ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • München : Bayerisches Landesvermessungsamt
  • National Academy of Sciences
  • 2020-2024  (50)
Collection
Years
Year
  • 1
    Publication Date: 2024-04-26
    Description: The sinking of particulate matter from the upper ocean dominates the export and sequestration of organic carbon by the biological pump, a critical component of the Earth's carbon cycle. Controls on carbon export are thought to be driven by ecological processes that produce and repackage sinking biogenic particles. Here, we present observations during the demise of the Northeast Atlantic Ocean spring bloom illustrating the importance of storm-induced turbulence on the dynamics of sinking particles. A sequence of four large storms caused upper layer mean turbulence levels to vary by more than three orders of magnitude. Large particle (>0.1 to 10 mm) abundance and size changed accordingly: increasing via shear coagulation when turbulence was moderate and decreasing rapidly when turbulence was intense due to shear disaggregation. Particle export was also tied to storm forcing as large particles were mixed to depth during mixed layer deepening. After the mixed layer shoaled, these particles, now isolated from intense surface mixing, grew larger and subsequently sank. This sequence of events matched the timing of sinking particle flux observations. Particle export was influenced by increases in aggregate abundance and porosity, which appeared to be enhanced by the repeated creation and destruction of aggregates. Last, particle transit efficiency through the mesopelagic zone was reduced by presumably biotic processes that created small particles (〈0.5 mm) from larger ones. Our results demonstrate that ocean turbulence significantly impacts the nature and dynamics of sinking particles, strongly influencing particle export and the efficiency of the biological pump.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-13
    Description: Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the—widely anthropogenic—ongoing global warming.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-06-05
    Description: Significance Particulate organic carbon (POC) formed by photosynthesis in the sunlit surface ocean fuels the ecosystems in the dark ocean below. We show that mesoscale fronts and eddies, which are ubiquitous physical features in subtropical oceans, generate three-dimensional intrusions connecting the surface to deep ocean. Intrusions are enriched in total POC due to enhancement of small, nonsinking photosynthetic plankton and free-living bacteria that resemble surface microbial communities. Flow-driven export of POC, estimated using an approximation of eddy physics, is the same order of magnitude as export by sinking POC, which was previously thought to dominate export. These observations reveal coupling of surface and deep ocean productivity and biodiversity and give insight into mechanisms by which the ocean transports carbon to depth. Abstract Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-10-26
    Description: Constraining secular variation of the Earth's magnetic field strength in the past is fundamental to understanding short-term processes of the geodynamo. Such records also constitute a powerful and independent dating tool for archaeological sites and geological formations. In this study, we present 11 robust archaeointensity results from Pre-Pottery to Pottery Neolithic Jordan that are based on both clay and flint (chert) artifacts. Two of these results constitute the oldest archaeointensity data for the entire Levant, ancient Egypt, Turkey, and Mesopotamia, extending the archaeomagnetic reference curve for the Holocene. Virtual Axial Dipole Moments (VADMs) show that the Earth's magnetic field in the Southern Levant was weak (about two-thirds the present field) at around 7600 BCE, recovering its strength to greater than the present field around 7000 BCE, and gradually weakening again around 5200 BCE. In addition, successful results obtained from burnt flint demonstrate the potential of this very common, and yet rarely used, material in archaeomagnetic research, in particular for prehistoric periods from the first use of fire to the invention of pottery.
    Description: Published
    Description: e2100995118
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Keywords: Jordan ; Neolithic ; Pre-Pottery Neolithic ; archaeointensity
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Saunders, J. K., McIlvin, M. R., Dupont, C. L., Kaul, D., Moran, D. M., Horner, T., Laperriere, S. M., Webb, E. A., Bosak, T., Santoro, A. E., & Saito, M. A. Microbial functional diversity across biogeochemical provinces in the central Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America, 119(37),(2022): e2200014119, https://doi.org/10.1073/pnas.2200014119.
    Description: Enzymes catalyze key reactions within Earth’s life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean. Eighty-five percent of total protein abundance was of bacterial origin, with Archaea contributing 1.6%. Over 2,000 functional KEGG Ontology (KO) groups were identified, yet only 25 KO groups contributed over half of the protein abundance, simultaneously indicating abundant key functions and a long tail of diverse functions. Vertical attenuation of individual proteins displayed stratification of nutrient transport, carbon utilization, and environmental stress. The microbial community also varied along horizontal scales, shaped by environmental features specific to the oligotrophic North Pacific Subtropical Gyre, the oxygen-depleted Eastern Tropical North Pacific, and nutrient-rich equatorial upwelling. Some of the most abundant proteins were associated with nitrification and C1 metabolisms, with observed interactions between these pathways. The oxidoreductases nitrite oxidoreductase (NxrAB), nitrite reductase (NirK), ammonia monooxygenase (AmoABC), manganese oxidase (MnxG), formate dehydrogenase (FdoGH and FDH), and carbon monoxide dehydrogenase (CoxLM) displayed distributions indicative of biogeochemical status such as oxidative or nutritional stress, with the potential to be more sensitive than chemical sensors. Enzymes that mediate transformations of atmospheric gases like CO, CO2, NO, methanethiol, and methylamines were most abundant in the upwelling region. We identified hot spots of biochemical transformation in the central Pacific Ocean, highlighted previously understudied metabolic pathways in the environment, and provided rich empirical data for biogeochemical models critical for forecasting ecosystem response to climate change.
    Description: Funding for this research was provided by the Gordon and Betty Moore Foundation (grants 3782 and 8453), the US NSF (NSF grants OCE-1924554, 2123055, 2125063, 2048774, and 2026933), the Center for Chemical Currencies on a Microbial Planet (NSF grant OCE-2019589), and the US NIH General Medicine (grant GM135709-01A1). J.K.S. was supported by a NASA Postdoctoral Program Fellowship with the NASA Astrobiology Program, administered by Universities Space Research Association under contract with NASA. A.E.S. was supported by the Sloan Foundation, the Simons Foundation, and NSF grant OCE-1437310. A portion of this research used resources at the US Department of Energy JGI sponsored by the Office of Biological and Environmental Research and operated under contract DE-AC02-05CH11231 (JGI). C.L.D. and D.K. were supported by NSF grants OCE-1558453 and OCE-2049299. T.H. was supported by NSF grant OCE-2023456.
