Saccharomyces cerevisiae ; Toxin binding ; Cell wall receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A recently described new method for determination of killer toxin activity was used for kinetic measurenments of K1 toxin binding. The cells of the killer sensitive strain Saccharomyces cerevisiae S6 were shown to carry two classes of toxin binding sites differing widely in their half-saturation constants and maximum binding rates. The low-affinity and high-velocity binding component (K T1=2.6x109 L.U./ml, V max1=0.19 s-1) probably reflects diffusion-limited binding to cell wall receptors; the high-affinity and low-velocity component (K T2=3.2x107 L.U./ml, V max2=0.03 s-1) presumably indicates the binding of the toxin to plasma membrane receptors. Adsorption of most of the killer toxin K1 to the surface of sensitive cells occured within 1 min and was virtually complete within 5 min. The amount of toxin that saturated practically all cell receptors was about 600 lethal units (L.U.) per cell of S. cerevisiae S6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0983
    Keywords: Psoralen sensitivity ; Saccharomyces cerevisiae ; DNA repair ; Oxidative stress
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The complementation and genetical analysis of yeast mutants sensitive to photoactivated 3-carbethoxy-psoralen define three novel recessive mutant alleles pso-5-1, pso6-1, and pso7-1. Their cross-sensitivity to UV254nm, radiomimetic mutagens, and to chemicals enhancing oxidative stress suggest that these mutants are either impaired in metabolic steps protecting from oxidative stress or in mechanisms of the repair of oxygen-dependent DNA lesions. None of the three novel mutant alleles block the induction of reverse mutation by photoactivated mono- and bi-functional psoralens, nitrogen mustards, or UV254nm.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; recA gene expression ; UV radiation ; Mitotic gene conversion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effect of the Escherichia coli RecA protein on mitotic recombination in the diploid D7 strain of Saccharomyces cerevisiae damaged by UV radiation was investigated. The D7 strain was transformed by two modified versions of the pNF2 plasmid: one, containing the ADH-1 promoter, and the other containing the recA gene tandemly arranged behind the ADH-1 promoter region. Immunological analysis proved the presence of the 38-kDa RecA protein in D7/pNF2ADHrecA transformants. We observed a positive effect of recA gene expression on mitotic gene conversion, mainly at higher doses of UV radiation. The results indicate that a RecA-like activity could participate in steps preceeding mitotic conversion events in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 95-99 
    ISSN: 1432-0983
    Keywords: Translational fidelity ; Paromomycin ; Stuttering ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Missense errors in the translation of mRNAs in Saccharomyces cerevisiae were screened by looking for charge heterogeneity of proteins on two-dimensional gels resulting from the substitution of charged and neutral amino acids. No such mistranslation was detected in wild-type yeast strains grown in the presence of the translational error-inducing antibiotic paromomycin. However, paromomycin-induced mistranslation of a heterologous mRNA, encoding human phosphoglycerate kinase expressed in yeast, was seen. We suggest that the combination of error-prone translation of a heterologous mRNA, and growth in the presence of paromomycin, leads to an accumulation of mistranslated proteins that can be detected by two-dimensional gel electrophoresis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0983
    Keywords: ABC superfamily ; Multidrug resistance ; Saccharomyces cerevisiae ; YDR1 gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A multidrug resistance gene, YDR1, of Saccharomyces cerevisiae, which encodes a 170-kDa protein of a member of the ABC superfamily, was identified. Disruption of YDR1 resulted in hypersensitivity to cycloheximide, cerulenin, compactin, staurosporine and fluphenazine, indicating that YDR1 is an important determinant of cross resistance to apparently-unrelated drugs. The Ydr1 protein bears the highest similarity to the S. cerevisiae Snq2 protein required for resistance to the mutagen 4-NQO. The drug-specificity analysis of YDR1 and SNQ2 by gene disruption, and its phenotypic suppression by the overexpressed genes, revealed overlapping, yet distinct, specificities. YDR1 was responsible for cycloheximide, cerulenin and compactin resistance, whereas, SNQ2 was responsible for 4-NQO resistance. The two genes had overlapping specificities toward staurosporine and fluphenazine. The transcription of YDR1 and SNQ2 was induced by various drugs, both relevant and irrelevant to the resistance caused by the gene, suggesting that drug specificity can be mainly attributed to the functional difference of the putative transporters. The transcription of these genes was also increased by heat shock. The yeast drug-resistance system provides a novel model for mammalian multidrug resistance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0983
    Keywords: Overexpression ; Peroxisomes ; Saccharomyces cerevisiae ; Stabilization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have constructed a gene coding for the 12-kDa intermediate form of the 2s methionine-rich protein from Bertholletia excelsa seeds. This protein, expressed intracellularly in yeast, is characterised by a 20-min balf-life. By adding 11 amino acids corresponding to the peroxisome-targeting sequence (PTSc) of luciferase, we have significantly increased its half-life. This stabilization allowed accumulation of the BZN protein into the peroxisome as judged by cell fractionation. Accumulation of the 12-kDa protein results in a significant increase of the total methionine content in yeast cells (30%) indicating that such a microorganism could represent a practicable protected shuttl for an animal-feed additive.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0983
    Keywords: Cytochrome oxidase ; Revertant ; Mitochondria ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three respiratory-deficient mutants of cytochrome oxidase subunit I in the yeast mitochondrion have been sequenced. They are located in, or near, transmembrane segment VI, the catalytic core of the enzyme. Respiratory-competent revertants have been selected and studied. The mutant V244M was found to revert at the same site in valine (wild-type), isoleucine or threonine. The revertants of the mutant G251R were of three types: glycine (wild-type), serine and threonine at position 251. A search for second-site mutations was carried out but none were found. Among 60 revertants tested, the mutant K265M was found to revert only to the wild-type allele.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0983
    Keywords: tRNA processing ; Saccharomyces cerevisiae ; Mitochondria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We used a genetic approach to study the nuclear factors involved in the biogenesis of mitochondrial tRNAs. A point mutation in the mitochondrial tRNAAsp gene of Saccharomyces cerevisiae had previously been shown to result in a temperature-sensitive respiratory-deficient phenotype as a result of the absence of 3′ end-processing of the tRNAAsp. Analysis of mitochondrial revertants has shown that all revertants sequenced have a G-A compensatory change at position 53, which restores the hydrogen-bond with the mutated nucleotide. We then searched for nuclear suppressors to identify the nuclear gene(s) involved in mitochondrial tRNA 3′ end-processing. One such suppressor mutation was further characterized: it restores tRNAAsp maturation and growth at 36°C on glycerol medium in heterozygous diploids, but leads to a defective growth phenotype in haploids.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 26 (1994), S. 15-20 
    ISSN: 1432-0983
    Keywords: Cell-division cycle ; Mitochondrial genome ; Nuclear mutation ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In former studies it was found that the ERV1 gene is essential for cell viability and for the biogenesis of functional mitochondria. A temperature-sensitive nuclear mutant exhibits a severe reduction in all the mitochondrial transcripts. Elimination of the gene leads to growth arrest after a few cell divisions. The putative gene product bears the characteristics of a regulatory factor since it has low expression rate and a high content of charged amino acids. In this study it is further verified that the ERV1 gene alone is responsible for the observed cellular and mitochondrial defects. The 5′ region of the gene is analysed by DNA deletions and complementation studies. Expression of the gene under the control of the GAL1-10 promoter in a disruption strain of ERV1 allows a more detailed specification of its influence on mitochondrial and cellular functions. Immediate and complete loss of mitochondrial genomes is observed after the promoter has been shut off, whereas the yeast cells are still able to grow for a limited time under these conditions. Analysis of the cells by in-vivo DNA flurorescence demonstrates a specific arrest in the cell-division cycle as the terminal phenotype. To further characterize the temperature-sensitive allele of ERV1 the mutated gene has been isolated and sequenced. A single point mutation which leads to the exchange of a single amino acid is found in the reading frame.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Nuclear gene ; Mitochondria ; Mitochondrial ribosomal protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nuclear gene MRP-L13 of Saccharomyces cerevisiae, which codes for the mitochondrial ribosomal protein YmL13, has been cloned and characterized. It is a single-copy gene residing on chromosome XI. Its nucleotide sequence was found to be identical to that of the previously reported ORF YK105. A comparison of the predicted protein sequence of the MRP-L13 gene product and the actual N-terminal amino-acid sequence of the isolated YmL13 protein indicated that the mature protein is preceded by a mitochondrial signal peptide of 86 amino-acid residues, which is the longest among all known mitochondrial ribosomal proteins of S. cerevisiae. No sequence similarity was found to any other ribosomal protein in the current databases. The transcription of MRP-L13 was found to be repressed in the presence of glucose. Its protein product is not strictly essential for mitochondrial functions, but disruption of the gene by insertion of LEU2 noticeably affected cellular growth on non-fermentable carbon sources.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    ISSN: 1432-0983
    Keywords: Psoralen ; DNA repair mutants ; Gene conversion ; Recombination ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The influence of the DNA repair genePSO3 on photoactivated psoralen-induced meiotic recombination, gene conversion, reverse mutation, and on survival, was assayed in diploid strains ofSaccharomyces cerevisiae homozygous for the wild-type or thepso3-1 mutant allele. Sporulation was normal in thepso3-1 diploid. Wild-type and mutant strains had the same sensitivity to photoactivated monofunctional psoralen (3-CPs+UVA) in meiosis-uncommitted and meiosis-committed stages. The mutant showed higher sensitivity to photoactivated bifunctional psoralen (8-MOP+UVA) during all stages of the meiotic cycle. Mutation induction by 3-CPs+UVA or 8-MOP+UVA in meiosis-committed cells revealed no significant differences between wild-type and thepso3-1 mutant. The status of thePSO3 gene has no influence on the kinetics of induction of gene conversion and crossing-over after 3-CPs+UVA treatment in meiosis-committed cells: gene conversion was blocked while recombination was induced. After treatment with 8-MOP+UVA gene conversion was also blocked in both strains while crossing-over could only be observed in meiosis-committed wild-type cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 180-183 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; In-vivo cloning ; Non-replicative vectors ; Homologous recombination
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have devised a new strategy to clone DNA sequences from an yeast autonomously-propagating plasmid into a non-autonomous integrative vector by in-vivo recombination. The method consists of a first step in which the replicative plasmid carrying the DNA fragment of interest forms a co-integrate with the non-replicative plasmid by an induced in-vivo reciprocal exchange accompanied by gene conversion. The dimeric plasmid obtained is then purified and cut with an appropriate restriction enzyme and ligated independently to obtain the two intact monomeric plasmids, the original autonomous plasmid plus the new non-autonomous plasmid carrying the subcloned DNA fragment. The dimeric co-integrate can also serve as substrate for a second in-vivo reciprocal exchange that produces new autonomous plasmids carrying the desired DNA fragment. The technique considerably expands the applications of in-vivo cloning in yeast by complementing three important characteristics of previously published methods: (1) it can be used to clone into non-propagating vectors; (2) co-transformation experiments are not required; and (3) the intermediate co-integrate can be used to generate new types of autonomously-propagating plasmids directly. These characteristics are independent of whether the DNA insert is flanked by appropriate restriction sites or whether it does, or does not, express a detectable phenotype in yeast. The method is particularly useful for the cloning of large DNA fragments and can be used for plasmids from organisms other than yeasts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 289-289 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Inducible antisense gene ; Acetolactate synthase ; Bradytrophic phenocopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A previous report of the use of antisense RNA to regulate gene expression in yeast is incorrect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 25 (1994), S. 291-298 
    ISSN: 1432-0983
    Keywords: Cytochrome c 1 ; Cytochrome c 1 heme lyase ; GRF2p ; Glucose repression ; HAPp ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In this paper we examine the expression of the Saccharomyces cerevisiae CYT2 gene, which encodes cytochrome c 1 heme lyase. This enzyme is required for covalent attachment of heme to apocytochrome c 1, a subunit of the mitochondrial respiratory chain. Transcription of the 1-kb CYT2 mRNA initiates at four prominent sites at a distance of 52–225 bp in front of the AUG start codon. The level of CYT2 mRNA is not influenced by the presence or absence of oxygen or of heme, but it is subject to carbonsource control. The concentration of the CYT2 mRNA is significantly reduced in glucose-grown cells as compared to cells grown under non-repressing conditions. Neither the HAPp activator proteins nor MIG1p, a repressor protein involved in glucose repression, seem to mediate this effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 162 (1994), S. 211-214 
    ISSN: 1432-072X
    Keywords: Key words     Killer toxin ; Saccharomyces cerevisiae ; Toxin binding ; Cell wall receptor
