ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8)
  • 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport  (5)
  • 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring  (3)
  • Geological Society of America  (7)
  • Copernicus  (1)
  • American Association for the Advancement of Science
  • 2015-2019
  • 2010-2014  (8)
  • 1980-1984
  • 1965-1969
  • 1925-1929
Collection
  • Articles  (8)
Years
  • 2015-2019
  • 2010-2014  (8)
  • 1980-1984
  • 1965-1969
  • 1925-1929
  • +
Year
  • 1
    Publication Date: 2017-04-04
    Description: Etna volcano, Italy, hosts one of the major groundwater systems of the island of Sicily. Waters circulate within highly permeable fractured, mainly hawaiitic, volcanic rocks. Aquifers are limited downwards by the underlying impermeable sedimentary terrains. Thickness of the volcanic rocks generally does not exceed some 300 m, preventing the waters to reach great depths. This is faced by short travel times (years to tens of years) and low thermalisation of the Etnean groundwaters. Measured temperatures are, in fact, generally lower than 25 °C. But the huge annual meteoric recharge (about 0.97 kmˆ3) with a high actual infiltration coefficient (0.75) implies a great underground circulation. During their travel from the summit area to the periphery of the volcano, waters acquire magmatic heat together with volcanic gases and solutes through water-rock interaction processes. In the last 20 years the Etnean aquifers has been extensively studied. Their waters were analysed for dissolved major, minor and trace element, O, H, C, S, B, Sr and He isotopes, and dissolved gas composition. These data have been published in several articles. Here, after a summary of the obtained results, the estimation of the magmatic heat flux through the aquifer will be discussed. To calculate heat uptake during subsurface circulation, for each sampling point (spring, well or drainage gallery) the following data have been considered: flow rate, water temperature, and oxygen isotopic composition. The latter was used to calculate the mean recharge altitude through the measured local isotopic lapse rate. Mean recharge temperatures, weighted for rain amount throughout the year, were obtained from the local weather station network. Calculations were made for a representative number of sampling points (216) including all major issues and corresponding to a total water flow of about 0.315 kmˆ3/a, which is 40% of the effective meteoric recharge. Results gave a total energy output of about 140 MW/a the half of which is ascribable to only 13 sampling points. These correspond to the highest flow drainage galleries with fluxes ranging from 50 to 1000 l/s and wells with pumping rates from 70 to 250 l/s. Geographical distribution indicates that, like magmatic gas leakage, heat flow is influenced by structural features of the volcanic edifice. The major heat discharge through groundwater are all tightly connected either to the major regional tectonic systems or to the major volcanic rift zones along which the most important flank eruptions take place. But rift zones are much more important for heat upraise due to the frequent dikes injection than for gas escape because generally when dikes have been emplaced the structure is no more permeable to gases because it becomes sealed by the cooling magma.
    Description: Published
    Description: Vienna, Austria
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: open
    Keywords: groundwaters ; volcanic surveillance ; water chemistry ; dissolved gases ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Abstract: The ANDRILL McMurdo Ice Shelf (MIS) initiative recovered a 1285 m-long core (MIS AND-1B) composed of cyclic glacimarine sediments with interbedded volcanic deposits. By far the thickest continuous volcanic sequence is about 175 m long and is found at midcore depths from 584.19 to 759.32 meters below sea floor (mbsf). The sequence was logged and initial interpretations of lithostratigraphic subdivisions were made on-ice during drilling in late 2006. Subsequent observations, based on image, petrographic, and SEM-EDS analyses, provide a more detailed, revised interpretation of a thick submarine to emergent volcanic succession. The sequence is subdivided into two main subsequences on the basis of sediment composition, texture and alteration style. The ~70 m thick lower subsequence consists mostly of monothematic stacked volcanic-rich mudstone and sandstone deposits, which are attributed to epiclastic gravity flow turbidite processes. This subsequence is consistent with abundant active volcanism that occurred at a distal site with respect to the drill site. The ~105 m thick upper subsequence consists mainly of interbedded tuff, lapilli tuff, and volcanic diamictite. A late Miocene (6.48 Ma) 2.81 m-thick subaqueously emplaced lava flow occurs within the second subsequence. This second subsequence is attributed to recurring cycles of submarine to emergent volcanic activity that occurred proximal to the drill site. This new dataset provides 1) the first rock evidence of significant late Miocene submarine volcanic activity in the Ross Embayment during a period of no to limited glaciation , and 2) a rich stratigraphic record that elucidates submarine volcano-sedimentary processes in an off-shore setting.