    Keywords: Marine microbial ecology ; Metaproteomics ; Mesopelagic ; Nitrification ; Methylotrophy
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-08
    Description: The South Shetland Trough, Antarctica, is an underexplored region for microbiological and biotechnological exploitation. Herein, we describe the isolation and characterization of the novel bacterium Lacinutrix shetlandiensis sp. nov. WUR7 from a deep-sea environment. We explored its chemical diversity via a metabologenomics approach, wherein the OSMAC strategy was strategically employed to upregulate cryptic genes for secondary metabolite production. Based on hybrid de novo whole genome sequencing and digital DNA–DNA hybridization, isolate WUR7 was identified as a novel species from the Gram-negative genus Lacinutrix. Its genome was mined for the presence of biosynthetic gene clusters with limited results. However, extensive investigation of its metabolism uncovered an unusual tryptophan decarboxylase with high sequence homology and conserved structure of the active site as compared to ZP_02040762, a highly specific tryptophan decarboxylase from Ruminococcus gnavus. Therefore, WUR7's metabolism was directed toward indole-based alkaloid biosynthesis by feeding it with L-tryptophan. As expected, its metabolome profile changed dramatically, by triggering the extracellular accumulation of a massive array of metabolites unexpressed in the absence of tryptophan. Untargeted LC-MS/MS coupled with molecular networking, followed along with chemoinformatic dereplication, allowed for the annotation of 10 indole alkaloids, belonging to β-carboline, bisindole, and monoindole classes, alongside several unknown alkaloids. These findings guided us to the isolation of a new natural bisindole alkaloid 8,9-dihydrocoscinamide B (1), as the first alkaloid from the genus Lacinutrix, whose structure was elucidated on the basis of extensive 1D and 2D NMR and HR-ESIMS experiments. This comprehensive strategy allowed us to unlock the previously unexploited metabolome of L. shetlandiensis sp. nov. WUR7.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: Significance Assessing change in Southern Ocean ecosystems is challenging due to its remoteness. Large-scale datasets that allow comparison between present-day conditions and those prior to large-scale ecosystem disturbances caused by humans (e.g., fishing/whaling) are rare. We infer the contemporary offshore foraging distribution of a marine predator, southern right whales (n = 1,002), using a customized stable isotope-based assignment approach based on biogeochemical models of the Southern Ocean. We then compare the contemporary distributions during the late austral summer and autumn to whaling catch data representing historical distributions during the same seasons. We show remarkable consistency of mid-latitude distribution across four centuries but shifts in foraging grounds in the past 30 y, particularly in the high latitudes that are likely driven by climate-associated alterations in prey availability. Abstract Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (〉60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (〉60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-02-07
    Description: Prochlorococcus is a key member of open-ocean primary producer communities. Despite its importance, little is known about the predators that consume this cyanobacterium and make its biomass available to higher trophic levels. We identify potential predators along a gradient wherein Prochlorococcus abundance increased from near detection limits (coastal California) to 〉200,000 cells mL-1 (subtropical North Pacific Gyre). A replicated RNA-Stable Isotope Probing experiment involving the in situ community, and labeled Prochlorococcus as prey, revealed choanoflagellates as the most active predators of Prochlorococcus, alongside a radiolarian, chrysophytes, dictyochophytes, and specific MAST lineages. These predators were not appropriately highlighted in multiyear conventional 18S rRNA gene amplicon surveys where dinoflagellates and other taxa had highest relative amplicon abundances across the gradient. In identifying direct consumers of Prochlorococcus, we reveal food-web linkages of individual protistan taxa and resolve routes of carbon transfer from the base of marine food webs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-02-23
    Description: Significance Oceans represent 70% of our planet’s surface, housing a large spectrum of microorganisms that interact with the above atmosphere. Ocean microorganisms were proposed in the late 80’s to be at the center of a climate feedback loop involving dimethyl sulfide (DMS) that would form aerosols and modify cloud properties (CLAW hypothesis). In the present paper, we report observational evidence from semicontrolled experiments in the South Pacific that nitrate ions, yet hitherto not considered, is a key species involved in aerosol nucleation in the pristine marine atmosphere and which precursors are coemitted with DMS. Our results further indicate that nitrate ion formation would be related to short-term microbial processes, sensitive to environmental stressors, therefore potentially “closing the loop”. Abstract Our understanding of ocean–cloud interactions and their effect on climate lacks insight into a key pathway: do biogenic marine emissions form new particles in the open ocean atmosphere? Using measurements collected in ship-borne air–sea interface tanks deployed in the Southwestern Pacific Ocean, we identified new particle formation (NPF) during nighttime that was related to plankton community composition. We show that nitrate ions are the only species for which abundance could support NPF rates in our semicontrolled experiments. Nitrate ions also prevailed in the natural pristine marine atmosphere and were elevated under higher sub-10 nm particle concentrations. We hypothesize that these nucleation events were fueled by complex, short-term biogeochemical cycling involving the microbial loop. These findings suggest a new perspective with a previously unidentified role of nitrate of marine biogeochemical origin in aerosol nucleation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Schorn, S., Ahmerkamp, S., Bullock, E., Weber, M., Lott, C., Liebeke, M., Lavik, G., Kuypers, M. M. M., Graf, J. S., & Milucka, J. Diverse methylotrophic methanogenic archaea cause high methane emissions from seagrass meadows. Proceedings of the National Academy of Sciences of the United States of America, 119(9), (2022): e2106628119, https://doi.org/10.1073/pnas.2106628119.
    Description: Marine coastlines colonized by seagrasses are a net source of methane to the atmosphere. However, methane emissions from these environments are still poorly constrained, and the underlying processes and responsible microorganisms remain largely unknown. Here, we investigated methane turnover in seagrass meadows of Posidonia oceanica in the Mediterranean Sea. The underlying sediments exhibited median net fluxes of methane into the water column of ca. 106 µmol CH4 ⋅ m−2 ⋅ d−1. Our data show that this methane production was sustained by methylated compounds produced by the plant, rather than by fermentation of buried organic carbon. Interestingly, methane production was maintained long after the living plant died off, likely due to the persistence of methylated compounds, such as choline, betaines, and dimethylsulfoniopropionate, in detached plant leaves and rhizomes. We recovered multiple mcrA gene sequences, encoding for methyl-coenzyme M reductase (Mcr), the key methanogenic enzyme, from the seagrass sediments. Most retrieved mcrA gene sequences were affiliated with a clade of divergent Mcr and belonged to the uncultured Candidatus Helarchaeota of the Asgard superphylum, suggesting a possible involvement of these divergent Mcr in methane metabolism. Taken together, our findings identify the mechanisms controlling methane emissions from these important blue carbon ecosystems.