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract      A recently described new method for determination of killer toxin activity was used for kinetic measurements of K1 toxin binding. The cells of the killer sensitive strain Saccharomyces cerevisiae S6 were shown to carry two classes of toxin binding sites differing widely in their half-saturation constants and maximum binding rates. The low-affinity and high-velocity binding component (K T1 = 2.6 × 109 L.U./ml, V max1 = 0.19 s– 1) probably reflects diffusion-limited binding to cell wall receptors; the high-affinity and low-velocity component (K T2 = 3.2 × 107 L.U./ml, V max2 = 0.03 s– 1) presumably indicates the binding of the toxin to plasma membrane receptors. Adsorption of most of the killer toxin K1 to the surface of sensitive cells occured within 1 min and was virtually complete within 5 min. The amount of toxin that saturated practically all cell receptors was about 600 lethal units (L.U.) per cell of S. cerevisiae S6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    ISSN: 1432-072X
    Keywords: Rylux BSU ; Fluorescent brightener ; Cell walls ; Chitin synthase ; Glucan synthase ; Yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Rylux BSU, a new fluorescent brightener from the family of 4,4′-diaminostilbene-2,2′disulfonic acid derivatives, inhibited growth and cytokinesis of the yeast Saccharomyces cerevisiae. In the presence of 0.1–1 mg/ml Rylux BSU the cells grew in clumps, had irregular shape and were larger than controls. They formed apparently normal primary septa but their secondary septa and lateral cell walls, especially those in older cells, were abnormally thick with large deposits of amorphous wall material in the periplasmic spaces all over the cell surface. Chitin content in the cell walls of cells grown in the presence of Rylux BSU was increased 2 to 5 times in comparison to that of the controls and glucan content was reduced by up to 30%. In the in vitro assays with particulate membrane fractions, Rylux BSU acted as a non-competitive inhibitor of β-1,3-glucan synthase with inhibitory constant K i=1.75 mg/ml whereas the chitin synthase was inhibited to a much lesser extent. From the difference of the effects of Rylux BSU on the synthesis of chitin in vivo and in vitro it is concluded that the brightener interacts with chitin synthase only indirectly, possibly by influencing the properties of integral plasma membrane.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    ISSN: 1572-8773
    Keywords: catalase ; copper resistance ; pH-dependent growth ; Saccharomyces cerevisiae ; superoxide dismutase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A strain of Saccharomyces cerevisiae has been adapted to increasing concentrations of copper at two different pH values. The growth curve at pH 5.5 is characterized by a time generation increasing with the amount of added copper. A significant decrease of cell volume as compared with the control is also observed. At pH 3 the cells grow faster than at pH 5.5 and resist higher copper concentrations (3.8 against 1.2 mm). Experimental evidence indicates that, after copper treatment, the metal is not bound to the cell wall, but is localized intracellularly. A significant precipitation of copper salts in the medium was observed only at pH 5.5. Increased levels of superoxide dismutase (SOD) activity were observed in copper-treated cells and which persisted after 20 subsequent inocula in a medium without added metal. On the contrary, catalase activity was not stimulated by copper treatment and, hence, not correlated with SOD levels. The mechanism of copper resistance, therefore, probably involves a persistent induction of SOD, but not of catalase, and it is strongly pH-dependent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 269-272 
    ISSN: 1476-5535
    Keywords: Wine ; Yeasts ; Fatty acids ; Ethyl esters ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The evolution of the cell and must contents of three short-chain fatty acids (C6, C8 and C10) and their ethyl esters during fermentations withSaccharomyces cerevisiae racescerevisiae, bayanus andcapensis were studied. The former is a fermentative yeast and the last two are ‘flor’ film yeasts. The acid concentrations in the musts increased throughout the alcoholic fermentations, and maximum cell concentrations of the fatty acids were reached after 48 h of fermentation. Maximum ester concentrations in the cells were attained after 48–72 h of fermentation. In the musts, ethyl octanoate and ethyl decanoate reached a peak also at this point, and ethyl hexanoate after 10 days. After 134 days,S. cerevisiae racecapensis formed a thick ‘flor’ film whileS. cerevisiae racebayanus developed a thin film andS. cerevisiae racecerevisiae formed no film. At this point, acid contents remained constant in the wines produced byS. cerevisiae racescerevisiae andbayanus, and decreased in those obtained with racecapensis. The ethyl ester contents tended to decrease with the exception of ethyl decanoate in the fermentations carried out byS. cerevisiae racescerevisiae andbayanus.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Journal of industrial microbiology and biotechnology 13 (1994), S. 30-34 
    ISSN: 1476-5535
    Keywords: Phytate ; Saccharomyces cerevisiae ; Polyacrylamide gel ; Inositol phosphates
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Saccharomyces cerevisiae in the form of baker's yeast, cells cultivated on a yeast extract-peptone-glucose medium, as well as cells immobilized in 18% (w/v) polyacrylamide gel showed the ability to hydrolyze 1.727 mM sodium phytate solution at 45°C, pH 4.6, in a stirred tank reactor. Seventy percent yield of dephosphorylation was observed after 2 h using a baker's yeast concentration of 5.8 g dry matter per 100 ml. Hydrolytic activity at 1.8–2.0 μM Pi min−1 was observed between 1st and 3rd h of the reaction in cells cultured 24 or 48 h. No inhibition by the substrate was found at sodium phytate concentrations of 0.587–1.727 mM. After 1.5 h of hydrolysis a single, well distinguished peak ofmyo-inositol-triphosphate was the main product found. By means of immobilization the stability of the biocatalyst was enhanced 3.3-fold and reached its half-life at 64 ninety-minute runs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 244 (1994), S. 260-268 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Amino acid permeases ; Transport ; Tryptophan
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract SCM2, a novel gene encoding a yeast tryptophan permease, was cloned as a high-copy-number suppressor of cse2-1. The cse2-1 mutation causes cold sensitivity, temperature sensitivity and chromosome missegregation. However, only the cold-sensitive phenotype of cse2-1 cells is suppressed by SCM2 at high copy. SCM2 is located on the left arm of yeast chromosome XV, adjacent to SUP3 and encodes a 65 kDa protein that is highly homologous to known amino acid permeases. Four out of five disrupted scm2 alleles (scm2Δ1-Δ4) cause slow growth, whereas one disrupted allele (scm2Δ5) is lethal. Cells with both the scm2Δ1 and trp1-Δ101 mutations exhibit a synthetic cold-sensitive phenotype and grow much more slowly at the permissive temperature than cells with a single scm2Δ1 or trp1-Δ101 mutation. A region of the predicted SCM2 protein is identical to the partial sequence recently reported for the yeast tryptophan permease TAP2, indicating that SCM2 and TAP2 probably encode the same protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    ISSN: 1617-4623
    Keywords: Drug sensitivity ; Saccharomyces cerevisiae ; Major facilitator superfamily ; Drug expulsion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several pleiotropic drug sensitivities have been described in yeast. Some involve the loss of putative drug efflux pumps analogous to mammalian P-glycoproteins, others are caused by defects in sterol synthesis resulting in higher plasma membrane permeability. We have constructed a Saccharomyces cerevisiae strain that exhibits a strong crystal violet-sensitive phenotype. By selecting cells of the supersensitive strain for normal sensitivity after transformation with a wild-type yeast genomic library, a complementing 10-kb DNA fragment was isolated, a 3.4-kb subfragment of which was sufficient for complementation. DNA sequence analysis revealed that the complementing fragment comprised the recently sequenced SGE1 gene, a partial multicopy suppressor of gal11 mutations. The supersensitive strain was found to be a sge1 null mutant. Overexpression of SGE1 on a high-copy-number plasmid increased the resistance of the supersensitive strain. Disruption of SGE1 in a wild-type strain increased the sensitivity of the strain. These features of the SGE1 phenotype, as well as sequence homologies of SGE1 at the amino acid level, confirm that the Sge1 protein is a member of the drug-resistance protein family within the major facilitator superfamily (MFS).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Transcription factor ; Zinc finger ; Multidrug resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract TheSaccharomyces cerevisiae PDR3 gene, located near the centromere of chromosome II, has been completely sequenced and characterised. Mutationspdr3-1 andpdr3-2, which confer resistance to several antibiotics can be complemented by a wild-type allele of the PDR3 gene. The sequence of the wild-typePDR3 gene revealed the presence of a long open reading frame capable of encoding a 976-amino acid protein. The protein contains a single Zn(II)2Cys6 binuclear-type zinc finger homologous to the DNA-binding motifs of other transcriptional activators from lower eukaryotes. Evidence that the PDR3 protein is a transcriptional activator was provided by demonstrating that DNA-bound LexA-PDR3 fusion proteins stimulate expression of a nearby promoter containing LexA binding sites. The use of LexA-PDR3 fusions revealed that the protein contains two activation domains, one localised near the N-terminal, cysteine-rich domain and the other localised at the C-terminus. The salient feature of the PDR3 protein is its similarity to the protein coded byPDR1, a gene responsible forpleiotropicdrugresistance. The two proteins show 36% amino acid identity over their entire length and their zinc finger DNA-binding domains are highly conserved. The fact that the absence of both PDR1 and PDR3 (simultaneous disruption of the two genes) enhances multidrug sensitivity strongly suggests that the two transcriptional factors have closely related functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    ISSN: 1617-4623
    Keywords: Nuclear suppressor gene ; Mitochondrial functions ; Glucose repression ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We previously isolated a nuclear 5.7 kb genomic fragment carrying the NAM7/UPF1 gene, which is able to suppress mitochondrial splicing deficiency when present in multiple copies. We show here that an immediately adjacent gene ISF1 (Increasing Suppression Factor) increases the efficiency of the NAM7/UPF1 suppressor activity. The ISF1 gene has been independently isolated as the MBR3 gene and comparison of the ISF1 predicted protein sequence with data libraries revealed a significant similarity with the MBRI yeast protein. The ISF1 and NAM7 genes are transcribed in the same direction, and RNase mapping allowed the precise location of their termini within the intergenic region to be determined. The ISF1 gene is not essential for cell viability or respiratory growth. However as for many mitochondrial genes, ISF1 expression is sensitive to fermentative repression; in contrast expression of the NAM7 gene is unaffected by glucose. We propose that ISF1 could influence the NAM7/UPF1 function, possibly at the level of mRNA turnover, thus modulating the expression of nuclear genes involved in mitochondrial biogenesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    ISSN: 1617-4623
    Keywords: DNA polymerases ε and δ ; 3′ → 5′ Exonuclease ; Replication errors ; Spontaneous mutations ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract DNA polymerases II (ε) and III(δ) are the only nuclear DNA polymerases known to possess an intrinsic 3′ → 5′ exonuclease in Saccharomyces cerevisiae. We have investigated the spontaneous mutator phenotypes of DNA polymerase δ and ε 3′ → 5′ exonuclease-deficient mutants, pol3-01 and pol2-4, respectively. pol3-01 and pol2-4 increased spontaneous mutation rates by factors of the order of 102 and 101, respectively, measured as URA3 forward mutation and his7-2 reversion. Surprisingly, a double mutant pol2-4 pol3-01 haploid was inviable. This was probably due to accumulation of unedited errors, since a pol2-4/pol2-4 pol3-01/pol3-01 diploid was viable, with the spontaneous his7-2 reversion rate increased by about 2 × 103-fold. Analysis of mutation rates of double mutants indicated that the 3′ → 5′ exonucleases of DNA polymerases δ and ε can act competitively and that, like the 3′ → 5′ exonuclease of DNA polymerase δ the 3′ → 5′ exonuclease of DNA polymerase ε acts in series with the PMS1 mismatch correction system. Mutational spectra at a URA3 gene placed in both orientations near to a defined replication origin provided evidence that the 3′ → 5′ exonucleases of DNA polymerases δ and ε act on opposite DNA strands, but were in sufficient to distinguish conclusively between different models of DNA replication.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 242 (1994), S. 517-527 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; HSP82 ; Random in vitro mutagenesis ; Temperature-sensitive mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The budding yeast Saccharomyces cerevisiae has two HSP90-related genes per haploid genome, HSP82 and HSC82. Random mutations were induced in vitro in the HSP82 gene by treatment of the plasmid with hydroxylamine. Four temperature-sensitive (ts) mutants and one simultaneously is and cold-sensitivie (cs) mutant were then selected in a yeast strain in which HSC82 had previously been disrupted. The mutants were found to have single base changes in the coding region, which caused single amino acid substitutions in the HSP82 protein. All of these mutations occurred in amino acid residues that are well conserved among HSP90-related proteins of various species from Escherichia coli to human. Various properties including cell morphology, macromolecular syntheses and thermosensitivity were examined in each mutant at both the permissive and nonpermissive temperatures. The mutations in HSP82 caused pleiotropic effects on these properties although the phenotypes exhibited at the nonpermissive temperature varied among the mutants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    ISSN: 1617-4623
