ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01.01. Atmosphere  (3)
  • Internal waves
  • North Atlantic Ocean
  • Turbulence
  • MDPI  (3)
  • American Meteorological Society  (1)
  • 2020-2024  (4)
  • 1
    Publication Date: 2023-03-30
    Description: Boreal fires have increased during the last years and are projected to become more intense and frequent as a consequence of climate change. Wildfires produce a wide range of effects on the Arctic climate and ecosystem, and understanding these effects is crucial for predicting the future evolution of the Arctic region. This study focuses on the impact of the long-range transport of biomass-burning aerosol into the atmosphere and the corresponding radiative perturbation in the shortwave frequency range. As a case study, we investigate an intense biomass-burning (BB) event which took place in summer 2017 in Canada and subsequent northeastward transport of gases and particles in the plume leading to exceptionally high values (0.86) of Aerosol Optical Depth (AOD) at 500 nm measured in northwestern Greenland on 21 August 2017. This work characterizes the BB plume measured at the Thule High Arctic Atmospheric Observatory (THAAO; 76.53∘N, 68.74∘W) in August 2017 by assessing the associated shortwave aerosol direct radiative impact over the THAAO and extending this evaluation over the broader region (60∘N–80∘N, 110∘W–0∘E). The radiative transfer simulations with MODTRAN6.0 estimated an aerosol heating rate of up to 0.5 K/day in the upper aerosol layer (8–12 km). The direct aerosol radiative effect (ARE) vertical profile shows a maximum negative value of −45.4 Wm−2 for a 78∘ solar zenith angle above THAAO at 3 km altitude. A cumulative surface ARE of −127.5 TW is estimated to have occurred on 21 August 2017 over a portion (∼3.1×106 km2) of the considered domain (60∘N–80∘N, 110∘W–0∘E). ARE regional mean daily values over the same portion of the domain vary between −65 and −25 Wm−2. Although this is a limited temporal event, this effect can have significant influence on the Arctic radiative budget, especially in the anticipated scenario of increasing wildfires.
    Description: This research was partially funded by the Italian Ministry of University and Research (MIUR) within the framework of OASIS-YOPP—Observations of the Arctic Stratosphere In Support of YOPP (PNRA 2016–2018); CLARA2—CLouds And Radiation in the Arctic and Antarctica (PNRA 2019–2021), and ECAPAC—Effects of changing albedo and precipitation on the Arctic climate (PRA 2021–2023). The work of F. Calì Quaglia and G. Muscari was also partially funded under the INGV environmental project MACMAP—A Multidisciplinary Analysis of Climate change indicators in the Mediterranean And Polar regions (2020–2023). The NCAR FTIR observation program at Thule, Greenland is supported under contract by the National Aeronautics and Space Administration (NASA). The National Center for Atmospheric Research (NCAR) is sponsored by the U.S. National Science Foundation (NSF). The Thule work is also supported by the NSF Office of Polar Programs (OPP).
    Description: Published
    Description: 313
    Description: 5A. Ricerche polari e paleoclima
    Description: JCR Journal
    Keywords: biomass-burning (BB) ; wildfires ; Arctic ; aerosol radiative effect ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-29
    Description: The chemical composition of rainwater was studied in two highly-industrialised areas in Sicily (southern Italy), between June 2018 and July 2019. The study areas were characterised by large oil refining plants and other industrial hubs whose processes contribute to the release of large amounts of gaseous species that can affect the chemical composition of atmospheric deposition As in most of the Mediterranean area, rainwater acidity (ranging in the study area between 3.9 and 8.3) was buffered by the dissolution of abundant geogenic carbonate aerosol. In particular, calcium and magnesium cations showed the highest pH-neutralizing factor, with ~92% of the acidity brought by SO42- and NO3- neutralized by alkaline dust. The lowest pH values were observed in samples collected after abundant rain periods, characterised by a less significant dry deposition of alkaline materials. Electrical Conductivity (ranging between 7 µS cm-1 and 396 µS cm-1) was inversely correlated with the amount of rainfall measured in the two areas. Concentrations of major ionic species followed the sequence Cl- 〉 Na+ 〉 SO42- ≃ HCO3- 〉 ≃ Ca2+ 〉 NO3- 〉 Mg2+ 〉 K+ 〉 F-. High loads of Na+ and Cl- (with a calculated R2 = 0.99) reflected proximity to the sea. Calcium, potassium, and non-sea-salt magnesium had a prevalent crustal origin. Non-sea salt sulphate, nitrate, and fluoride can be attributed mainly to anthropogenic sources. Mt. Etna, during eruptive periods, may be also considered, on a regional scale, a significant source for fluoride, non-sea salt sulphate, and even chloride.