    Description: This project was funded by theMax Planck Society.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-02-07
    Description: Significance A substantial component of the global nitrogen cycle is the production of biologically inaccessible dinitrogen attributed to anaerobic denitrification by prokaryotes. Recent evidence identified a eukaryote, foraminifera, as new key players in this “loss” of bioavailable nitrogen. The evolution of denitrification in eukaryotes is a rare event, and the genetic mechanisms of the denitrification pathway in foraminifera are just starting to be elucidated. We present large-scale sequencing analyses of 10 denitrifying foraminiferal species, which reveals the high conservation of the foraminiferal denitrification pathway. We further find evidence for a complementation of denitrification by the foraminiferal microbiome. Together, these findings provide insights into the early evolution of a previously overlooked component in the marine nitrogen cycle. Abstract: Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origin. However, the prevalence of denitrification genes in foraminifera remains unknown, and the missing denitrification pathway components are elusive. Analyzing transcriptomes and metagenomes of 10 foraminiferal species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer the last common ancestor of denitrifying foraminifera, which enables us to predict the ability to denitrify for additional foraminiferal species. Additionally, an examination of the foraminiferal microbiota reveals evidence for a stable interaction with Desulfobacteraceae, which harbor genes that complement the foraminiferal denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera-associated microbiome. The interaction of foraminifera with their resident bacteria is at the basis of foraminiferal adaptation to anaerobic environments that manifested in ecological success in oxygen depleted habitats.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-07
    Description: Significance: Adaptive radiation, the evolutionary process whereby a lineage diversifies over a short period of time, often occurs in geographically isolated or newly formed habitats where colonizing species encounter unoccupied niches and reduced selective pressures. Rapid radiations may also occur in diverse and complex environments, but these cases are less well documented. Here, we show that the hamlets, a group of Caribbean reef fishes, radiated within the last 10,000 generations in a burst of diversification that ranks among the fastest in fishes. Genomic analysis suggests that color pattern diversity is generated by different combinations of alleles at a few genes with large effect. Such a modular genomic architecture of diversification is emerging as a common denominator to a variety of radiations. Abstract: Rapid diversification is often observed when founding species invade isolated or newly formed habitats that provide ecological opportunity for adaptive radiation. However, most of the Earth’s diversity arose in diverse environments where ecological opportunities appear to be more constrained. Here, we present a striking example of a rapid radiation in a highly diverse marine habitat. The hamlets, a group of reef fishes from the wider Caribbean, have radiated into a stunning diversity of color patterns but show low divergence across other ecological axes. Although the hamlet lineage is ∼26 My old, the radiation appears to have occurred within the last 10,000 generations in a burst of diversification that ranks among the fastest in fishes. As such, the hamlets provide a compelling backdrop to uncover the genomic elements associated with phenotypic diversification and an excellent opportunity to build a broader comparative framework for understanding the drivers of adaptive radiation. The analysis of 170 genomes suggests that color pattern diversity is generated by different combinations of alleles at a few large-effect loci. Such a modular genomic architecture of diversification has been documented before in Heliconius butterflies, capuchino finches, and munia finches, three other tropical radiations that took place in highly diverse and complex environments. The hamlet radiation also occurred in a context of high effective population size, which is typical of marine populations. This allows for the accumulation of new variants through mutation and the retention of ancestral genetic variation, both of which appear to be important in this radiation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-07
    Description: Significance Resilience to global change will require adaptation to multiple concurrent environmental changes. However, it is unclear if adaptations to multiple stressors can be predicted from the sum of single-stressor adaptation. To answer this question, we experimentally evolved a marine copepod to warming, acidification, and their combination, finding that copepods were able to adapt to all conditions over 25 generations. Warming was a much stronger selective pressure than acidification alone and under multiple-stressor conditions. Nevertheless, the multiple-stressor response to selection was synergistic and unique from either single stressor. Thus, adaptation to single stressors may not reveal adaptive potential or mechanisms of adaptation under multiple stressors, demonstrating the complexity of predicting adaptive responses under multifaceted environmental change. Abstract Metazoan adaptation to global change relies on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is essential to make accurate predictions for persistence in future conditions. Here, we identified the genetic variation enabling the copepod Acartia tonsa to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) over 25 generations of continual selection. Replicate populations showed a consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the allelic changes into three categories: selection, drift and replicate-specific selection, and laboratory adaptation responses. The majority of allele frequency change in warming (57%) and OWA (63%) was driven by shared selection pressures across replicates, but this effect was weaker under acidification alone (20%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%, indicating that warming is the dominant driver of selection in OWA. Despite the dominance of warming, the interaction with acidification was still critical as the OWA selection response was highly synergistic with 47% of the allelic selection response unique from either individual treatment. These results disentangle how genomic targets of selection differ between single and multiple stressors and demonstrate the complexity that nonadditive multiple stressors will contribute to predictions of adaptation to complex environmental shifts caused by global change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-05-22
    Description: Orbital cyclicity is a fundamental pacemaker of Earth’s climate system. The Newark–Hartford Basin (NHB) lake sediment record of eastern North America contains compelling geologic expressions of this cyclicity, reflecting variations of climatic conditions in tropical Pangea during the Late Triassic and earliest Jurassic (~233 to 199 Ma). Climate modeling enables a deeper mechanistic understanding of Earth system modulation during this unique greenhouse and supercontinent period. We link major features of the NHB record to the combined climatic effects of orbital forcing, paleogeographic changes, and atmospheric p CO 2 variations. An ensemble of transient, orbitally driven climate simulations is assessed for nine time slices, three atmospheric p CO 2 values, and two paleogeographic reconstructions. Climatic transitions from tropical humid to more seasonal and ultimately semiarid are associated with tectonic drift of the NHB from ~ 5 ° N to 20 ° N . The modeled orbital modulation of the precipitation–evaporation balance is most pronounced during the 220 to 200 Ma interval, whereas it is limited by weak seasonality and increasing aridity before and after this interval. Lower p CO 2 at around 205 Ma contributes to drier climates and could have led to the observed damping of sediment cyclicity. Eccentricity-modulated precession dominates the orbitally driven climate response in the NHB region. High obliquity further amplifies summer precipitation through the seasonal shifts in the tropical rainfall belt. Regions with other proxy records are also assessed, providing guidance toward an integrated picture of global astronomical climate forcing in the Late Triassic and ultimately of other periods in Earth history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-07