    Keywords: Cerulenin ; Saccharomyces cerevisiae ; Fatty acid synthase ; β-Ketoacyl synthase ; Drug resistance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Cerulenin, an antifungal antibiotic produced by Cephalosporium caerulens, is a potent inhibitor of fatty acid synthase in various organisms, including Saccharomyces cerevisiae. The antibiotic inhibits the enzyme by binding covalently to the active center cysteine of the condensing enzyme domain. We isolated 12 cerulenin-resistant mutants of S. cerevisiae following treatment with ethyl methanesulfonate. The mechanism of cerulenin resistance in one of the mutants, KNCR-1, was studied. Growth of the mutant was over 20 times more resistant to cerulenin than that of the wild-type strain. Tetrad analysis suggested that all mutants mapped at the same locus, FAS2, the gene encoding the α subunit of the fatty acid synthase. The isolated fatty acid synthase, purified from the mutant KNCR-1, was highly resistant to cerulenin. The cerulenin concentration causing 50% inhibition (IC50) of the enzyme activity was measured to be 400 μM, whereas the IC50 value was 15 μM for the enzyme isolated from the wild-type strain, indicating a 30-fold increase in resistance to cerulenin. The FAS2 gene was cloned from the mutant. Sequence replacement experiments suggested that an 0.8 kb EcoRV-HindIII fragment closely correlated with cerulenin resistance. Sequence analysis of this region revealed that the GGT codon encoding Gly-1257 of the FAS2 gene was altered to AGT in the mutant, resulting in the codon for Ser. Furthermore, a recombinant FAS2 gene, in which the 0.8 Kb EcoRV-HindIII fragment of the wild-type FAS2 gene was replaced with the same region from the mutant, when introduced into FAS2-defective S. cerevisiae complemented the FAS2 pheno-type and showed cerulenin resistance. These data indicate that one amino acid substitution (Gly → Ser) in the α subunit of fatty acid synthase is responsible for the cerulenin resistance of the mutant KNCR-1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Transcriptional regulation ; Chromatin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract GAL11 was first identified as a gene required for full expression of some galactose-inducible genes that are activated by GAL4, and it was subsequently shown to be necessary for full expression of another set of genes activated by RAP1/GRFl/TUF. Genetic analysis suggests that GAL11 functions as a coactivator, mediating the interaction of sequence-specific activators with basal transcription factors. To test this hypothesis, we first tried to identify functional domains by deletion analysis and found that the 866–910 region is indispensable for function. Using reporters bearing various upstream activating sequences (UAS) and different core promoter structures, we show that the involvement of GAL11 in transcriptional activation varies with the target promoter and the particular combination of cis elements. Gel electrophoresis in the presence of chloroquine shows that GAL11 affects the chromatin structure of a circular plasmid. Based on these findings, the role of GAL 11 in regulation of transcription, including an alteration in chromatin structure, is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 10 (1994), S. 572-575 
    ISSN: 1573-0972
    Keywords: Growth inhibition ; L-lysine ε-aminotransferase ; nitrogen limitation ; α-oxoadipic acid ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Lysine added to grain mashes under nitrogen-limiting conditions (as in most industrial fermentations) inhibited growth of Saccharomyces cerevisiae. This inhibition was relieved by raising the assimilable nitrogen content. Lysine-induced inhibition is not mediated through accumulation of α-oxoadipic acid, an intermediate of lysine metabolism which accumulates by a back up of intermediates in de novo synthesis. Lysine degradation is regulated by the synthesis of L-lysine ε-aminotransferase, an enzyme that catalyses the first step in one of three possible routes of lysine degradation (not previously reported in S. cerevisiae). Synthesis is repressed under nitrogenlimiting conditions, but derepressed when excess assimilable nitrogen is available. Derepression results in degradation of lysine and decreases inhibitory effects on growth. The toxic compound appears to be lysine itself.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Electronic Resource
    Electronic Resource
    Springer
    Molecular biology reports 20 (1994), S. 135-141 
    ISSN: 1573-4978
    Keywords: mitochondria ; multienzyme complex ; replication ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A 40 S multienzyme complex containing mtDNA polymerase was isolated from mitochondria ofS. cerevisiae by density gradient centrifugation and by gel filtration chromatography. Besides DNA polymerase, RNA polymerase, primase, 3′→5′ exonuclease and an ATPase activities were found to be associated with it. The presence of some of these enzymes were confirmed by Western blot. This high molecular weight multienzyme complex containing DNA has most of the attributes of a putative replisome.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    ISSN: 1573-5028
    Keywords: Arabidopsis thaliana ; cDNA ; complementation ; erg20-2 yeast mutant ; farnesyl diphosphate synthase ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA encoding farnesyl diphosphate synthase, an enzyme that synthesizes C15 isoprenoid diphosphate from isopentenyl diphosphate and dimethylallyl diphosphate, was cloned from an Arabidopsis thaliana cDNA library by complementation of a mutant of Saccharomyces cerevisiae deficient in this enzyme. The A. thaliana cDNA was also able to complement the lethal phenotype of the erg20 deletion yeast mutant. As deduced from the full-length 1.22 kb cDNA nucleotide sequence, the polypeptide contains 343 amino acids and has a relative molecular mass of 39689. The predicted amino acid sequence presents about 50% identity with the yeast, rat and human FPP synthases. Southern blot analyses indicate that A. thaliana probably contains a single gene for farnesyl diphosphate synthase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 243 (1994), S. 253-260 
    ISSN: 1617-4623
    Keywords: Recombinant DNA ; Saccharomyces cerevisiae ; Endo-β-glucanase ; Endo-xylanase ; Heterologous expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have developed a method for fast and efficient isolation of enzyme genes from filamentous fungi by combining the ability of Saccharomyces cerevisiae to express heterologous genes with the utilisation of sensitive and reliable enzyme assays. A cDNA library from the fungus Humicola insolens was constructed in a S. cerevisiae/Escherichia coli shuttle vector in E. coli. Sub-pools of the library were subsequently screened for enzyme activity in S. cerevisiae. More than 130 clones were identified as positive in either an endo-β-glucanase or an endo-xylanase assay. Based on a partial characterization of the DNA sequence of the individual clones, they could be grouped into five distinct types of endo-β-glucanases and three types of endo-xylanases. A representative cDNA from each type was sub-cloned in an Aspergillus vector and expressed in A. oryzae. The new cloning method may be an important alternative to traditional cloning methods based on amino acid sequence information.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 243 (1994), S. 308-314 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Integrative plasmids ; Recombinational structures ; UV irradiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The nature of UV-induced pre-recombinational structures was studied using transformation of Saccharomyces cerevisiae cells with non-replicative plasmids. Transformation by double-stranded plasmids irradiated with UV was stimulated up to 50-fold, and both plasmid integration and conversion of the mutated chromosomal selective gene were found to be equally increased. The stimulation observed with such ‘totally’ irradiated plasmids was not found with plasmids bearing lesions in only one strand. This effect is attributed to the formation by excision repair of recombinogenic structures consisting of a pyrimidine dimer opposite a gap. When single-stranded integrative plasmids were irradiated, their transforming potential was decreased but the proportion of transformants that arose by gene conversion, rather than by plasmid integration, was increased from 8% to 49% as a function of the UV dose. Possible reasons why single-strand UV lesions favour gene conversion are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 243 (1994), S. 358-362 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Oxidative stress ; High temperature viability ; Ubiquitin
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract UBI4, the polyubiquitin gene of Saccharomyces cerevisiae, is expressed at a low level in vegetative cells, yet induced strongly in response to starvation, cadmium, DNA-damaging agents and heat shock. UBI4 is also expressed at a higher basal level in cells growing by respiration as compared to glucose-repressed cells growing by fermentation. This higher UBI4 expression of respiratory cultures probably helps to counteract the greater oxidative stress of respiratory growth. The effects of inactivating UBI4 on high temperature viability are more marked with respiratory cultures. Also loss of UBI4 leads to a considerably increased rate of killing of respiring cells by hydrogen peroxide, whereas the same gene inactivation has relatively little effect on the peroxide sensitivity of cells in which mitochondrial functions are repressed. This is the first study to reveal that ubiquitin levels in cells can influence their ability to withstand oxidative stress.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 243 (1994), S. 363-368 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Glycolysis ; Phosphoglucose isomerase ; Antisense ; Double-strand coding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Open reading frames longer than 300 bases were observed in the antisense strands of the genes coding for the glycolytic enzymes phosphoglucose isomerase, phosphoglycerate mutase, pyruvate kinase and alcohol dehydrogenase I. The open reading frames on both strands are in codon register. It has been suggested that proteins coded in codon register by complementary DNA strands can bind to each other. Consequently, it was interesting to investigate whether the open reading frames in the antisense strands of glycolytic enzyme genes are functional. We used oligonucleotide-directed mutagenesis of the PGI1 phosphoglucose isomerase gene to introduce pairs of closely spaced base substitutions that resulted in stop codons in one strand and only silent replacements in the other. Introduction of the two stop codons into the PGI1 sense strand caused the same physiological defects as already observed for pgi1 deletion mutants. No detectable effects were caused by the two stop codons in the antisense strand. A deletion that removed a section from − 31 by to + 109 by of the PGI1 gene but left 83 bases of the 3′ region beyond the antisense open reading frame had the same phenotype as a deletion removing both reading frames. A similar pair of deletions of the PYK1 gene and its antisense reading frame showed identical defects. Our own Northern experiments and those reported by other authors using double-stranded probes detected only one transcript for each gene. These observations indicate that the antisense reading frames are not functional. On the other hand, evidence is provided to show that the rather long reading frames in the antisense strands of these glycolytic enzyme genes could arise from the strongly selective codon usage in highly expressed yeast genes, which reduces the frequency of stop codons in the antisense strand.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    ISSN: 1617-4623
    Keywords: Arabidopsis thaliana ; Saccharomyces cerevisiae ; Complementation ; Aspartate transcarbamylase ; Orotate phosphoribosyl transferase ; Orotidine-5′-phosphate decarboxylase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An Arabidopsis thaliana cDNA library was used to complement Saccharomyces cerevisiae pyrimidine auxotrophic mutants. Mutants in all but one (carbamylphosphate synthetase) of the six steps in the de novo pyrimidine biosynthetic pathway could be complemented. We report here the cloning, sequencing and computer analysis of two cDNAs encoding the aspartate transcarbamylase (ATCase; EC 2.1.3.2) and orotate phosphoribosyltransferase-orotidine-5′-phosphate decarboxylase (OPRTase-OMP-decase; EC 2.4.2.10, EC 4.1.1.23) enzymes. These results confirm the presence in A. thaliana of a bifunctional gene whose product catalyses the last two steps of the pyrimidine biosynthetic pathway, as previously suggested by biochemical studies. The ATCase encoding cDNA sequence (PYRB gene) shows an open reading frame (ORF) of 1173 by coding for 390 amino acids. The cDNA encoding OPRTase-OMPdecase (PYRE-F gene) shows an ORF of 1431 by coding for 476 amino acids. Computer analysis of the deduced amino acid sequences of both cDNAs shows the expected high similarity with the ATCase, ornithine transcarbamylase (OTCase; EC 2.1.3.3), OPRTase and OMPdecase families. This heterospecific cloning approach increases our understanding of the genetic organization and interspecific functional conservation of the pyrimidine biosynthetic pathway and underlines its usefulness as a model for evolutionary studies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 245 (1994), S. 686-693 
    ISSN: 1617-4623
    Keywords: Yeast ; Saccharomyces cerevisiae ; Poly(ADP-ribose) polymerase ; DNA repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The coding sequence for human poly(ADP-ribose) polymerase was expressed inducibly in Saccharomyces cerevisiae from a low-copy-number plasmid vector. Cell free extracts of induced cells had poly(ADPribose) polymerase activity when assayed under standard conditions; activity could not be detected in non-induced cell extracts. Induced cells formed poly(ADP-ribose) in vivo, and levels of these polymers increased when cells were treated with the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). The cytotoxicity of this agent was increased in induced cells, and in vivo labelling with [3H]adenine further decreased their viability. Increased levels of poly(ADP-ribose) found in cells treated with the alkylating agent were not accompanied by lowering of the NAD concentration.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Meiosis Sporulation ; Divergent promoter ; Developmental regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Promoters that control gene expression in Saccharomyces cerevisiae only in a sporulation-specific manner have previously been isolated from a genomic yeast DNA library fused to a promoterless Escherichia coli lacZ gene. Two novel sporulation-specific genes, SPS18 and SPS19, were isolated using this technique. These genes are divergently controlled by the same promoter but with SPS18 expressed at four times the level of SPS19. Deletion analysis has shown that the promoter elements that exert sporulation control on each of the genes overlap, having a common 25 bp sequence located within the intergenic region. SPS18 encodes a 34-KDa protein of 300 amino acids that contains a putative zinc-binding domain and a region of highly basic residues that could target the protein to the nucleus. SPS19 encodes a 31-KDa protein of 295 amino acids, which has a peroxisomal targeting signal (SKL) at its C terminus; this protein belongs to the family of non-metallo short-chain alcohol dehydrogenases. A null mutation deleting the intergenic promoter prevented expression of both genes, and when homozygous in diploids, reduced the extent of sporulation four-fold; the spores that did form were viable, but failed to become resistant to ether, and were more sensitive to lytic enzymes. This phenotype reflects a defect in spore wall maturation, indicating that the product of at least one of the genes functions during the process of spore wall formation. Therefore these genes belong to the class of late sporulation-specific genes that are sequentially activated during the process of meiosis and spore formation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; ts mutant ; Recovery ; HTR1 ; MCS1/SSD1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new temperature-sensitive mutant of Saccharomyces cerevisiae was isolated. Arrested cells grown at the nonpermissive temperature were of dumb-bell shape and contained large vacuoles. A DNA fragment was cloned based on its ability to complement this temperature sensitivity. The HTR1 gene encodes a putative protein of 93 kDa without significant homology to any known proteins. The gene was mapped between ade5 and lys5 on the left arm of chromosome VII. The phenotype of the gene disruptant appeared to be strain-specific; disruption of the gene in strain W303 caused the cells to become temperature sensitive. The arrested phenotype here was similar to that of the original is mutant and cells in G2/M phase predominated at high temperature. Another disruptant in a strain YPH background grew slowly at high temperature due to slow progression through G2/M phase, and morphologically abnormal (elongated) cells accumulated. A single-copy suppressor that alleviated the temperature-sensitive defects in both strains was identified as MCS1/SSD1. The wild-type strains W303 and YPH are known to carry defective MCS1/SSD1 alleles; hence HTR1 may function redundantly with MCS1/SSD1 to suppress the temperature-sensitive phenotypes. In addition, based on a halo bioassay, the disruptant strains appeared to be defective in recovery from, or adaptive response to G1 arrest mediated by mating pheromone, even at the permissive temperature. Thus the gene has at least two functions and is designated HTR1 (required for high temperature growth and recovery from G1 arrest induced by mating pheromone).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Cell cycle ; Bud site selection ; Guanine exchange factor ; Ras