    Description: Published
    Description: 3898
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: acidity neutralization ; anthropogenic source ; atmospheric deposition ; major ions ; marine source ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-08-29
    Description: The concentrations of trace elements in atmospheric bulk depositions (wet plus dry) were investigated from two highly industrialised areas of Sicily (southern Italy) from June 2018 to July 2019, in order to recognise the main natural and anthropogenic sources. A side objective of this study was to improve the common sampling procedures and analytical methods used for monitoring trace elements in atmospheric deposition. The trace element VWM (Volume-Weighted Mean) concentrations ranged from less than 0.01 µg L-1 for trace elements such as Cs, Tl, and U, up to 24 µg L-1 for minor elements (Al, Zn, Sr), in the filtered aliquot, while they reached concentrations up to 144 µg L-1 for the same elements, in the unfiltered aliquot. Therefore, significant differences in concentrations between these two aliquots were found, particularly for Al, Fe, Ti, Zn, Cr, Pb, Se, Cs, and U. This implies that filtering operations may produce a consistent underestimation of concentrations of certain ‘constituents’ of the atmospheric deposition. Natural (marine spray, local and regional geogenic input, volcanic emanations) and anthropogenic sources (industrial emissions, auto vehicular traffic, and diffuse background pollution) which influence rainwater chemistry were identified. Enrichment factors (EFs), with respect to the upper crust composition, provided clear evidence of the different sources above mentioned: Ti, Fe, Al, Cs, Cr, Rb, and Co have low EFs (〈1), and are referable to the (local and/or regional) geogenic input, while Se, Sb, Zn, B, Cd, Cu, Mo, Sr, As, with high EFs (〉10), highlight the influence of marine and/or industrial sources. The study produced a novel dataset on the atmospheric deposition rate of several trace elements, which had never been studied in the investigated areas. Finally, a comparison of trace element deposition rates in the studied areas with the atmospheric deposition reported for 53 different sites, belonging to 20 different European nations, was made. The comparison showed that some elements, such as Al, V, Zn, and Mo had higher median deposition fluxes in the Sicilian sites than in European monitoring sites.
    Description: Published
    Description: 737
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: atmospheric deposition ; rainwater ; industrial pollution ; trace elements ; anthropogenic contribution ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-28
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(6), (2022): 1091–1110, https://doi.org/10.1175/JPO-D-21-0068.1.
    Description: Hundreds of full-depth temperature and salinity profiles collected by Deepglider autonomous underwater vehicles (AUVs) in the North Atlantic reveal robust signals in eddy isopycnal vertical displacement and horizontal current throughout the entire water column. In separate glider missions southeast of Bermuda, subsurface-intensified cold, fresh coherent vortices were observed with velocities exceeding 20 cm s−1 at depths greater than 1000 m. With vertical resolution on the order of 20 m or less, these full-depth glider slant profiles newly permit estimation of scaled vertical wavenumber spectra from the barotropic through the 40th baroclinic mode. Geostrophic turbulence theory predictions of spectral slopes associated with the forward enstrophy cascade and proportional to inverse wavenumber cubed generally agree with glider-derived quasi-universal spectra of potential and kinetic energy found at a variety of locations distinguished by a wide range of mean surface eddy kinetic energy. Water-column average spectral estimates merge at high vertical mode number to established descriptions of internal wave spectra. Among glider mission sites, geographic and seasonal variability implicate bottom drag as a mechanism for dissipation, but also the need for more persistent sampling of the deep ocean.
    Description: This work was funded by NSF Grant 1736217 and would not have been possible without the help of Kirk O’Donnell, James Bennett, Noel Pelland, and all contributors to Deepglider development. We additionally thank the captain crew of the R/V Atlantic Explorer and the BATS team at the Bermuda Institute of Ocean Sciences, particularly Rod Johnson, as well as Seakeepers International for their professionalism, capability, and generous assistance in deploying and recovering gliders.
    Keywords: North Atlantic Ocean ; Eddies ; Mesoscale processes ; Turbulence ; Energy transport ; In situ oceanic observations ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...