    Description: During the last glacial interval, marine sediments recorded reduced current ventilation within the ocean interior below water depths of approximately 〉1,500 m [B. A. Hoogakker et al., Nat. Geosci. 8, 40–43 (2015)]. The degree of the associated oxygen depletion in the different ocean basins, however, is still poorly constrained. Here, we present sedimentary records of redox-sensitive metals from the southwest African margin. These records show evidence of continuous bottom water anoxia in the eastern South Atlantic during the last glaciation that led to enhanced carbon burial over a prolonged period of time. Our geochemical data indicate that upwelling-related productivity and the associated oxygen minimum zone in the eastern South Atlantic shifted far seaward during the last glacial period and only slowly retreated during deglaciation times. While increased productivity during the last ice age may have contributed to oxygen depletion in bottom waters, especially on the upper slope, slow-down of the Late Quaternary deep water circulation pattern [Rutberg et al., Nature 405, 935–938 (2000)] appears to be the ultimate driver of anoxic conditions in deep waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-07
    Description: Animal gastrointestinal tracts harbor a microbiome that is integral to host function, yet species from diverse phyla have evolved a reduced digestive system or lost it completely. Whether such changes are associated with alterations in the diversity and/or abundance of the microbiome remains an untested hypothesis in evolutionary symbiosis. Here, using the life history transition from planktotrophy (feeding) to lecithotrophy (nonfeeding) in the sea urchin Heliocidaris, we demonstrate that the lack of a functional gut corresponds with a reduction in microbial community diversity and abundance as well as the association with a diet-specific microbiome. We also determine that the lecithotroph vertically transmits a Rickettsiales that may complement host nutrition through amino acid biosynthesis and influence host reproduction. Our results indicate that the evolutionary loss of a functional gut correlates with a reduction in the microbiome and the association with an endosymbiont. Symbiotic transitions can therefore accompany life history transitions in the evolution of developmental strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-02-07
    Description: Significance: A central goal in invasion genomics is to identify and determine the mechanisms that underlie the successful colonization, establishment, and subsequent range expansion of invasive populations of nonindigenous species. Using a whole-genome approach, we evaluate the importance of genetic diversity for the successful establishment of nonindigenous species. Our study shows that genetic diversity per se is not the major factor driving invasions, since we observed all possible scenarios with invasive populations showing reduced, similar but also increased, genetic diversity relative to the native population. Using coalescent methods, we reconstruct the demographic history of the invasion and infer the source population of each invasion event, which shows that propagule pressure and multiple introductions play an important role in determining invasion success. Abstract: Invasion rates have increased in the past 100 y irrespective of international conventions. What characterizes a successful invasion event? And how does genetic diversity translate into invasion success? Employing a whole-genome perspective using one of the most successful marine invasive species world-wide as a model, we resolve temporal invasion dynamics during independent invasion events in Eurasia. We reveal complex regionally independent invasion histories including cases of recurrent translocations, time-limited translocations, and stepping-stone range expansions with severe bottlenecks within the same species. Irrespective of these different invasion dynamics, which lead to contrasting patterns of genetic diversity, all nonindigenous populations are similarly successful. This illustrates that genetic diversity, per se, is not necessarily the driving force behind invasion success. Other factors such as propagule pressure and repeated introductions are an important contribution to facilitate successful invasions. This calls into question the dominant paradigm of the genetic paradox of invasions, i.e., the successful establishment of nonindigenous populations with low levels of genetic diversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-02-07
    Description: With over 18,000 species, the Acanthomorpha, or spiny-rayed fishes, form the largest and arguably most diverse radiation of vertebrates. One of the key novelties that contributed to their evolutionary success are the spiny rays in their fins that serve as a defense mechanism. We investigated the patterning mechanisms underlying the differentiation of median fin Anlagen into discrete spiny and soft rayed domains during the ontogeny of the direct-developing cichlid fish Astatotilapia burtoni. Distinct transcription factor signatures characterize these two fin domains, whereby mutually exclusive expression of hoxa13a/b with alx4a/b and tbx2b marks the spine to soft-ray boundary. The soft-ray domain is established by BMP inhibition via gremlin1b, which synergizes in the posterior fin with shh secreted from a zone of polarizing activity. Modulation of BMP signaling by chemical inhibition or gremlin1b CRISPR/Cas9 knockout induces homeotic transformations of spines into soft rays and vice versa. The expression of spine and soft-ray genes in nonacanthomorph fins indicates that a combination of exaptation and posterior expansion of an ancestral developmental program for the anterior fin margin allowed the evolution of robustly individuated spiny and soft-rayed domains. We propose that a repeated exaptation of such pattern might underly the convergent evolution of anterior spiny fin elements across fishes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-10-14
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-10-18
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-10-06
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-10-26
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-10-29
    Description: In this article, we advance divide-and-conquer strategies for solving the community detection problem in networks. We propose two algorithms that perform clustering on several small subgraphs and finally patch the results into a single clustering. The main advantage of these algorithms is that they significantly bring down the computational cost of traditional algorithms, including spectral clustering, semidefinite programs, modularity-based methods, likelihood-based methods, etc., without losing accuracy, and even improving accuracy at times. These algorithms are also, by nature, parallelizable. Since most traditional algorithms are accurate, and the corresponding optimization problems are much simpler in small problems, our divide-and-conquer methods provide an omnibus recipe for scaling traditional algorithms up to large networks. We prove the consistency of these algorithms under various subgraph selection procedures and perform extensive simulations and real-data analysis to understand the advantages of the divide-and-conquer approach in various settings.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-10-29
    Description: SARS-CoV-2 spillback from humans into domestic and wild animals has been well documented, and an accumulating number of studies illustrate that human-to-animal transmission is widespread in cats, mink, deer, and other species. Experimental inoculations of cats, mink, and ferrets have perpetuated transmission cycles. We sequenced full genomes of Vero cell–expanded SARS-CoV-2 inoculum and viruses recovered from cats (n = 6), dogs (n = 3), hamsters (n = 3), and a ferret (n = 1) following experimental exposure. Five nonsynonymous changes relative to the USA-WA1/2020 prototype strain were near fixation in the stock used for inoculation but had reverted to wild-type sequences at these sites in dogs, cats, and hamsters within 1- to 3-d postexposure. A total of 14 emergent variants (six in nonstructural genes, six in spike, and one each in orf8 and nucleocapsid) were detected in viruses recovered from animals. This included substitutions in spike residues H69, N501, and D614, which also vary in human lineages of concern. Even though a live virus was not cultured from dogs, substitutions in replicase genes were detected in amplified sequences. The rapid selection of SARS-CoV-2 variants in vitro and in vivo reveals residues with functional significance during host switching. These observations also illustrate the potential for spillback from animal hosts to accelerate the evolution of new viral lineages, findings of particular concern for dogs and cats living in households with COVID-19 patients. More generally, this glimpse into viral host switching reveals the unrealized rapidity and plasticity of viral evolution in experimental animal model systems.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-10-29