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Guanine Exchange Factor (GEF) activity for Ras proteins has been associated with a conserved domain in Cdc25p, Sdc25p in Saccharomyces cerevisiae and several other proteins recently found in other eukaryotes. We have assessed the structure-function relationships between three different members of this family in S. cerevisiae, Cdc25p, Sdc25p and Bud5p. Cdc25p controls the Ras pathway, whereas Bud5p controls bud site localization. We demonstrate that the GEF domain of Sdc25p is closely related to that of Cdc25p. We first constructed a thermosensitive allele of SDC25 by specifically altering amino acid positions known to be changed in the cdc25-1 mutation. Secondly, we constructed three chimeric genes from CDC25 and SDC25, the products of which are as active in the Ras pathway as are the wild-type proteins. In contrast, similar chimeras made between CDC25 and BUD5 lead to proteins that are inactive both in the Ras and budding control pathways. This difference in the ability of chimeric proteins to retain activity allows us to define two subclasses of structurally different GEFs: Cdc25p and Sdc25p are Ras-specific GEFs, and Bud5p is a putative GEF for the Rsr1/Bud1 Rap-like protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 245 (1994), S. 323-333 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; mRNA decay Poly(A) tail ; Ty transposition ; SSM4 gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Decay rates of mRNAs depend on many elements and among these, the role of the poly(A) tail is now well established. In the yeast Saccharomyces cerevisiae, thermosensitive mutations in two genes, RNA14 and RNA15, result in mRNAs having shorter poly(A) tails and reduced half-life. To identify other components interacting in the same process, we have used a genetic approach to isolate mutations that suppress the thermosensitivity of an rna14 mutant strain. Mutations in a single locus, named SSM4, not only suppress the cell growth phenotype but also the mRNA instability and extend the short mRNA poly(A) tails. The frequency of appearance and the recessive nature of these mutations suggested that the suppressor effect was probably due to a loss of function. We failed to clone the SSM4 gene directly by complementation, owing to its absence from gene banks; it later emerged that the gene is toxic to Escherichia coli, but we have nevertheless been able to clone the SSM4 sequence by Ty element transposition tagging. Disruption of the SSM4 gene does not affect cell viability and suppresses the rna14 mutant phenotypes. The protein encoded by the SSM4 gene has a calculated molecular mass of 151 kDa and does not contain any known motif or show homology with known proteins. The toxicity of the SSM4 gene in E. coli suggests that a direct biochemical activity is associated with the corresponding protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 242 (1994), S. 257-262 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Protein phosphatase ; Ras-cAMP pathway ; DIS2S1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces cerevisiae DIS2S1/GLC7 gene encodes a type 1 protein phosphatase indispensable for cell proliferation. We found that introduction of a multicopy DIS2S1 plasmid impaired growth of cells with reduced activity of the cAMP-dependent protein kinase. In order to understand further the interaction between the two enzymes, a temperature-sensitive mutation in the DIS2S1 gene was isolated. The mutant accumulated less glycogen than wild type at the permissive temperature, indicating that activity of the Dis2s1 protein phosphatase is attenuated by the mutation. Furthermore, the dis2s1 ts mutation was shown to be suppressed by a multicopy plasmid harboring PDE2, a gene for cAMP phosphodiesterase. These results indicate that the Ras-cAMP pathway interacts genetically with the DIS2S1/GLC7 gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Transcriptional activator ; AP-1 ; Stress response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces cerevisiae YAP2 gene encoding an AP-1-like transcriptional activator protein was cloned by selection for genes that confer pleiotropic drug resistance when present in high copy number. The novel YAP2 gene encodes a protein of 45827 daltons and is homologous in part to a known transcriptional activator protein encoded by YAP1/PDR4/SNQ3/PAR1. Homology was found only in both terminal regions. The N-terminal portion contains a region rich in basic amino acids, followed by a “leucine zipper” motif. Overexpression of YAP2 led to the induction of expression of an AP-1 recognition element (ARE)-dependent promoter. The yap1 disruptant has been shown to be sensitive to H2O2. In this study, we demonstrated that the yap1 disruptant is also unable to grow in medium containing 150 μM cadmium, whereas the yap2 disruptant exhibited no significant phenotypes. However, YAP2 in high copy number did suppress cadmium sensitivity, but not H2O2 sensitivity of the yap1 disruptant. YAP1 was able to mediate both cadmium- and H2O2-induced transcriptional activation of an ARE-dependent promoter. A high-copy-number plasmid bearing YAP2 mediated cadmium-induced transcriptional activation of this promoter. The inductions were prevented by the antioxidant N-acetyl-l-cysteine.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Duplicate genes ; Synthetic lethal mutants ; CTP synthetase ; Pyrimidine biosynthetic pathway
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In the pyrimidine biosynthetic pathway, CTP synthetase catalyses the conversion of uridine 5′-triphosphate (UTP) to cytidine 5′-triphosphate (CTP). In the yeast Saccharomyces cerevisiae, the URA7 gene encoding this enzyme was previously shown to be nonessential for cell viability. The present paper describes the selection of synthetic lethal mutants in the CTP biosynthetic pathway that led us to clone a second gene, named URA8, which also encodes a CTP synthetase. Comparison of the predicted amino acid sequences of the products of URA7 and URA8 shows 78% identity. Deletion of the URA8 gene is viable in a haploid strain but simultaneous presence of null alleles both URA7 and URA8 is lethal. Based on the codon bias values for the two genes and the intracellular concentrations of CTP in strains deleted for one of the two genes, relative to the wild-type level, URA7 appears to be the major gene for CTP biosynthesis. Nevertheless, URA8 alone also allows yeast growth, at least under standard laboratory conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Cell wall ; Protein kinase C ; β-Glucanase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract To obtain more information about the cell wall organization of Saccharomyces cerevisiae, we have developed a novel screening system to obtain cell wall-defective mutants, using a density gradient centrifugation method. Nine hypo-osmolarity-sensitive mutants were classified into two complementation groups, hpo1 and hpo2. Phase contrast microscopic observation showed that mutant cells bearing lesions at either locus became abnormally large. A gene that complemented the mutant phenotype of hpo2 was cloned and sequenced. This gene turned out to be identical to PKC1, which encodes the yeast homologue of mammalian protein kinase C. Complementation tests with pkc1Δ showed that hpo2 is allelic to pkc1. To study the reason for the fragility of hpo2 cells, cell wall was isolated and the glucan was analyzed. The amount of alkali, acid-insoluble glucan, which is responsible for the rigidity of the cell wall, was reduced to about 30% that of the wild-type cell and this may be the major cause of the fragility of the hpo2 mutant cell. Analysis of total wall proteins in hpo2 mutant cells on SDS-polyacrylamide gels revealed that a 33 kDa protein was overproduced two- to threefold relative to the wild-type level. This 33 kDa protein was identified as a β-glucanase, encoded by BGL2. Disruption of BGL2 in the hpo2 mutant partially rescued the growth rate defect. This suggests that the PKC1 kinase cascade regulates BGL2 expression negatively and overproduction of the β-glucanase is partially responsible for the growth defect. Since the bgl2 disruption did not rescue the hypo-osmolarty-sensitive phenotype of the hpo2 mutant, PKC1 must negatively regulate other enzymes involved in the biosynthesis and metabolism of the cell wall.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Mitochondria ; Cytochrome b ; Complex II ; HAP2/3/4
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Computer-assisted structural analysis of the predicted product of the previously described open reading frame (ORF) YKL4 located on the left arm of chromosome XI of Saccharomyces cerevisiae revealed a high degree of similarity (〉50%) to bovine cytochrome b 560, the sdhC polypeptide of the Escherichia coli succinate dehydrogenase (SDH) complex and the protein specified by ORF137 located on the chloroplast DNA of Marchantia polymorpha. Disruption of the yeast gene severely impaired mitochondrial function, while Northern analysis showed it to be subject to catabolite repression. Deletion analysis of the CYB3 promoter identified a single HAP2/3/4-binding element that is necessary and sufficient for carbon source-dependent transcriptional regulation. These experiments also suggested the presence of additional, as yet unidentified, transcriptional control elements, both negative and positive. Taken together, these data lead us to conclude that the CYB3 gene encodes the yeast homolog of the bovine cytochrome b 560 component of complex II of the mitochondrial electron transport chain.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; CYP1(HAP1) protein ; Electron transport ; Oxygen and heme regulation ; Trans regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract CYP1 determines the expression of several genes whose transcription is heme-dependent in yeast. It exerts regulatory functions even in the absence of heme, usually considered to be its effector. It mediates both positive and negative effects, depending on the target gene and on the redox state of the cell. In the presence of heme, it binds through a cysteine-rich domain in which a histidine residue occupies the position of the sixth and essential cysteine of the otherwise classical zinc cluster DNA-binding domain exemplified by GAL4. We constructed specific missense mutations in the potential CYP1 zinc cluster domain by site-directed mutagenesis and looked for regulatory effects of the mutated proteins under specific physiological conditions. We show that CYP1 does belong to the zinc cluster regulatory family since a sixth essential cysteine residue is indeed present, albeit at a modified position when compared to the consensus sequence. We also show that the amino acid preceding the first cysteine residue of the DNA-binding domain critically affects the efficiency of regulation both in the presence and in the absence of heme: mutations known to affect DNA binding under heme-sufficient conditions also affect regulation under heme-deficient conditions. We therefore surmise that regulation under hemedeficient conditions is dependent upon DNA binding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    ISSN: 1617-4623
    Keywords: Multicopy suppressors ; HAP2/3/4 activation complex ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two new yeast genes, named MBR1 and MBR3, were isolated as multicopy suppressors of the growth defect of a strain lacking the HAP2 transcriptional activator. Both genes when overexpressed can also suppress the growth defect of hap3 and hap4 null mutants. However, overexpression of MBRI cannot substitute for the HAP2/3/4 complex in activation of the CYC1 gene. Nucleotide sequencing of MBR1 and MBR3 revealed that these two genes encode serine-rich, hydrophilic proteins with regions of significant homology. The functional importance of one of these conserved regions was shown by mutagenesis. Disruption of MBR1 leads to a partial growth defect on glycerol medium. Disruption of MBR3 has no major effect but the double disruptant shows a synthetic phenotype suggesting that the MBR1 and MBR3 gene products participate in common function.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Yeast Catabolite repression ; Gene expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Maltose utilization in yeast requires the presence of any one of the five unlinked, homologous MAL loci. Transcription of the two structural genes MALT (permease) and MALS (maltase) is induced by maltose and catabolite-repressed by glucose. MAL6T and MAL6S share a common 5′ intergenic sequence; deletion studies within this sequence revealed a bi-directionally functioning upstream activation sequence (UASM) consisting of four 11bp homologous sites. Activation of these sites by the MALR protein results in the coordinate expression of MAL6T and MAL6S. The basal promoter activates MALS expression to a greater extent than MALT and is located in a region that overlaps UASM. Deletion of several subsites within the UASM has an asymmetric effect on MAL gene expression, having a greater affect on MALT than on MALS. Catabolite repression of MAL6T and MAL6S by glucose is controlled at several levels. Using disruption mutants, the positively acting MAL1R protein was also found to play a role in catabolite repression of MAL6T and MAL6S.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; RPK1 gene ; Protein kinase ; DNA replication ; Initiation of mitosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We report here the sequence of RPK1 (for Regulatory cell Proliferation Kinase), a new Saccharomyces cerevisiae gene coding for a protein with sequence similarities to serine/threonine protein kinases. The protein sequence of 764 amino acids includes an amino-terminal domain (residues 1–410), which may be involved in regulation of the kinase domain (residues 411–764). The catalytic domain of Rpkl is not closely related to other known yeast protein kinases but exhibits strong homology to a newly discovered group of mammalian kinases (PYT, TTK, esk) with serine/threonine/tyrosine kinase activity. Null alleles of RPK1 are lethal and thus this gene belongs to the small group of yeast protein kinase genes that are essential for cell growth. In addition, eliminating the expression of RPK1 gives rise to the accumulation of non-viable cells with less than a 1 N DNA content suggesting that cells proceed into mitosis without completion of DNA synthesis. Therefore, the Rpkt kinase may function in a checkpoint control which couples DNA replication to mitosis. The level of the RPK1 transcript is extremely low and constant throughout the mitotic cycle. However it is regulated during cellular differentiation, being decreased in α-factor-treated a cells and increased late in meiosis in a/α diploids. Taken together, our results suggest that Rpk1 is involved in a pathway that coordinates cell proliferation and differentiation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    ISSN: 1617-4623