    Description: In press
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: open
    Keywords: ANDRILL ; AND1-B core ; McMurdo Sound ; submarine volcanism ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-24
    Description: Sampling of interstitial fluids during deep coring in southern McMurdo Sound, Antarctica, revealed the presence of seawater-sourced, hypersaline brine at depths 〉200 m below the sea-floor. Na-Cl-Br and SO4-Cl-Br relationships are consistent with a concentration mechanism that involves the removal of pure H2O as ice and precipitation of mirabilite (Na2SO4·10H2O) during progressive freezing of seawater. The brine is in Neogene subglacial, glacimarine, and marine facies that record advance and retreat of glaciers through the Ross Sea embayment. In this environment, sea ice formation in semi-isolated marine basins that occupied flexural troughs along ice sheet margins produced dense brines that sank and infiltrated the permeable subglacial sediment. Repeated cycles of glacial advance and retreat provided multiple opportunities for batches of seawater to be transformed into brine that now is in the subsurface of southern McMurdo Sound. Results demonstrate the feasibility of brine formation via seawater freezing and attest to the potential of a cryogenic origin for subsurface brines in high-latitude regions of the Northern Hemisphere, as proposed by some workers.
    Description: Published
    Description: 587-590
    Description: 2.2. Laboratorio di paleomagnetismo
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: ANDRILL ; SMS Project ; interstitial fluids ; hypersaline brine ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: The ANtarctic geological DRILLing program (ANDRILL) successfully recovered 1138.54 m of core from drillhole, AND-2A, in the Ross Sea sediments (Antarctica). The core is composed of terrigenous claystones, siltstones, sandstones, conglomerates, breccias, and diamictites with abundant volcanic material. In this work we present sedimentological, morphoscopic, petrographic, and geochemical data on pyroclasts recovered from core AND-2A, which provide insights on eruption styles, volcanic sources, and environments of deposition. One pyroclastic fall deposit, 12 resedimented volcaniclastic deposits and 14 volcanogenic sedimentary deposits record a history of intense explosive volcanic activity in southern Victoria Land during the Early Miocene. Tephra were ejected during Subplinian and Plinian eruptions fed by trachytic to rhyolitic magmas and during Strombolian to Hawaiian eruptions fed by basaltic to mugearitic magmas in submarine/subglacial to subaerial environments. The long-lived Mt. Morning eruptive centre, located c. 80 km south of the drillsite, was recognized as the probable volcanic source for these products on the basis of volcanological, geochemical, and age constraints. The study of tephra in the AND-2A core provides important paleoenvironment information by revealing that the deposition of primary and moderately reworked tephra occurred in a proglacial setting under generally open water marine conditions.
    Description: Published
    Description: 1342-1355
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: partially_open
    Keywords: Antarctica ; Volcaniclastic sediments ; Paleoenvironment ; Mt. Morning ; Victoria Land Basin ; 02. Cryosphere::02.03. Ice cores::02.03.05. Paleoclimate ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: For the fi rst time a physical model, constrained by monitoring data, is used to derive a quantitative estimate of the evolution in time of magmatic gases that enter a hydrothermal system of an active volcano. The site is Campi Flegrei (west of Naples, in Italy), a caldera that had a large ground infl ation in 1982–1984 followed by 20 yr of subsidence. More recently the behavior of the system has changed: the magmatic component of fumaroles has increased, swarms of earthquakes are more frequent, and the ground has started a general uplifting trend, indicating that the hydrothermal system undergoes repeated injections of magmatic fl uid. Physical simulations of the process show that total injected fl uid masses are the same order of magnitude as those emitted during small to medium size volcanic eruptions, and their cumulative curve highlights a current period of increasing activity. Gas emission studies coupled with physical modeling can be extremely effective in predicting magmatic evolution and eruptive activity at volcanoes.