    Description: Accurate characterization of the time courses of blood-oxygen-level–dependent (BOLD) signal changes is crucial for the analysis and interpretation of functional MRI data. While several studies have shown that white matter (WM) exhibits distinct BOLD responses evoked by tasks, there have been no comprehensive investigations into the time courses of spontaneous signal fluctuations in WM. We measured the power spectra of the resting-state time courses in a set of regions within WM identified as showing synchronous signals using independent components analysis. In each component, a clear separation between voxels into two categories was evident, based on their power spectra: one group exhibited a single peak, and the other had an additional peak at a higher frequency. Their groupings are location specific, and their distributions reflect unique neurovascular and anatomical configurations. Importantly, the two categories of voxels differed in their engagement in functional integration, revealed by differences in the number of interregional connections based on the two categories separately. Taken together, these findings suggest WM signals are heterogeneous in nature and depend on local structural-vascular-functional associations.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-10-29
    Description: Bacterial cell wall peptidoglycan is essential, maintaining both cellular integrity and morphology, in the face of internal turgor pressure. Peptidoglycan synthesis is important, as it is targeted by cell wall antibiotics, including methicillin and vancomycin. Here, we have used the major human pathogen Staphylococcus aureus to elucidate both the cell wall dynamic processes essential for growth (life) and the bactericidal effects of cell wall antibiotics (death) based on the principle of coordinated peptidoglycan synthesis and hydrolysis. The death of S. aureus due to depletion of the essential, two-component and positive regulatory system for peptidoglycan hydrolase activity (WalKR) is prevented by addition of otherwise bactericidal cell wall antibiotics, resulting in stasis. In contrast, cell wall antibiotics kill via the activity of peptidoglycan hydrolases in the absence of concomitant synthesis. Both methicillin and vancomycin treatment lead to the appearance of perforating holes throughout the cell wall due to peptidoglycan hydrolases. Methicillin alone also results in plasmolysis and misshapen septa with the involvement of the major peptidoglycan hydrolase Atl, a process that is inhibited by vancomycin. The bactericidal effect of vancomycin involves the peptidoglycan hydrolase SagB. In the presence of cell wall antibiotics, the inhibition of peptidoglycan hydrolase activity using the inhibitor complestatin results in reduced killing, while, conversely, the deregulation of hydrolase activity via loss of wall teichoic acids increases the death rate. For S. aureus, the independent regulation of cell wall synthesis and hydrolysis can lead to cell growth, death, or stasis, with implications for the development of new control regimes for this important pathogen.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-10-29
    Description: The anterior end of the mammalian face is characteristically composed of a semimotile nose, not the upper jaw as in other tetrapods. Thus, the therian nose is covered ventrolaterally by the “premaxilla,” and the osteocranium possesses only a single nasal aperture because of the absence of medial bony elements. This stands in contrast to those in other tetrapods in whom the premaxilla covers the rostral terminus of the snout, providing a key to understanding the evolution of the mammalian face. Here, we show that the premaxilla in therian mammals (placentals and marsupials) is not entirely homologous to those in other amniotes; the therian premaxilla is a composite of the septomaxilla and the palatine remnant of the premaxilla of nontherian amniotes (including monotremes). By comparing topographical relationships of craniofacial primordia and nerve supplies in various tetrapod embryos, we found that the therian premaxilla is predominantly of the maxillary prominence origin and associated with mandibular arch. The rostral-most part of the upper jaw in nonmammalian tetrapods corresponds to the motile nose in therian mammals. During development, experimental inhibition of primordial growth demonstrated that the entire mammalian upper jaw mostly originates from the maxillary prominence, unlike other amniotes. Consistently, cell lineage tracing in transgenic mice revealed a mammalian-specific rostral growth of the maxillary prominence. We conclude that the mammalian-specific face, the muzzle, is an evolutionary novelty obtained by overriding ancestral developmental constraints to establish a novel topographical framework in craniofacial mesenchyme.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-10-29
    Description: Many intrinsically disordered proteins (IDPs) may undergo liquid–liquid phase separation (LLPS) and participate in the formation of membraneless organelles in the cell, thereby contributing to the regulation and compartmentalization of intracellular biochemical reactions. The phase behavior of IDPs is sequence dependent, and its investigation through molecular simulations requires protein models that combine computational efficiency with an accurate description of intramolecular and intermolecular interactions. We developed a general coarse-grained model of IDPs, with residue-level detail, based on an extensive set of experimental data on single-chain properties. Ensemble-averaged experimental observables are predicted from molecular simulations, and a data-driven parameter-learning procedure is used to identify the residue-specific model parameters that minimize the discrepancy between predictions and experiments. The model accurately reproduces the experimentally observed conformational propensities of a set of IDPs. Through two-body as well as large-scale molecular simulations, we show that the optimization of the intramolecular interactions results in improved predictions of protein self-association and LLPS.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-10-29
    Description: Gram-negative bacteria are surrounded by a protective outer membrane (OM) with phospholipids in its inner leaflet and lipopolysaccharides (LPS) in its outer leaflet. The OM is also populated with many β-barrel outer-membrane proteins (OMPs), some of which have been shown to cluster into supramolecular assemblies. However, it remains unknown how abundant OMPs are organized across the entire bacterial surface and how this relates to the lipids in the membrane. Here, we reveal how the OM is organized from molecular to cellular length scales, using atomic force microscopy to visualize the OM of live bacteria, including engineered Escherichia coli strains and complemented by specific labeling of abundant OMPs. We find that a predominant OMP in the E. coli OM, the porin OmpF, forms a near-static network across the surface, which is interspersed with barren patches of LPS that grow and merge with other patches during cell elongation. Embedded within the porin network is OmpA, which forms noncovalent interactions to the underlying cell wall. When the OM is destabilized by mislocalization of phospholipids to the outer leaflet, a new phase appears, correlating with bacterial sensitivity to harsh environments. We conclude that the OM is a mosaic of phase-separated LPS-rich and OMP-rich regions, the maintenance of which is essential to the integrity of the membrane and hence to the lifestyle of a gram-negative bacterium.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-10-29
    Description: The rapid development of nanotechnology has greatly benefited modern science and engineering and also led to an increased environmental exposure to nanoparticles (NPs). While recent research has established a correlation between the exposure of NPs and cardiovascular diseases, the intrinsic mechanisms of such a connection remain unclear. Inhaled NPs can penetrate the air–blood barrier from the lung to systemic circulation, thereby intruding the cardiovascular system and generating cardiotoxic effects. In this study, on-site cardiovascular damage was observed in mice upon respiratory exposure of silica nanoparticles (SiNPs), and the corresponding mechanism was investigated by focusing on the interaction of SiNPs and their encountered biomacromolecules en route. SiNPs were found to collect a significant amount of apolipoprotein A-I (Apo A-I) from the blood, in particular when the SiNPs were preadsorbed with pulmonary surfactants. While the adsorbed Apo A-I ameliorated the cytotoxic and proinflammatory effects of SiNPs, the protein was eliminated from the blood upon clearance of the NPs. However, supplementation of Apo A-I mimic peptide mitigated the atherosclerotic lesion induced by SiNPs. In addition, we found a further declined plasma Apo A-I level in clinical silicosis patients than coronary heart disease patients, suggesting clearance of SiNPs sequestered Apo A-I to compromise the coronal protein’s regular biological functions. Together, this study has provided evidence that the protein corona of SiNPs acquired in the blood depletes Apo A-I, a biomarker for prediction of cardiovascular diseases, which gives rise to unexpected toxic effects of the nanoparticles.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-10-14