    Keywords: Bacterio-opsin ; Expression ; Yeast ; Saccharomyces cerevisiae ; Membranes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The bop gene codes for the membrane protein bacterio-opsin (BO), which on binding all-trans-retinal, constitutes the light-driven proton pump bacteriorhodopsin (BR) in the archaebacterium Halobacterium salinarium The designation H. salinarium instead of the former designation H. halobium is used throughout this paper following the classification of Tindall (1992) . This gene was cloned in a yeast multi-copy vector and expressed in Saccharomyces cerevisiae under the control of the constitutive ADH1 promoter. Both the authentic gene and a modified form lacking the precursor sequence were expressed in yeast. Both proteins are incorporated into the membrane in S. cerevisiae. The presequence is thus not required for membrane targeting and insertion of the archaebacterial protein in budding yeast, or in the fission yeast Schizosaccharomyces pombe, as has been shown previously. However, in contrast to S. pombe transformants, which take on a reddish colour when all-trans-retinal is added to the culture medium as a result of the in vivo regeneration of the pigment, S. cerevisiae cells expressing BO do not take on a red colour. The precursor of BO is processed to a protein identical in size to the mature BO found in the purple membrane of Halobacterium. The efficiency of processing in S. cerevisiae is dependent on growth phase, as well as on the composition of the medium and on the strain used. The efficiency of processing of BR is reduced in S. pombe and in a retinal-deficient strain of H. salinarium, when retinal is present in the medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    ISSN: 1617-4623
    Keywords: HAP3 ; Saccharomyces cerevisiae ; Kluyveromyces lactis ; Zinc finger ; Carbon source regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Kluyveromyces lactis homologue of the Saccharomyces cerevisiae HAP3 gene was isolated by functional complementation of the respiratory-deficient phenotype of the S. cerevisiae hap3::HIS4 strain SHY40. The KlHAP3 gene encodes a protein of 205 amino acids, of which the central B-domain of 90 residues is highly homologous to HAP3 counterparts of S. cerevisiae and higher eukaryotes. The protein contains a novel 4-cysteine zinc-finger motif and we propose by analogy that all other homologous HAP3 proteins contain the same motif, with the position containing the third cysteine being occupied by a serine residue. In contrast to the situation in S. cerevisiae, disruption of the KlHAP3 gene in K. lactis does not result in a respiratory-deficient phenotype and the growth of the null strain is indistinguishable from wild type. There is also no effect on the expression of the carbon source-regulated KlCYC1 gene, suggesting either a different role for the HAP2/3/4 complex, or the existence of a different mechanism of carbon source regulation. Sequence verification of the S. cerevisiae HAP3 locus reveals that, just as in K. lactis, a long open reading frame (ORF) is present upstream of the HAP3 gene. These highly homologous ORFs are predicted to have at least eight membrane-spanning fragments, but do not show significant homology to any known sequence present in databases. The ScORFX gene is transcribed in the opposite direction to ScHAP3, but, in contrast to an earlier report by Hahn et al. (1988), the transcripts of the two genes do not overlap. The model proposed by these authors, in which the ScHAP3 gene is regulated by an anti-sense non-coding mRNA, is therefore not correct.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Pyruvate decarboxylase ; Pyruvate kinase ; Signalling ; Glycolysis mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Pyruvate decarboxylase, PDCase, activity in wild-type yeast cells growing on ethanol is quite low but increases up to tenfold upon addition of glucose, less with galactose and only slightly with glycerol. PDCase levels in glycolysis mutant strains growing on ethanol or acetate were higher than in the wild-type strain. These levels correlated with the sum of the concentrations of three-carbon glycolytic metabolites. The highest accumulation was observed in a fructose bisphosphate aldolase deletion mutant concomintant with the highest PDCase activity wild-type level. On the other hand, the PDCase levels in the different mutants again correlated with the sum of the concentrations of the three-carbon glycolytic metabolites. This was interpreted to mean that full induction of PDCase activity requires the accumulation of hexose-and triosephosphates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    ISSN: 1432-0983
    Keywords: Glycosylphosphatidylinositol anchored-protein ; Southern analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The GGP1 gene encodes the only GPI-anchored glycoprotein (gp115) that has been purified todate in the budding yeast Saccharomyces cerevisiae. It is a single-copy gene whose deduced amino-acid sequence shares no significant homology to any other known protein. In this paper we report a Southern hybridization analysis of genomic DNA from different eukaryotic organisms to identify homologues of the GGP1 gene. We have analyzed DNA prepared from a unicellular green alga (Chlamydomonas eugametos), from two distantly related yeast species (Candida cylindracea and Schizosaccharomyces pombe), and from the common bean Phasoleus vulgaris. The moderate stringency of the experimental conditions and the high specificity of the probes used indicate that a single-copy of GGP1-related sequences exists in all these eukaryotic organisms. The chromosomal localization of the GGP1 gene in S. cerevisiae has also been determined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 92-94 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Gene mapping ; Idiomorphism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The STA2 (glucoamylase) gene of Saccharomyces cerevisiae has been mapped close to the end of the left arm of chromosome II. Meiotic analysis of a cross between a haploid strain containing STA2, and another strain carrying the melibiase gene MEL1 (which is known to be at the end of the left arm of chromosome II) produced parental ditype tetrads only. Since there is no significant DNA sequence similarity between the STA2 and MEL1 genes, or their respective flanking regions, we conclude that these two genes are carried by separate non-hybridizing sequences of chromosomal DNA, either of which can reside at the end of the left arm of chromosome II. By analogy with the mating-type locus of Neurospora crassa, we suggest that the STA2 and MEL1 genes are idiomorphs with respect to one another.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Phospholipid synthesis ; Phospholipid-N-methyltransferase ; Mutant ; Over-expression
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract By functional complementation of the auxotrophic requirements for choline of a cdg1, cho2 double-mutant, by transformation with a genomic DNA library in a high copy number plasmid, two different types of complementing DNA inserts were identified. One type of insert was earlier shown to represent the CHO2 structural gene. In this report we describe the molecular and biochemical characterization of the second type of complementing activity. The transcript encoded by the cloned gene was about 1000-nt in length and was regulated in response to the soluble phospholipid precursors, inositol and choline. A gene disruption resulted in no obvious growth phenotype at 23°C or 30°C, but in a lack of growth at 37°C in the presence of monomethylethanolamine. Null-mutants exhibited an inositol-secretion phenotype, indicative of mutations in the lipid biosynthetic pathway. Complementation analysis, biochemical analysis of the phospholipid methylation pathway in vivo, and comparison of the restriction pattern of the cloned gene to published sequences, unequivocally identified the cloned gene as the OPI3 gene, encoding phospholipid-N-methyltransferase in yeast. When present in multiple copies the OPI3 gene efficiently suppresses the phospholipid methylation defect of a cho2 mutation. As a result of impaired synthesis of phosphatidylcholine, the INO1-deregulation phenotype is abolished in cho2 mutants transformed with the OPI3 gene on a high copy number plasmid. Taken together, these data demonstrate a significantly overlapping specificity of the OPI3 gene product for three sequential phospholipid methylation reactions in the de novo Ptd-Cho biosynthetic pathway.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Dynamin ; Mitochondria ; GTP binding protein
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The isolation and characterization of MGM1, and yeast gene with homology to members of the dynamin gene family, is described. The MGM1 gene is located on the right arm of chromosome XV between STE4 and PTP2. Sequence analysis revealed a single open reading frame of 902 residues capable of encoding a protein with an approximate molecular mass of 101 kDa. Loss of MGM1 resulted in slow growth on rich medium, failure to grow on non-fermentable carbon sources, and loss of mitochondrial DNA. The mitochondria also appeared abnormal when visualized with an antibody to a mitochondrial-matrix marker. MGM1 encodes a dynamin-like protein involved in the propagation of functional mitochondria in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    ISSN: 1432-0983
    Keywords: 2-Oxoglutarate dehydrogenase ; Molecular cloning ; Saccharomyces cerevisiae ; Sequencing ; Suppressor ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The activity of mitochondrial 2-oxoglutarate dehydrogenase in S. cerevisiae can be impaired either by the ogd1 or the kgd1 mutation. The OGD1 gene and two suppressor genes were isolated by complementation of the ogd1 mutant. The complementation of the kdg1 mutant by the OGD1 gene, an allelism test, and meiotic mapping, revealed that the ogd1 and kgd1 mutations are allelic. The two mutations were differentiated by the cloned suppressor gene which was able to partially complement ogd1, but not kgd1. The molecular analysis of the suppressor gene revealed its identity with the natural tRNA CAG Gln gene found in the upstream region of URA10.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 181-183 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; c-myc epitope ; Fusion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to facilitate the process of epitope-tagging of yeast proteins, we have constructed two Saccharomyces cerevisiae-Escherichia coli shuttle vectors that allow fusion of a sequence encoding an epitope of the human c-myc protein at the 3′ end of any gene. An example of the use of this technique is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 295-304 
    ISSN: 1432-0983
    Keywords: Meiosis ; Meiotic recombination ; Saccharomyces cerevisiae ; REC114
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Four new meiotic recombination genes were previously isolated by selecting for mutations that rescue the meiotic lethality of rad52 spo13 strains. One of these genes, REC114, is described here, and the data confirm that REC114 is a meiosis-specific recombination gene with no detectable function in mitosis. REC114 is located on chromosome XIII approximately 4,9 cM from CIN4. The nucleotide sequence reveals an open reading frame of 1262 bp, consensus intron splice sites close to the 3′ end, and indicates that the second exon codes for only seven amino acids. In the promoter region, a URS1 consensus sequence (TGGGCGGCTA), identical to the URS1 found in the promoter of SPO16, is present 93 bp upstream of the translation start site. Northern-blot hybridization demonstrates that REC114 is transcribed only during meiosis and that it is not expressed in the absence of the IME1 gene product, even when IME2 is constitutively expressed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    ISSN: 1432-0983