    Description: Published
    Description: 943-946
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: Campi Flegrei caldera ; geochemical data ; physical simulations ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.11. Instruments and techniques ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: No Abstract
    Description: Published
    Description: 546-547
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: restricted
    Keywords: Stratigraphic Drilling ; McMurdo Ice Shelf ; Chronostratigraphy ; Neogene ; Tectonics ; Ice Sheet history ; 04. Solid Earth::04.04. Geology::04.04.99. General or miscellaneous ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.04. Geology::04.04.10. Stratigraphy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Apennines belt of Italy undergoes a northeast-trending extension at a rate of a few millimeters per year that generates moderate to large normal-faulting earthquakes. In this paper, we show that seismicity, large earthquakes, strong gas emission, and belt topography all correlate with a broad, low Vp anomaly in the uppermost mantle. We propose that a thermal/fl uid anomaly in the mantle, associated with sub-lithospheric mantle replacement after delamination of the Adria lithosphere, supports the topography of the belt and drives the extensional tectonics. The mantle anomaly is likely caused by deep fl uids coming from the dehydration of the material subducted during the Europe-Adria collision and the delamination of Adria. Beneath the belt, CO2-rich fl uids are accumulated and occasionally discharged during large normal faulting earthquakes. After the replacement of sub-lithospheric mantle, the temperature at the base of the crust increases causing crustal stretching, anatexis, and strong degassing.
    Description: Published
    Description: 715-718
    Description: 1.2. TTC - Sorveglianza geochimica delle aree vulcaniche attive
    Description: 2.4. TTC - Laboratori di geochimica dei fluidi
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: JCR Journal
    Description: restricted
    Keywords: mantle anomaly ; Continental delamination ; the Apennines ; 03. Hydrosphere::03.02. Hydrology::03.02.04. Measurements and monitoring ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases ; 04. Solid Earth::04.08. Volcanology::04.08.07. Instruments and techniques
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The ANDRILL McMurdo Ice Shelf initiative recovered a 1285-m-long core (AND-1B) composed of cyclic glacimarine sediments with interbedded volcanic deposits. The thickest continuous volcanic sequence by far is ∼175 m long and is found at mid-core depths from 584.19 to 759.32 m below seafloor. The sequence was logged, and initial interpretations of lithostratigraphic subdivisions were made on ice during drilling in late 2006. Subsequent observations, based on image, petrographic, and scanning electron microscopy–energy dispersive spectroscopy analyses, provide a more detailed, revised interpretation of a thick submarine to emergent volcanic succession. The sequence is subdivided into two main subsequences on the basis of sediment composition, texture, and alteration style. The ∼70-m-thick lower subsequence consists mostly of monothematic stacked volcanic-rich mudstone and sandstone deposits, which are attributed to epiclastic gravity flow turbidite processes. This subsequence is consistent with abundant active volcanism that occurred at a distal site with respect to the drill site. The ∼105-m-thick upper subsequence consists mainly of interbedded tuff, lapilli tuff, and volcanic diamictite. A Late Miocene (6.48 Ma) 2.81-m-thick subaqueously emplaced lava flow occurs within the second subsequence. This second subsequence is attributed to recurring cycles of submarine to emergent volcanic activity that occurred proximal to the drill site. This new data set provides (1) the first rock evidence of significant Late Miocene submarine volcanic activity in the Ross Embayment during a period of no to limited glaciation, and (2) a rich stratigraphic record that elucidates submarine volcano-sedimentary processes in an offshore setting.
    Description: Published
    Description: 524-536
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: 3.8. Geofisica per l'ambiente
    Description: JCR Journal
    Description: reserved
    Keywords: Antarctica ; Andrill ; Ice-Volcano interactions ; Submarine Volcanism ; Volcanoclastic rocks ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...