    Description: Deserts exert strong selection pressures on plants, but the underlying genomic drivers of ecological adaptation and subsequent speciation remain largely unknown. Here, we generated de novo genome assemblies and conducted population genomic analyses of the psammophytic genus Pugionium (Brassicaceae). Our results indicated that this bispecific genus had undergone an allopolyploid event, and the two parental genomes were derived from two ancestral lineages with different chromosome numbers and structures. The postpolyploid expansion of gene families related to abiotic stress responses and lignin biosynthesis facilitated environmental adaptations of the genus to desert habitats. Population genomic analyses of both species further revealed their recent divergence with continuous gene flow, and the most divergent regions were found to be centered on three highly structurally reshuffled chromosomes. Genes under selection in these regions, which were mainly located in one of the two subgenomes, contributed greatly to the interspecific divergence in microhabitat adaptation.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-10-29
    Description: Cells cooperate as groups to achieve structure and function at the tissue level, during which specific material characteristics emerge. Analogous to phase transitions in classical physics, transformations in the material characteristics of multicellular assemblies are essential for a variety of vital processes including morphogenesis, wound healing, and cancer. In this work, we develop configurational fingerprints of particulate and multicellular assemblies and extract volumetric and shear order parameters based on this fingerprint to quantify the system disorder. Theoretically, these two parameters form a complete and unique pair of signatures for the structural disorder of a multicellular system. The evolution of these two order parameters offers a robust and experimentally accessible way to map the phase transitions in expanding cell monolayers and during embryogenesis and invasion of epithelial spheroids.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-10-20
    Description: The East Asian summer monsoon and the precipitation it brings are relevant for millions of people. Because of the monsoon’s importance, there has been a substantial amount of work attempting to describe the driving mechanisms behind its past variability. However, discrepancies exist, with speleothem-based East Asian monsoon reconstructions differing from those based on loess records from the Chinese Loess Plateau during the late Quaternary. The periodicity of wet and dry phases experienced by desert areas that lie on the periphery of the East Asian monsoon’s influence offer another independent view of monsoonal variability. Here, we provide environmental records based on magnetic parameters for the last 3 million years from the Tengger Desert, China, one such marginal arid region. Our results reveal wet–dry cycles at a dominant frequency of 405 kiloyears, with drier intervals corresponding to eccentricity minima. These findings are consistent with previous reconstructions of East Asian summer and North African summer monsoon precipitation variability. Our records emphasize the dominant role of eccentricity in forcing East Asian monsoonal precipitation as well as monsoonal-derived environmental fluctuations experienced in peripheral desert areas. These results challenge the traditional view that high-latitude ice sheets are the primary driver of East Asian monsoon precipitation during the Quaternary based on Chinese loess records.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-10-29
    Description: Plants and animals use cell surface receptors to sense and interpret environmental signals. In legume symbiosis with nitrogen-fixing bacteria, the specific recognition of bacterial lipochitooligosaccharide (LCO) signals by single-pass transmembrane receptor kinases determines compatibility. Here, we determine the structural basis for LCO perception from the crystal structures of two lysin motif receptor ectodomains and identify a hydrophobic patch in the binding site essential for LCO recognition and symbiotic function. We show that the receptor monitors the composition of the amphiphilic LCO molecules and uses kinetic proofreading to control receptor activation and signaling specificity. We demonstrate engineering of the LCO binding site to fine-tune ligand selectivity and correct binding kinetics required for activation of symbiotic signaling in plants. Finally, the hydrophobic patch is found to be a conserved structural signature in this class of LCO receptors across legumes that can be used for in silico predictions. Our results provide insights into the mechanism of cell-surface receptor activation by kinetic proofreading of ligands and highlight the potential in receptor engineering to capture benefits in plant–microbe interactions.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-10-29
    Description: The human ERG (hERG) K+ channel has a crucial function in cardiac repolarization, and mutations or channel block can give rise to long QT syndrome and catastrophic ventricular arrhythmias. The cytosolic assembly formed by the Per-Arnt-Sim (PAS) and cyclic nucleotide binding homology (CNBh) domains is the defining structural feature of hERG and related KCNH channels. However, the molecular role of these two domains in channel gating remains unclear. We have previously shown that single-chain variable fragment (scFv) antibodies can modulate hERG function by binding to the PAS domain. Here, we mapped the scFv2.12 epitope to a site overlapping with the PAS/CNBh domain interface using NMR spectroscopy and mutagenesis and show that scFv binding in vitro and in the cell is incompatible with the PAS interaction with CNBh. By generating a fluorescently labeled scFv2.12, we demonstrate that association with the full-length hERG channel is state dependent. We detect Förster resonance energy transfer (FRET) with scFv2.12 when the channel gate is open but not when it is closed. In addition, state dependence of scFv2.12 FRET signal disappears when the R56Q mutation, known to destabilize the PAS–CNBh interaction, is introduced in the channel. Altogether, these data are consistent with an extensive structural alteration of the PAS/CNBh assembly when the cytosolic gate opens, likely favoring PAS domain dissociation from the CNBh domain.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-10-29
    Description: Mammalian sperm migration within the complex and dynamic environment of the female reproductive tract toward the fertilization site requires navigational mechanisms, through which sperm respond to the tract environment and maintain the appropriate swimming behavior. In the oviduct (fallopian tube), sperm undergo a process called “hyperactivation,” which involves switching from a nearly symmetrical, low-amplitude, and flagellar beating pattern to an asymmetrical, high-amplitude beating pattern that is required for fertilization in vivo. Here, exploring bovine sperm motion in high–aspect ratio microfluidic reservoirs as well as theoretical and computational modeling, we demonstrate that sperm hyperactivation, in response to pharmacological agonists, modulates sperm–sidewall interactions and thus navigation via physical boundaries. Prior to hyperactivation, sperm remained swimming along the sidewalls of the reservoirs; however, once hyperactivation caused the intrinsic curvature of sperm to exceed a critical value, swimming along the sidewalls was reduced. We further studied the effect of noise in the intrinsic curvature near the critical value and found that these nonthermal fluctuations yielded an interesting “Run–Stop” motion on the sidewall. Finally, we observed that hyperactivation produced a “pseudo-chemotaxis” behavior, in that sperm stayed longer within microfluidic chambers containing higher concentrations of hyperactivation agonists.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-10-29
    Description: The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2–Murine Double Minute X (MDM2–MDMX) heterodimer. The role of MDM2–MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-10-29
    Description: Electrolyte-gated transistors (EGTs) hold great promise for next-generation printed logic circuitry, biocompatible integrated sensors, and neuromorphic devices. However, EGT-based complementary circuits with high voltage gain and ultralow driving voltage (110) under a supply voltage of only 0.7 V. Furthermore, NAND and NOR logic circuits on both rigid and flexible substrates are realized, enabling not only excellent logic response with driving voltages as low as 0.2 V but also impressive mechanical flexibility down to 1-mm bending radii. Finally, the HCIN was applied in electrooculographic (EOG) signal monitoring for recording eye movement, which is critical for the development of wearable medical sensors and also interfaces for human–computer interaction; the high voltage amplification of the present HCIN enables EOG signal amplification and monitoring in which a small ∼1.5 mV signal is amplified to ∼30 mV.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-10-29