    Keywords: Trehalase ; Trehalose-6-P synthase ; cAMP mutants ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rise in cAMP level that follows the addition of glucose or 2,4-dinitrophenol (DNP) to stationaryphase cells of Saccharomyces cerevisiae was accompanied by a marked activation of trehalase (3-fold increase) and a concomitant deactivation of trehalose-6 phosphate synthase (50% of the basal levels). In glucose-grown exponential cells, which are deficient in glucose-induced cAMP signalling, the addition of glucose also prompted a decrease in trehalose-6 phosphate synthase, but had no effect on trehalase activity. Mutants defective in the RAS-adenylate cyclase pathway (ras1 ras2 bcy1 strain), as well as mutants containing greatly reduced protein kinase activity either cAMP-dependent (tpk w1 BCY1 strains) or cAMP-independent (tpk1 w1 bcy1 strains), were unable to show glucose- or DNP-induced trehalase activation but still displayed a clear decrease in trehalose-6 phosphate synthase activity upon addition of these compounds. These data suggest that the activity of trehalose-6 phosphate synthase, as opposed to that of trehalase, is not controlled by the cAMP signalling pathway “in vivo”. Trehalose-6 phosphate synthase was competitively inhibited by glucose (Ki=15 mM) and resulted unaffected by ATP in assays performed “in vitro”.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 375-381 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Isocitrate lyase ; Gene regulation ; Ethanol induction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ICL1 gene encoding the isocitrate lyase from Saccharomyces cerevisiae was cloned and sequenced. A reading frame of 557 amino acids showing significant similarity to isocitrate lyases from seven other species could be identified. Construction of icl1 null mutants led to growth defects on C2 carbon sources while utilization of sugars or C3 substrates remained unaffected. Using an ICL1-lacZ fusion integrated at the ICL1 locus, a more than 200-fold induction of β-galactosidase activity was observed after growth on ethanol when compared with glucose-repressed conditions. A preliminary analysis of the ICL1 upstream region identified a 364-bp fragment necessary and sufficient for this regulatory phenotype. Sequence motifs also present in the upstream regions of co-regulated genes were found within this region.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Gene amplification ; ADH4 ; CUP1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Primary gene amplification, i.e., mutation from one gene copy to multiple gene copies per genome, is important in genomic evolution, as a means of producing anti-cancer drug resistance, and is associated with the progression of tumor malignancy. Primary amplification has not been studied in normal eukaryotic cells because amplifications are extremely rare in these cells. A system has been developed to phenotypically identify co-amplifications of the ADH4 and CUP1 genes of Saccharomyces cerevisiae and 21 independent spontaneous amplifications have been isolated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 23 (1993), S. 414-422 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Donation ; Gene conversion ; Double-strand break repair ; Heteroduplex DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have used transformation of yeast with lincarized plasmids to study the transfer of information to the unbroken chromosome during double-strand break repair. Using a strain which carried the wild-type HIS3 allele, and a linearized plasmid which carried a mutant his3 allele, we have obtained His- transformants. In these, double-strand break repair has resulted in precise transfer of genetic information from the plasmid to the chromosome. Such repair events, we suggest, are gene conversions which entail the formation of heteroduplex DNA on the (unbroken) chromosome. If this suggestion is correct, our results reflect the spatial distribution of such heteroduplex DNA. Transfer of information from the plasmid to the chromosome was obtained at a maximal frequency of 1.5% of the repair events, and showed a dependence with distance. Transformation to His- was also obtained with a 2-kbp insertion and with a deletion of 200 bp. The latter results suggest that gene conversion of large heterologies can occur via repair of a heteroduplex DNA intermediate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    ISSN: 1432-0983
    Keywords: Glucoamylase ; Gene cloning ; Hormoconis resinae ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A cDNA coding for glucoamylase P of Hormoconis resinae was cloned using a synthetic oligonucleotide probe coding for a peptide fragment of the purified enzyme and polyclonal anti-glucoamylase antibodies. Nucleotide-sequence analysis revealed an open reading frame of 1848 base pairs coding for a protein of 616 amino-acid residues. Comparison with other fungal glucoamylase amino-acid sequences showed homologies of 37–48%. The glucoamylase cDNA, when introduced into Saccharomyces cerevisiae under the control of the yeast ADC1 promoter, directed the secretion of active glucoamylase P into the growth medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 24 (1993), S. 185-192 
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Cell cycle ; Transcription ; DNA replication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In eukaryotic organisms, genes involved in DNA replication are often subject to some form of cell cycle control. In the yeast Saccharomyces cerevisiae, most of the DNA replication genes that have been characterized to date are regulated at the transcriptional level during G1 to S phase transition. A cis-acting element termed the MluI cell cycle box (or MCB) conveys this pattern of regulation and is common among more than 20 genes involved in DNA synthesis and repair. Recent findings indicate that the MCB element is well conserved among fungi and may play a role in controlling entry into the cell division cycle. It is evident from studies in higher systems, however, that transcriptional regulation is not the only form of control that governs the cell-cycle-dependent expression of DNA replication genes. Moreover, it is unclear why this general pattern of regulation exists for so many of these genes in various eukaryotic systems. This review summarizes recent studies of the MCB element in yeast and briefly discusses the purpose of regulating DNA replication genes in the eukaryotic cell cycle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    ISSN: 1432-0983
    Keywords: Growth control ; Genetic mapping ; Molecular cloning ; Nucleo-mitochondrial interaction ; Saccharomyces cerevisiae ; Viability of petites
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The PEL1 gene of Saccharomyces cerevisiae is essential for the cell viability of mitochondrial petite mutants, for the ability to utilize glycerol and ethanol on synthetic medium, and for cell growth at higher temperatures. By tetrad analysis the gene was assigned to chromosome III, centromere proximal of LEU2. The PEL1 gene has been isolated and cloned by the complementation of a pel1 mutation. The molecular analysis of the chromosomal insert carrying PEL1 revealed that this gene corresponds to the YCL4W open reading frame on the complete DNA sequence of chromosome III. The putative Pel1 protein is characterized by a low molecular weight of approximately 17 kDa, a low codon adaptation index, and a high leucine content.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Papaver somniferum L. ; ARS ; Mitochondrial DNA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The minimal fragment of mitochondrial DNA from Papaver somniferum L. (poppy) able to promote autonomous plasmid replication in the yeast Saccharomyces cerevisiae was sequenced. Sequence analysis of the 917-bp MK4/8 DNA fragment revealed a high AT content, and the presence of two 12-bp sequences differing from the ARS core consensus of S. cerevisiae only by a T and C insertion, respectively. The mitochondrial insert contains a further six 11-bp sequences with one mismatch to the S. cerevisiae core consensus, more then 20 related sequences with two base pair exchanges, numerous direct and inverted repeats, and many copies of a sequence motif called the ARS box. The original 4.2-kb mitochondrial DNA fragment, as well as the minimal 917-bp subfragment in vector pFL1-E (a variant of YIP5, lacking an origin of replication in yeast), were then tested for their ability to replicate autonomously in another fungus, Kluyveromyces lactis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    ISSN: 1432-0983
    Keywords: Saccharomyces cerevisiae ; Pentose-phosphate pathway ; Transketolase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Deletion mutants for the yeast transketolase gene TKL1 were constructed by gene replacement. Transketolase activity was below the level of detection in mutant crude extracts. Transketolase protein could be detected as a single protein band of the expected size by Western-blot analysis in wild-type strains but not in the delection mutant. Deletion of TKL1 led to a reduced but distinct growth in synthetic medium without an aromatic amino-acid supplement. We also isolated double and triple mutants for transketolase (tkl1), transaldolase (tal1), and glucose 6-phosphate dehydrogenase (zwf1) by crossing the different mutants. A tal1 tkl1 double mutant grew nearly like wild-type in rich medium. Only the tkl1 zwf1 double and the tal1 tkl1 zwf1 triple mutant grew more slowly than the wild-type in rich medium. This growth defect could be partly alleviated by the addition of xylulose but not ribose. The triple mutant still grew slowly on a synthetic mineral salts medium without a supplement of aromatic amino acids. This suggests the existence of an alternative but limited source of pentose phosphates and erythrose 4-phosphate in the tkl1 zwf1 double mutants. Hybridization with low stringency showed the existence of a sequence with homology to transketolase, possibly a second gene.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Sporulation mutants ; Reporter genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Reporter genes consisting of sporulation-specific promoters fused to lacZ were used as markers to monitor the sporulation pathway of the yeast Saccharomyces cerevisiae. Strains transformed with these lacZ gene fusions expressed β-galactosidase (assayable on plates using the substrate 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside, X-gal) in a sporulation-dependent manner. Mutagenesis experiments performed on transformed strains resulted in the recovery of a number of novel sporulation mutants. Three classes of mutants were obtained: those which overexpressed the reporter gene under sporulation conditions, those which did not express the gene under any conditions, and those which expressed the gene in vegetative cells not undergoing sporulation. On the basis of the blue colony-colour produced in the presence of X-gal these have been described as superblue, white, and blue vegetative mutants, respectively. These were further characterised using earlier reporter genes and other marker systems. This study established that the multicopy reporter plasmids chosen do not interfere with sporulation; they are valid tools for monitoring the pathway and they provide a way to isolate mutations not readily selected by other markers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Electronic Resource
    Electronic Resource
    Springer
    Current genetics 24 (1993), S. 461-464 
    ISSN: 1432-0983
    Keywords: Chromosome fragmentation ; MEL gene family ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Nine members, MEL2–MEL10, of the MEL gene family coding for α-galactosidase were physically mapped to the ends of the chromosomes by chromosome fragmentation. Genetic mapping of the genes supported the location of all the MEL genes in the left arm of their resident chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    ISSN: 1432-0983
    Keywords: Yeast ; Saccharomyces cerevisiae ; Transformation ; Plasmid
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have compared a number of procedures for the transformation of whole cells of the yeast Saccharomyces cerevisiae and assessed the effects of dimethylsulphoxide (DMSO) or ethanol, both of which have been reported to enhance transformation efficiency. We find that simplified methods benefit from the addition of one of these compounds, and although differences are observed between strains as to the more beneficial reagent, peak transformation efficiency is, in general obtained with 10% DMSO or 10% EtOH. Increases of between six- and 50-fold are observed, despite a reduction in cell viability, and at this concentration the two compounds are not additive in their effects. The optimum level appears to depend on a balance between improved DNA uptake and reduced cell viability. As a result of this work we present a straightforward and rapid transformation procedure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    ISSN: 1432-072X
    Keywords: Saccharomyces cerevisiae ; Acetyl-CoA ; l-Lysine N6 ; acetytransferase ; Lysine catabolism
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The carbon catabolism of l-lysine starts in Saccharomyces cerevisiae with acetylation by an acetyl-CoA: l-lysine N6-acetyltransferase. The enzyme is strongly induced in cells grown on l-lysine as sole carbon source and has been purified about 530-fold. Its activity was specific for acetyl-CoA and, in addition to l-lysine, 5-hydroxylysine and thialysine act as acetyl acceptor. The following apparent Michaelis constants were determined: acetyl-CoA 0.8 mM, l-lysine 5.8 mM, dl-5-hydroxylysine 2.8 mM, l-thialysine 100 mM. The enzyme had a maximum activity at pH 8.5 and 37°C. Its molecular mass, estimated by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, was 52 kDa. Since the native molecular mass, determined by gel filtration, was 48 kDa, the enzyme is a monomer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    ISSN: 1573-6881
    Keywords: Rieske iron-sulfur protein, RIP1 ; Saccharomyces cerevisiae ; mitochondria ; bc 1 complex ; QCR9 ; iron-sulfur cluster, mitochondrial targeting
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract The iron-sulfur protein of the cytochromebc 1 complex oxidizes ubiquinol at center P in the protonmotive Q cycle mechanism, transferring one electron to cytochromec 1 and generating a low-potential ubisemiquinone anion which reduces the low-potential cytochromeb-566 heme group. In order to catalyze this divergent transfer of two reducing equivalents from ubiquinol, the iron-sulfur protein must be structurally integrated into the cytochromebc 1 complex in a manner which facilitates electron transfer from the iron-sulfur cluster to cytochromec 1 and generates a strongly reducing ubisemiquinone anion radical which is proximal to theb-566 heme group. This radical must also be sequestered from spurious reactivities with oxygen and other high-potential oxidants. Experimental approaches are described which are aimed at understanding how the iron-sulfur protein is inserted into center P, and how the iron-sulfur cluster is inserted into the apoprotein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 240 (1993), S. 36-42 
    ISSN: 1617-4623
    Keywords: Yeast ; Saccharomyces cerevisiae ; DNA synthesis genes ; Cell cycle regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Two mutants have been isolated in Saccharomyces cerevisiae in which transcripts from at least CDC8, CDC9, CDC21 (TMP1) and POL1 genes are expressed constitutively in cells blocked at START by use of either α-pheromone or the cdc28 mutation. The transcripts from these genes also persist in mutant stationary phase cells; however, cell cycle regulation of these four DNA synthesis genes occurs normally in late G1. The mutation therefore does not appear to lie in the MCB-DSC1 (MBF) system that controls the periodic regulation of the genes, but must affect some control mechanism regulating basal levels of expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 236 (1993), S. 443-447 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Protein kinases ; Protein Kinase C ; Growth control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Probes derived from cDNAs encoding isozymes of rat protein kinase C (PKC) were used to screen the genome of the budding yeast Saccharomyces cerevisiae. We reported previously the isolation of the yeast PKC1 gene, a homolog of the α, β, and γ subspecies of mammalian PKC. Here we report the isolation and genetic characterization of a pair of previously described genes (YPK1 and YPK2) which are predicted to encode protein kinases that share 90% amino acid identity with each other and 44–46% identity with various isozymes of PKC throughout their putative catalytic domains. Deletion of YPK2 resulted in no apparent phenotypic defect, but loss of YPK1 resulted in slow growth. Cells deleted for both YPK1 and YPK2 were defective in vegetative growth, indicating that the protein kinases predicted to be encoded by these genes are functionally overlapping and play an essential role in the proliferation of yeast cells. The YPK1 gene was mapped to the left arm of chromosome XI and YPK2 was mapped to the right arm of chromosome XIII.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 240 (1993), S. 414-418 
    ISSN: 1617-4623
    Keywords: Cruciform DNA ; Endonuclease ; Mitochondria ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We have found a cruciform cutting endonuclease in the yeast, Saccharomyces cerevisiae, which localizes to the mitochondria. This activity apparently is associated with the mitochondrial inner membrane since the activity is not released into solution by osmolysis, in contrast to the matrix enzyme, isocitrate dehydrogenase. The cruciform cutting activity appears to be encoded by CCE1. This gene has been shown to encode one of the major cruciform cutting endonucleases present in a yeast cell. In ccel strains, which lack CCE1 endonuclease activity, the mitochondrial cruciform cutting endonucleolytic activity is also absent. Since CCE1 is allelic to MGT1, a gene required for the highly biased transmission of petite mitochondrial DNA in crosses between ϱ+ and hypersuppressive ϱ− cells, it seems likely that the CCE1 endonuclease functions within mitochondria.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 213-224 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Mitochondria ; Transcriptional regulation ; Protein phosphorylation ; Stringent response
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Using various mutant strains and nutritional manipulations, we investigated a potential role for cyclic AMP (cAMP) in the regulation of mitochondrial (mt) gene expression in the yeast Saccharomyces cerevisiae. In RAS mutants known to have either abnormally low or high cellular levels of this nucleotide, we show that both mt transcription rate and overall mt transcript levels vary directly with cellular cAMP levels. We further show that nutritional downshift of actively growing cells causes a severe, rapid fall in cAMP levels, and that this fall is concomitant with the stringent mt transcriptional curtailment that we and others have previously shown to follow this nutritional manipulation. In in vitro mt transcription assays using intact organelles from downshifted and actively growing cells, stringently curtailed mt gene expression can be restored to 75% of control levels by addition of cAMP to the assay mix. Consistent with these observations a RAS2 vall9mutant strain, which cannot adjust cAMP levels in response to external stimuli, shows no mt stringent response following nutritional downshift. We also demonstrate a significant but transient increase in both mt transcript levels and mt transcription rate following shift of actively respiring wild-type cells to glucose-based medium, a manipulation known to cause a short-lived pulse of cAMP in yeast; similar manipulation of the RAS2 vall9mutant strain generates no such response. Taken together all these observations indicate that cellular cAMP levels are involved in the regulation of mt transcription in yeast. Moreover, the lack of a mt stringent transcriptional response following downshift in a strain in which the BCY1 gene had been insertionally inactivated suggests that cAMP may influence mt transcription via a mt cAMP-dependent protein kinase. These results link mt gene expression with mechanisms governing growth control and nutrient adaptation in yeast, and they provide a means by which nit gene expression might be coordinated with that of related nuclear genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    ISSN: 1617-4623
    Keywords: Mating pheromone ; Saccharomyces cerevisiae ; Signal transduction ; STE5 ; Ste20 protein kinase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The β and γ subunits of the mating response G-protein in the yeast Saccharomyces cerevisiae have been shown to transmit the mating pheromone signal to downstream components of the pheromone response pathway. A protein kinase homologue encoded by the STE20 gene has recently been identified as a potential G βγ , target. We have searched multicopy plasmid genomic DNA libraries for high gene dosage suppressors of the signal transduction defect of ste20 mutant cells. This screen identified the STE5 gene encoding an essential component of the pheromone signal transduction pathway. We provide genetic evidence for a functional interrelationship between the STE5 gene product and the Ste20 protein kinase. We have sequenced the STE5 gene, which encodes a predicted protein of 917 amino acids and is specifically transcribed in haploid cells. Transcription is slightly induced by treatment of cells with pheromone. Ste5 has homology with Fart, a yeast protein required for efficient mating and the pheromone-inducible inhibition of a G1 cyclin, Cln2. A STE5 multicopy plasmid is able to suppress the signal transduction defect of farl null mutant cells suggesting that Ste5, at elevated levels, is able functionally to replace Fart. The genetically predicted point of function of Ste5 within the pheromone signalling pathway suggests that Stc5 is involved in the regulation of a Gβγ-activated protein kinase cascade which links a G-protein coupled receptor to yeast homologues of mitogen-activated protein kinases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 280-286 
    ISSN: 1617-4623
    Keywords: Yeast RAS ; RAS-CAMP pathway ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A mutant allele of RAS1 that dominantly interferes with the wild-type Ras function in the yeast Saccharomyces cerevisiae was discovered during screening of mutants that suppress an ira2 disruption mutation. A single amino acid substitution, serine for glycine at position 22, was found to cause the mutant phenotype. The inhibitory effect of the RAS1 Ser22 gene could be overcome either by overexpression of CDC25 or by the ira2 disruption mutation. These results suggest that the RAS1Ser22 gene product interferes with the normal interaction of Ras with Cdc25 by forming a dead-end complex between Ras1Ser22 and Cdc25 proteins.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; RNA polymerase II ; Cyclins ; Transcription ; Cell cycle
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Saccharomyces cerevisiae cells harboring the temperature-sensitive mutation rpo21-4, in the gene encoding the largest subunit of RNA polymerase II, were shown to be partially impaired for cell-cycle progress at a permissive temperature, and to become permanently blocked at the cell-cycle regulatory step, START, at a restrictive temperature. The rpo21-4 mutation was lethal in combination with cdc28 mutations in the p34 protein kinase gene required for START. Transcripts of the CLN1 and CLN2 genes, encoding G1-cyclin proteins that, along with p34, are necessary for START, were decreased in abundance by the rpo21-4 mutation at a restrictive temperature. Increased G1-cyclin production, by expression of the CLN1 or CLN2 genes from a heterologous GAL promoter, overcame the rpo21-4 — mediated START inhibition, but such mutant cells nevertheless remained unable to proliferate at a restrictive temperature. These findings reveal that START can be particularly sensitive to an impaired RNA polymerase II function, presumably through effects on G1-cyclin expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    ISSN: 1617-4623
    Keywords: Transcriptional activators ; O2 gene ; Zea mays ; bZIP proteins ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The aim of this research was to determine whether the structural homology between the O2 gene, a maize transcriptional activator, and the GCN4 gene, a yeast transcriptional factor, is reflected at the level of function. The O2 cDNA was cloned in the yeast expression vector pEMBLyex4 under the control of a hybrid, inducible promoter, and used to transform the yeast Saccharomyces cerevisiae. Transformed yeast cells produced O2 mRNA and a polypeptide immunoreactive with anti-O2 antibodies during growth in galactose. The heterologous protein was correctly translocated into the yeast nuclei, as demonstrated by immunofluorescence, indicating that the nuclear targeting sequences of maize are recognized by yeast cells. Further experiments demonstrated the ability of O2 to rescue a gcn4 mutant grown in the presence of aminotriazole, an inhibitor of the HIS3 gene product, suggesting that O2 activates the HIS3 gene, gene normally under control of GCN4. It was shown that the O2 protein is able to trans-activate the HIS4 promoter in yeast cells and binds to it in vitro. The sequence protected by O2, TGACTC, is also the binding site for GCN4. Finally, the expression of O2 protein in yeast did not produce alterations during batch growth at 30° C, while transformants expressing O2 protein showed a conditionally lethal phenotype when grown in galactose at 36° C; this phenotype mimics the behaviour of gcd mutants. The results support the idea that basic mechanisms of transcription control have been highly conserved in eukaryotes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 657-666 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Pyruvate decarboxylase ; Transcription ; Glucose induction ; Autoregulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The regulatory gene PDC2 was identified in a screen for mutations affecting pyruvate decarboxylase activity in yeast. I have cloned and sequenced this gene. The predicted protein of 925 amino acids has no homology to any sequence in the databases. However, the protein sequence is rich in asparagine and serine residues, as is often found for transcriptional regulators. The PDC2 deletion mutant exhibits a phenotype very similar to, but more severe than that of the point mutant: a strongly reduced pyruvate decarboxylase specific activity, slow, respiration-dependent growth on glucose, and accumulation of pyruvate. The activity of other glycolytic enzymes seems to be unaffected by the pdc2Δ mutation. Synthesis of pyruvate decarboxylase is regulated by PDC2 at the transcriptional level. Expression of the major structural gene for pyruvate decarboxylase, PDC1, is strongly reduced in pdc2Δ mutants. Transcription of the generally more weakly expressed PDC5 gene appears to be entirely abolished. However, glucose induction of pyruvate decarboxylase synthesis is unaffected. Thus, PDC2 is either important for a high basal level of PDC gene expression or it plays a positive role in the autoregulation that controls expression of PDC1 and PDC5.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 241 (1993), S. 680-684 
    ISSN: 1617-4623
    Keywords: Nitrogen mustard resistance ; Regulation of choline permease ; Co-regulation ; Phospholipid biosynthesis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An 815 by region of the promoter of the Saccharomyces cerevisiae gene CTR/HNM1, encoding choline permease was sequenced and its regulatory function analysed by deletion studies in an in-frame promoter-lacZ construct. In addition to the TATA box, a 10 by motif (consensus 5′-CATGTGAAAT-3′) was found to be mandatory for CTR/HNM1 expression. This ‘decamer’ motif is located between nucleotides −262 and −271 and is identical in 9 of 10 by with the regulatory motif found in the S. cerevisiae INO1 and CHO1 genes. Constructs with the 10 by sequence show high constitutive expression, while elimination or alterations at three nucleotide positions, of the decamer motif in the context of an otherwise unchanged promoter leads to total loss of β-galactosidase production. Expression of the CTR/HNM1 gene in wild-type cells is regulated by the phospholipid precursors inositol and choline; no such influence is seen in cells bearing mutations in the phospholipid regulatory genes INO2, INO4, and OPI1. There is no regulation by INO2 and OPI1 in the absence of the decamer motif. However constructs not containing this sequence (promoter intact to positions −213 or −152) are still controlled by INO4. Other substrates of the choline permease, i.e. ethanolamine, nitrogen mustard and nitrogen half mustard do not regulate expression of CTR/HNM1.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Electronic Resource
    Electronic Resource
    Springer
    Antonie van Leeuwenhoek 63 (1993), S. 343-352 
    ISSN: 1572-9699
    Keywords: alcoholic fermentation ; chemostat culture ; Crabtree effect ; respiration ; Saccharomyces cerevisiae ; yeasts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract An overview is presented of the steady- and transient state kinetics of growth and formation of metabolic byproducts in yeasts.Saccharomyces cerevisiae is strongly inclined to perform alcoholic fermentation. Even under fully aerobic conditions, ethanol is produced by this yeast when sugars are present in excess. This so-called ‘Crabtree effect’ probably results from a multiplicity of factors, including the mode of sugar transport and the regulation of enzyme activities involved in respiration and alcoholic fermentation. The Crabtree effect inS. cerevisiae is not caused by an intrinsic inability to adjust its respiratory activity to high glycolytic fluxes. Under certain cultivation conditions, for example during growth in the presence of weak organic acids, very high respiration rates can be achieved by this yeast.S. cerevisiae is an exceptional yeast since, in contrast to most other species that are able to perform alcoholic fermentation, it can grow under strictly anaerobic conditions. ‘Non-Saccharomyces’ yeasts require a growth-limiting supply of oxygen (i.e. oxygen-limited growth conditions) to trigger alcoholic fermentation. However, complete absence of oxygen results in cessation of growth and therefore, ultimately, of alcoholic fermentation. Since it is very difficult to reproducibly achieve the right oxygen dosage in large-scale fermentations, non-Saccharomyces yeasts are therefore not suitable for large-scale alcoholic fermentation of sugar-containing waste streams. In these yeasts, alcoholic fermentation is also dependent on the type of sugar. For example, the facultatively fermentative yeastCandida utilis does not ferment maltose, not even under oxygen-limited growth conditions, although this disaccharide supports rapid oxidative growth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 583-586 
    ISSN: 1573-0972
    Keywords: Cell-free extracts ; plasmids ; recombination ; Saccharomyces cerevisiae ; topo-isomerase mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Cell-free extracts of the yeast Saccharomyces cerevisiae can be used to catalyse the recombination of bacterial plasmids in vitro. Recombination between homologous plasmids containing different mutations in the gene encoding tetracycline resistance is detectable by the appearance of tetracycline-resistance following transformation of the recombinant plasmid DNA into Escherichia coli DH5. This in vitro recombination system was used to determine the involvement of eukaryotic topo-isomerases in genetic recombination. Cell-free extracts prepared from a temperature-sensitive topo-isomerase II mutant (top2-1) of S. cerevisiae yielded tetracycline-resistant recombinants, when the recombination assays were performed at both a non-restrictive temperature (30°C) and the restrictive temperature (37°C). This result was obtained whether or not ATP was present in the recombination buffer. Extracts from a non-conditional topo-isomerase I mutant (top1-1) of S. cerevisiae yielded tetracycline-resistant recombinants, as did a temperature-sensitive double mutant (top2-1/top1-8) at the restrictive temperature. The results of this study indicate that neither topo-isomerase I nor topo-isomerase II was involved in the recombinational activity examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 70-72 
    ISSN: 1573-0972