    Description: Actions with identical goals can be executed in different ways (gentle, rude, vigorous, etc.), which D. N. Stern called vitality forms [D. N. Stern, Forms of Vitality Exploring Dynamic Experience in Psychology, Arts, Psychotherapy, and Development (2010)]. Vitality forms express the agent’s attitudes toward others. In a series of fMRI studies, we found that the dorso-central insula (DCI) is the region that is selectively active during both vitality form observation and execution. In one previous experiment, however, the middle cingulate gyrus also exhibited activation. In the present study, in order to assess the role of the cingulate cortex in vitality form processing, we adopted a classical vitality form paradigm, but making the control condition devoid of vitality forms using jerky movements. Participants performed two different tasks: Observation of actions performed gently or rudely and execution of the same actions. The results showed that in addition to the insula, the middle cingulate cortex (MCC) was strongly activated during both action observation and execution. Using a voxel-based analysis, voxels showing a similar trend of the blood-oxygen-level-dependent (BOLD) signal in both action observation and execution were found in the DCI and in the MCC. Finally, using a multifiber tractography analysis, we showed that the active sites in MCC and DCI are reciprocally connected.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-10-29
    Description: Yersinia pestis causes human plague and colonizes both a mammalian host and a flea vector during its transmission cycle. A key barrier to bacterial infection is the host’s ability to actively sequester key biometals (e.g., iron, zinc, and manganese) required for bacterial growth. This is referred to as nutritional immunity. Mechanisms to overcome nutritional immunity are essential virulence factors for bacterial pathogens. Y. pestis produces an iron-scavenging siderophore called yersiniabactin (Ybt) that is required to overcome iron-mediated nutritional immunity and cause lethal infection. Recently, Ybt has been shown to bind to zinc, and in the absence of the zinc transporter ZnuABC, Ybt improves Y. pestis growth in zinc-limited medium. These data suggest that, in addition to iron acquisition, Ybt may also contribute to overcoming zinc-mediated nutritional immunity. To test this hypothesis, we used a mouse model defective in iron-mediated nutritional immunity to demonstrate that Ybt contributes to virulence in an iron-independent manner. Furthermore, using a combination of bacterial mutants and mice defective in zinc-mediated nutritional immunity, we identified calprotectin as the primary barrier for Y. pestis to acquire zinc during infection and that Y. pestis uses Ybt to compete with calprotectin for zinc. Finally, we discovered that Y. pestis encounters zinc limitation within the flea midgut, and Ybt contributes to overcoming this limitation. Together, these results demonstrate that Ybt is a bona fide zinc acquisition mechanism used by Y. pestis to surmount zinc limitation during the infection of both the mammalian and insect hosts.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-10-29
    Description: Fevers are considered an adaptive response by the host to infection. For gregarious animals, however, fever and the associated sickness behaviors may signal a temporary loss of capacity, offering other group members competitive opportunities. We implanted wild vervet monkeys (Chlorocebus pygerythrus) with miniature data loggers to obtain continuous measurements of core body temperature. We detected 128 fevers in 43 monkeys, totaling 776 fever-days over a 6-year period. Fevers were characterized by a persistent elevation in mean and minimum 24-h body temperature of at least 0.5 °C. Corresponding behavioral data indicated that febrile monkeys spent more time resting and less time feeding, consistent with the known sickness behaviors of lethargy and anorexia, respectively. We found no evidence that fevers influenced the time individuals spent socializing with conspecifics, suggesting social transmission of infection within a group is likely. Notably, febrile monkeys were targeted with twice as much aggression from their conspecifics and were six times more likely to become injured compared to afebrile monkeys. Our results suggest that sickness behavior, together with its agonistic consequences, can carry meaningful costs for highly gregarious mammals. The degree to which social factors modulate the welfare of infected animals is an important aspect to consider when attempting to understand the ecological implications of disease.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-10-29
    Description: Mentalizing, the ability to infer the mental states of others, is a cornerstone of adaptive social intelligence. While functional brain mapping of human mentalizing has progressed considerably, its evolutionary signature in nonhuman primates remains debated. The discovery that the middle part of the macaque superior temporal sulcus (mid-STS) region has a connectional fingerprint most similar to the human temporoparietal junction (TPJ)—a crucial node in the mentalizing network—raises the possibility that these cortical areas may also share basic functional properties associated with mentalizing. Here, we show that this is the case in aspects of a preference for live social interactions and in a theoretical framework of predictive coding. Macaque monkeys were trained to perform a turn-taking choice task with another real monkey partner sitting directly face-to-face or a filmed partner appearing in prerecorded videos. We found that about three-fourths of task-related mid-STS neurons exhibited agent-dependent activity, most responding selectively or preferentially to the partner’s action. At the population level, activities of these partner-type neurons were significantly greater under live-partner compared to video-recorded–partner task conditions. Furthermore, a subset of the partner-type neurons responded proactively when predictions about the partner’s action were violated. This prediction error coding was specific to the action domain; almost none of the neurons signaled error in the prediction of reward. The present findings highlight unique roles of the macaque mid-STS at the single-neuron level and further delineate its functional parallels with the human TPJ in social cognitive processes associated with mentalizing.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-10-20
    Description: To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of messenger RNAs (mRNAs) near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally. It is not generally known, however, if, how, and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies (somata) as well as dendrites and axons (neuropil). Thousands of transcripts were differentially translated between somatic and synaptic regions, with many scaffold and signaling molecules displaying increased translation levels in the neuropil. Most translational changes between compartments could be accounted for by differences in RNA abundance. Pervasive translational regulation was observed in both somata and neuropil influenced by specific mRNA features (e.g., untranslated region [UTR] length, RNA-binding protein [RBP] motifs, and upstream open reading frames [uORFs]). For over 800 mRNAs, the dominant source of translation was the neuropil. We constructed a searchable and interactive database for exploring mRNA transcripts and their translation levels in the somata and neuropil [MPI Brain Research, The mRNA translation landscape in the synaptic neuropil. https://public.brain.mpg.de/dashapps/localseq/. Accessed 5 October 2021]. Overall, our findings emphasize the substantial contribution of local translation to maintaining synaptic protein levels and indicate that on-site translational control is an important mechanism to control synaptic strength.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2023-10-26
    Description: The Tierra Blanca Joven (TBJ) eruption from Ilopango volcano deposited thick ash over much of El Salvador when it was inhabited by the Maya, and rendered all areas within at least 80 km of the volcano uninhabitable for years to decades after the eruption. Nonetheless, the more widespread environmental and climatic impacts of this large eruption are not well known because the eruption magnitude and date are not well constrained. In this multifaceted study we have resolved the date of the eruption to 431 ± 2 CE by identifying the ash layer in a well-dated, high-resolution Greenland ice-core record that is 〉7,000 km from Ilopango; and calculated that between 37 and 82 km3 of magma was dispersed from an eruption coignimbrite column that rose to ∼45 km by modeling the deposit thickness using state-of-the-art tephra dispersal methods. Sulfate records from an array of ice cores suggest stratospheric injection of 14 ± 2 Tg S associated with the TBJ eruption, exceeding those of the historic eruption of Pinatubo in 1991. Based on these estimates it is likely that the TBJ eruption produced a cooling of around 0.5 °C for a few years after the eruption. The modeled dispersal and higher sulfate concentrations recorded in Antarctic ice cores imply that the cooling would have been more pronounced in the Southern Hemisphere. The new date confirms the eruption occurred within the Early Classic phase when Maya expanded across Central America.