    Keywords: Beer ; brewing ; non-head forming ale yeast ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The physiological characteristics of two strains of brewery ale yeasts,Saccharomyces cerevisiae, with sedimentation abilities, were investigated to see if the strains were suitable for lager beer production. Compared with typical industrial ale strains ofS. cerevisiae and lager strains ofS. uvarum (nowS. cerevisiae), the investigated strains differ in fermentation dynamics, as well as in biological properties. The differences, however, particularly between the two strains and the lager brewing yeasts, were not significant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Electronic Resource
    Electronic Resource
    Springer
    World journal of microbiology and biotechnology 9 (1993), S. 662-663 
    ISSN: 1573-0972
    Keywords: Biosynthesis ; invertase ; molasses ; Saccharomyces cerevisiae ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Biosynthesis of invertase by Saccharomyces cerevisiae 01K32 was inversely proportional to the concentration of sugarcane blackstrap molasses included in the medium. In a fermenter, an intracellular invertase activity of 440 U/g dry cells was obtained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 124 (1993), S. 131-140 
    ISSN: 1573-4919
    Keywords: Schizosaccharomyces pombe ; Saccharomyces cerevisiae ; H+-ATPase ; intracellular pH ; carboxy-seminaphthorhodafluor-1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We examined cytoplasmic pH regulation inSchizosaccharomyces pombe andSaccharomyces cerevisiae using pH-sensitive fluorescent dyes. Of several different fluorescent compounds tested, carboxy-seminaphthorhodafluor-1 (C.SNARF-1) was the most effective. Leakage of C.SNARF-1 fromS. pombe was much slower than leakage fromC. cerevisiae. Using the pH-dependent fluorescence of C.SNARF-1 we showed that at an external pH of 7, mean resting internal pH was 7.0 forS. pombe and 6.6 forS. cerevisiae. We found that internal pH inS. pombe was maintained over a much narrower range in response to changes in external pH, especially at acidic pH. The addition of external glucose caused an intracellular alkalinization in both species, although the effect was much greater inS. cerevisiae than inS. pombe. The plasma membrane H+-ATPase inhibitor diethylstilbestrol reduced both the rate and extent of alkalinisation, with an IC50 of approximately 35 μM in both species. Amiloride also inhibited internal alkalinisation with IC50's of 745 μM forS. cerevisiae and 490 μM forS. pombe.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Electronic Resource
    Electronic Resource
    Springer
    Journal of fluorescence 3 (1993), S. 241-244 
    ISSN: 1573-4994
    Keywords: Killer toxin K1 ; bromocresol purple staining ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Optimal assay conditions were established for the previously described method used to determine the activity ofSaccharomyces cerevisiae pore-forming killer toxin K1. The method is based on cell staining with bromocresol purple. Sensitive cells ofS. cerevisiae from the early exponential phase under nongrowth conditions and in the presence of glucose were the most convenient for determining the killer toxin activity. Maximum killing war reached when the suspension was buffered with 10 mM citrate-phosphate at pH 4.6.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Electronic Resource
    Electronic Resource
    Springer
    Plant molecular biology 22 (1993), S. 1177-1180 
    ISSN: 1573-5028
    Keywords: abscisic acid ; developmental regulation ; heat shock proteins ; Oryza sativa ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Antibodies raised against yeast heat shock protein (HSP) 104 recognized a heat-inducible polypeptide with a molecular mass of 110 kDa in shoot tissue of young rice seedlings. Root tissue of the same age showed no immuno-reaction with yeast HSP 104 antibodies. The 110 kDa polypeptide of rice was also shown to be abscisic acid-inducible in young seedlings. Though this polypeptide was seen to be constitutively present in the flag leaf of 90-day-old field-grown plant, it was not much affected by either heat shock or abscisic acid in this case.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; UV damage ; Mating type ; Inducible repair
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The prior UV irradiation of α haploid Saccharomyces cerevisiae with a UV dose of 25 J/m2 substantially increases the repairability of damage subsequently induced by a UV dose of 70 J/m2 given 1 h after the first irradiation. This enhancement of repair is seen at both the MATa and HMLα loci, which are, respectively, transcriptionally active and inactive in α haploid cells. The presence in the medium of the protein synthesis inhibitor, cycloheximide in the period between the two irradiations eliminated this effect. Enhanced repair still occurred if cycloheximide was present only after the final UV irradiation. This indicated that the first result is not due to cycloheximide merely blocking the synthesis of repair enzymes associated with a hypothetical rapid turnover of such molecules. The enhanced repairability is not the result of changes in chromatin accessibility without protein synthesis, merely caused by the repair of the damage induced by the prior irradiation. The data clearly show that a UV-inducible removal of pyrimidine dimers has occurred which involves the synthesis of new proteins. The genes known to possess inducible promoters, and which are involved in excision are RAD2, RAD7, RAD16 and RAD23. Studies with the rad7 and rad16 mutants which are defective in the ability to repair HMLα and proficient in the repair' of MATα showed that in rad7, preirradiation enhanced the repair at MATα, whereas in rad16 this increased repair of MATα was absent. The preirradiation did not modify the inability to repair HMLα in either strain. Thus RAD16 has a role in this inducible repair. Inducible repair is also absent in a rad2 strain which cannot repair MATα or HMLα after a single UV dose.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Ribosomal protein genes ; Transcription activation ; cAMP ; Growth control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The rate of ribosomal protein gene (rp-gene) transcription in yeast is accurately adjusted to the cellular requirement for ribosomes under various growth conditions. However, the molecular mechanisms underlying this co-ordinated transcriptional control have not yet been elucidated. Transcriptional activation of rp-genes is mediated through two different multifunctional trans-acting factors, ABF1 and RAP1. In this report, we demonstrate that changes in cellular rp-mRNA levels during varying growth conditions are not parallelled by changes in the in vitro binding capacity of ABF1 or RAP1 for their cognate sequences. In addition, the nutritional upshift response of rp-genes observed after addition of glucose to a culture growing on a non-fermentative carbon source turns out not to be the result of increased expression of the ABF1 and RAP1 genes or of elevated DNA-binding activity of these factors. Therefore, growth rate-dependent transcription regulation of rp-genes is most probably not mediated by changes in the efficiency of binding of ABF1 and RAP1 to the upstream activation sites of these genes, but rather through other alterations in the efficiency of transcription activation. Furthermore, we tested the possibility that cAMP may play a role in elevating rp-gene expression during a nutritional shift-up. We found that the nutritional upshift response occurs normally in several mutants defective in cAMP metabolism.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 237 (1993), S. 375-384 
    ISSN: 1617-4623
    Keywords: Regulation of meiosis ; Saccharomyces cerevisiae ; IME1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The IME1 gene of Saccharomyces cerevisiae is required for initiation of meiosis. Transcription of IME1 is detected under conditions which are known to induce initiation of meiosis, namely starvation for nitrogen and glucose, and the presence of MATa1 and MATα2 gene products. In this paper we show that IME1 is also subject to translational regulation. Translation of IME1 mRNA is achieved either upon nitrogen starvation, or upon G1 arrest. In the presence of nutrients, constitutively elevated transcription of IME1 is also sufficient for the translation of IME1 RNA. Four different conditions were found to cause expression of Imel protein in vegetative cultures: elevated transcription levels due to the presence of IME1 on a multicopy plasmid; elevated transcription provided by a Gal-IME1 construct; G1 arrest due to α-factor treatment; G1 arrest following mild heat-shock treatment of cdc28 diploids. Using these conditions, we obtained evidence that starvation is required not only for transcription and efficient translation of IME1, but also for either the activation of Ime1 protein or for the induction/activation of another factor that, either alone or in combination with Ime1, induces meiosis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Transcription ; spt mutants
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Mutations in the SPT4 gene of Saccharomyces cerevisiae were isolated as suppressors of δ insertion mutations that interfere with adjacent gene transcription. Recent genetic evidence indicates that the SPT4 protein functions with two other proteins, SPT5 and SPT6, in some aspect of transcription initiation. In this work we have characterized the SPT4 gene and we demonstrate that spt4 mutations, like spt5 and spt6 mutations, cause changes in transcription. Using the cloned SPT4 gene, spt4 null mutations were constructed; in contrast to spt5 and spt6 null mutants, which are inviable, spt4 null mutants are viable and have an Spt− phenotype. The DNA sequence of the SPT4 gene predicts a protein product of 102 amino acids that contains four cysteine residues positioned similarly to those of zinc binding proteins. Mutational analysis suggests that at least some of these cysteines are essential for SPT4 function. Genetic mapping showed that SPT4 is a previously unidentified gene that maps to chromosome VII, between ADE6 and CLY8.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 237 (1993), S. 463-466 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; cyrl-2 ; Nonsense mutation ; CAMP
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary cyrl-2 is a temperature-sensitive mutation of the yeast adenylate cyclase structural gene, CYR1. The cyrl-2 mutation has been suggested to be a UGA mutation since a UGA suppressor SUP201 has been isolated as a suppressor of the cyrl-2 mutation. Construction of chimeric genes restricted the region containing the cyrl-2 mutation, and the cyrl-2 UGA mutation was identified at codon 1282, which lies upstream of the region coding for the catalytic domain of adenylate cyclase. Alterations in the region upstream of the cyrl-2 mutation site result in null mutations. The complete open reading frame of the cyrl-2 gene expressed under the control of the GAL1 promoter complemented cyrl-dl in a galactose-dependent manner. These results suggest that at the permissive temperature weak readthrough occurs at the cyrl-2 mutation site to produce low levels of active adenylate cyclase. An endogenous suppressor in yeast cells is assumed to be responsible for this readthrough.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 238 (1993), S. 6-16 
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; cAMP MKS1 ; GAL11
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In order to isolate genes that function downstream of the Ras-cAMP pathway in Saccharomyces cerevisiae, a YEp13-based genomic library was screened for clones that inhibit growth of cells with diminished A-kinase activity. One such gene, MKS1, was found to encode a hydrophilic 52 kDa protein that shares weak homology with the yeast SPT2/SIN1 gene product. Three lines of evidence suggest that the MKS1 gene product is a negative regulator downstream of the Ras-cAMP pathway: (i) overexpression of MKS1 inhibits growth of cyrl disruptant cells on YPD medium containing a low concentration of cAMP; (ii) overexpression of MKS1 does not affect TPK1 expression; and (iii) the temperature-sensitive cyrl-230 mutation is partially suppressed by mks1 disruption. The mks1 mutant shows similar phenotypes to gal11/spt13, i.e., it cannot grow on YPGal containing ethidium bromide at 25°C, or on YPGly or SGal at 37°C. The mks1 gal11 double mutant shows more marked phenotypic changes than the single mutants. These results suggest that MKS1 is involved in transcriptional regulation of several genes by cAMP.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; Sodium efflux ; Lithium efflux ; ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The ENA2 gene encoding a P-type ATPase involved in Na+ and Li+ effluxes in Saccharomyces cerevisiae has been isolated. The putative protein encoded by ENA2 differs only in thirteen amino acids from the protein encoded by ENA1/PMR2. However, ENA2 has a very low level of expression and for this reason did not confer significant Li+ tolerance on a Li+ sensitive strain. ENA1 and ENA2 are the first two units of a tandem array of four highly homologous genes with probably homologous functions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    ISSN: 1617-4623
    Keywords: Saccharomyces cerevisiae ; DNA amplification ; Minisatellites ; VNTR ; MS1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Minisatellites comprise arrays of tandemly repeated short DNA sequences which show extensive variation in repeat unit number. The mechanisms that underlie this length variation are not understood. In order to study processes influencing length changes of minisatellites, we integrated the human minisatellite MS1 into a haploid strain of the yeast Saccharomyces cerevisiae. Frequent spontaneous generation of MS1 alleles with new lengths were observed in this yeast strain. Hence it is concluded that recombination between members of a pair of homologous chromosomes is not a prerequisite for the generation of length changes in MS1 in yeast.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    ISSN: 1617-4623
    Keywords: Heat shock response ; HSP70 ; Saccharomyces cerevisiae ; RAS-CAMP pathway ; Multicopy suppressor of ira1
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: abstract The MSI3 gene was isolated as a multicopy suppressor of the heat shock-sensitive phenotype of the iral mutation, which causes hyperactivation of the RAS-cAMP pathway. Overexpression of MSI3 also suppresses the heat shock-sensitive phenotype of the bcyl mutant. Determination of the DNA sequence of MSI3 revealed that MSI3 can encode a 77.4 kDa protein related to the HSP70 family. The amino acid sequence of Msi3p is about 30% identical to that of the Ssalp of Saccharomyces cerevisiae. This contrasts with the finding that members of the HSP70 family generally show at least 50% amino acid identity. The consensus nucleotide sequence of the heat shock element (HSE) was found in the upstream region of MSI3. Moreover, the steady-state levels of the MSI3 mRNA and protein were increased upon heat shock. These results indicate that the MSI3 gene encodes a novel HSP70-like heat shock protein. Disruption of the MSI3 gene was associated with a temperature sensitive growth phenotype but unexpectedly, thermotolerance was enhanced in the disruptant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...