    Description: Published
    Description: 26061-26068
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Keywords: Maya; eruption dispersal; large volcanic eruptions; radiocarbon; sulfate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2023-02-08
    Description: Habitat heterogeneity and species diversity are often linked. On the deep seafloor, sediment variability and hard-substrate availability influence geographic patterns of species richness and turnover. The assumption of a generally homogeneous, sedimented abyssal seafloor is at odds with the fact that the faunal diversity in some abyssal regions exceeds that of shallow-water environments. Here we show, using a ground-truthed analysis of multibeam sonar data, that the deep seafloor may be much rockier than previously assumed. A combination of bathymetry data, ruggedness, and backscatter from a trans-Atlantic corridor along the Vema Fracture Zone, covering crustal ages from 0 to 100 Ma, show rock exposures occurring at all crustal ages. Extrapolating to the whole Atlantic, over 260,000 km2 of rock habitats potentially occur along Atlantic fracture zones alone, significantly increasing our knowledge about abyssal habitat heterogeneity. This implies that sampling campaigns need to be considerably more sophisticated than at present to capture the full deep-sea habitat heterogeneity and biodiversity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2023-02-08
    Description: The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2023-02-08
    Description: A fundamental problem for the evolution of pregnancy, the most specialized form of parental investment among vertebrates, is the rejection of the nonself-embryo. Mammals achieve immunological tolerance by down-regulating both major histocompatibility complex pathways (MHC I and II). Although pregnancy has evolved multiple times independently among vertebrates, knowledge of associated immune system adjustments is restricted to mammals. All of them (except monotremata) display full internal pregnancy, making evolutionary reconstructions within the class mammalia meaningless. Here, we study the seahorse and pipefish family (syngnathids) that have evolved male pregnancy across a gradient from external oviparity to internal gestation. We assess how immunological tolerance is achieved by reconstruction of the immune gene repertoire in a comprehensive sample of 12 seahorse and pipefish genomes along the “male pregnancy” gradient together with expression patterns of key immune and pregnancy genes in reproductive tissues. We found that the evolution of pregnancy coincided with a modification of the adaptive immune system. Divergent genomic rearrangements of the MHC II pathway among fully pregnant species were identified in both genera of the syngnathids: The pipefishes (Syngnathus) displayed loss of several genes of the MHC II pathway while seahorses (Hippocampus) featured a highly divergent invariant chain (CD74). Our findings suggest that a trade-off between immunological tolerance and embryo rejection accompanied the evolution of unique male pregnancy. That pipefishes survive in an ocean of microbes without one arm of the adaptive immune defense suggests a high degree of immunological flexibility among vertebrates, which may advance our understanding of immune-deficiency diseases.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2023-02-08
    Description: Assessment of the global budget of the greenhouse gas nitrous oxide ([Formula: see text]O) is limited by poor knowledge of the oceanic [Formula: see text]O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatological [Formula: see text]O emissions from the ocean by training a supervised learning algorithm with over 158,000 [Formula: see text]O measurements from the surface ocean-the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots of [Formula: see text]O flux and reveals a vigorous global seasonal cycle. We estimate an annual mean [Formula: see text]O flux of 4.2 ± 1.0 Tg N[Formula: see text], 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. This [Formula: see text]O flux ranges from a low of 3.3 ± 1.3 Tg N[Formula: see text] in the boreal spring to a high of 5.5 ± 2.0 Tg N[Formula: see text] in the boreal summer. Much of the seasonal variations in global [Formula: see text]O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (〉75%) suggests a sensitivity of the global [Formula: see text]O flux to El Niño-Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmospheric [Formula: see text]O budget.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2023-02-08
    Description: Climate-driven depletion of ocean oxygen strongly impacts the global cycles of carbon and nutrients as well as the survival of many animal species. One of the main uncertainties in predicting changes to marine oxygen levels is the regulation of the biological respiration demand associated with the biological pump. Derived from the Redfield ratio, the molar ratio of oxygen to organic carbon consumed during respiration (i.e., the respiration quotient, r−O2:C) is consistently assumed constant but rarely, if ever, measured. Using a prognostic Earth system model, we show that a 0.1 increase in the respiration quotient from 1.0 leads to a 2.3% decline in global oxygen, a large expansion of low-oxygen zones, additional water column denitrification of 38 Tg N/y, and the loss of fixed nitrogen and carbon production in the ocean. We then present direct chemical measurements of r−O2:C using a Pacific Ocean meridional transect crossing all major surface biome types. The observed r−O2:C has a positive correlation with temperature, and regional mean values differ significantly from Redfield proportions. Finally, an independent global inverse model analysis constrained with nutrients, oxygen, and carbon concentrations supports a positive temperature dependence of r−O2:C in exported organic matter. We provide evidence against the common assumption of a static biological link between the respiration of organic carbon and the consumption of oxygen. Furthermore, the model simulations suggest that a changing respiration quotient will impact multiple biogeochemical cycles and that future warming can lead to more intense deoxygenation than previously anticipated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2023-02-08
    Description: The ocean is our planet’s largest life-support system. It stabilizes climate; stores carbon; produces oxygen; nurtures biodiversity; directly supports human well-being through food, mineral, and energy resources; and provides cultural and recreational services. The value of the ocean economy speaks to its importance: The Organization for Economic Cooperation and Development (OECD) estimates that by 2030, $3 trillion USD will be generated annually from ocean sectors such as transportation, fishing, tourism, and energy (1). Unsustainable resource extraction, pollution, climate change, and habitat destruction are on the rise and affecting many parts of the world’s oceans (2). The ocean is rapidly changing, and yet the ways in which these changes will play out are not yet clear.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...