ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,928)
  • American Chemical Society  (1,750)
  • Seismological Society of America  (91)
  • BioMed Central  (80)
  • American Chemical Society (ACS)
  • 2020-2024  (1,928)
Collection
Years
Year
Journal
  • 1
    Publication Date: 2023-03-13
    Description: Goniodomin A (GDA, 1) is a phycotoxin produced by at least four species of Alexandrium dinoflagellates that are found globally in brackish estuaries and lagoons. It is a linear polyketide with six oxygen heterocyclic rings that is cyclized into a macrocyclic structure via lactone formation. Two of the oxygen heterocycles in 1 comprise a spiro-bis-pyran, whereas goniodomin B (GDB) contains a 2,7-dioxabicyclo[3.3.1]nonane ring system fused to a pyran. When H2O is present, 1 undergoes facile conversion to isomer GDB and to an α,β-unsaturated ketone, goniodomin C (GDC, 7). GDB and GDC can be formed from GDA by cleavage of the spiro-bis-pyran ring system. GDA, but not GDB or GDC, forms a crown ether-type complex with K+. Equilibration of GDA with GDB and GDC is observed in the presence of H+ and of Na+, but the equilibrated mixtures revert to GDA upon addition of K+. Structural differences have been found between the K+ and Na+ complexes. The association of GDA with K+ is strong, while that with Na+ is weak. The K+ complex has a compact, well-defined structure, whereas Na+ complexes are an ill-defined mixture of species. Analyses of in vitro A. monilatum and A. hiranoi cultures indicate that only GDA is present in the cells; GDB and GDC appear to be postharvest transformation products.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-31
    Description: We investigate the dependence of the Gutenberg–Richter b parameter on the crustal thickness quantified by the Moho depth, for nine different regional catalogs. We find that, for all the catalogs considered in our study, the b‐value is larger in areas presenting a thicker crust. This result appears in apparent contradiction with previous findings of a b decreasing with the focal depth. However, both the results are consistent with acoustic emission experiments, indicating a b‐value inversely proportion to the applied differential stress. Our results can be indeed interpreted as the signature of a larger stress concentration in areas presenting a thinner crust. This is compatible with the scenario where postseismic deformation plays a central role in stress concentration and in aftershock triggering.
    Description: Published
    Description: 1921–1934
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: b-value ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Seismological Society of America
    In:  Taroni, M., J. Zhuang, and W. Marzocchi (2021). High-definition mapping of the Gutenberg–Richter b-value and its relevance: A case study in Italy, Seismol. Res. Lett. 92, 3778–3784, doi: 10.1785/0220210017.
    Publication Date: 2023-02-21
    Description: Taroni et al. (2021) published a statistical framework to reliably estimate the b-value and its uncertainties, with the goal being the interpretation in a seismotectonic context and improving earthquake forecasting capabilities. In this comment, we show that the results presented for the Italian region and the conclusions drawn by the authors, are heavily biased due to quarry-blast events in the Italian earthquake catalog used in the analysis. Without removing this anthropogenic component in the data, a meaningful analysis of the earthquake- size distribution for natural seismicity is, in our opinion, not possible. This comment highlights the need for basic data quality analysis before sophisticated statistical tools are applied to a dataset.
    Description: European Union’s Horizon 2020 research and innovation program under Grant Agreement Number 821115 Pianeta Dinamico-Working Earth INGV-MUR project.
    Description: Published
    Description: 1089-1094
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-02-21
    Description: Machine‐learning (ML) methods have seen widespread adoption in seismology in recent years. The ability of these techniques to efficiently infer the statistical properties of large datasets often provides significant improvements over traditional techniques when the number of data are large (millions of examples). With the entire spectrum of seismological tasks, for example, seismic picking and detection, magnitude and source property estimation, ground‐motion prediction, hypocenter determination, among others, now incorporating ML approaches, numerous models are emerging as these techniques are further adopted within seismology. To evaluate these algorithms, quality‐controlled benchmark datasets that contain representative class distributions are vital. In addition to this, models require implementation through a common framework to facilitate comparison. Accessing these various benchmark datasets for training and implementing the standardization of models is currently a time‐consuming process, hindering further advancement of ML techniques within seismology. These development bottlenecks also affect “practitioners” seeking to deploy the latest models on seismic data, without having to necessarily learn entirely new ML frameworks to perform this task. We present SeisBench as a software package to tackle these issues. SeisBench is an open‐source framework for deploying ML in seismology—available via GitHub. SeisBench standardizes access to both models and datasets, while also providing a range of common processing and data augmentation operations through the API. Through SeisBench, users can access several seismological ML models and benchmark datasets available in the literature via a single interface. SeisBench is built to be extensible, with community involvement encouraged to expand the package. Having such frameworks available for accessing leading ML models forms an essential tool for seismologists seeking to iterate and apply the next generation of ML techniques to seismic data.
    Description: Published
    Description: 1695–1709
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-05-25
    Description: The strategy for data processing in the Engineering Strong-Motion Database (ESM) is to disseminate only manually revised data to ensure the highest quality. However, manual processing is no longer sustainable, due to the ever-increasing rate of digital earth-quake records, from global, regional, and national seismic networks, and a new frame-work for strong-motion data processing is required, so that records are automatically processed and the human revision is restricted to selected significant records. To this end, we present ESMpro—a modular Python software for a renewed processing frame-work of ESM. The software is available in a stand-alone beta version to facilitate testing and sharing among the scientific community. ESMpro provides automatic settings for waveform trimming and filtering, along with the automatic recognition of poor-quality data and multiple events. ESMpro allows classifying each record in different quality classes to reduce manual revision on a subset of the incoming data. ESMpro also allows handling different processing techniques in a modular and flexible structure to facilitate the implementation of new or alternative algorithms and file formats. The testing performed on the ESM database results in a good correspondence between the automatic and manual data processing, supporting the migration toward fully automatic procedures for massive data processing.
    Description: Published
    Description: 961–974
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-05-25
    Description: We present a probabilistic seismic hazard analysis (PSHA) for the entire Po Plain sedimentary basin (Italy)—one of the widest Quaternary alluvial basins of Europe, to evaluate the impact of site-response characterization on hazard estimates. A large-scale application of approach 3 of the U.S. Nuclear Regulatory Commission (NRC) to include seismic amplification in the hazard is presented. Both 1D amplification related to stratigraphic conditions and 3D amplification due to basin effects are considered with the associated uncertainties, and their impact on the hazard is analyzed through a sensitivity analysis. Whereas 3D basin effects are considered through the application of an empirical, spatial invariant correction term, 1D amplification was estimated throughout the study area by means of dynamic (equivalent linear) ground-response analysis. To separate aleatory variabilities and epistemic uncertainties related to site response, a partially nonergodic approach is used. The results provide a finer picture of the actual seismic hazard, highlighting those areas where the ground motion is affected by amplification effects due to local or regional geological features. We found that, for a return period of 475 yr, neglecting basin effects produces a 30% underestimation of the seismic hazard in the long-period ( 〉 1 s) range. Moreover, with reference to the hazard model adopted, such effects are responsible for most of the epistemic uncertainty (up to 80%) in the results. Therefore, such effects deserve special attention in future research related to PSHA in the Po Plain sedimentary basin.
    Description: Published
    Description: 1269–1285
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Chemical Society (ACS)
    In:  EPIC3Environmental Science & Technology, American Chemical Society (ACS), 57(17), pp. 6799-6807, ISSN: 0013-936X
    Publication Date: 2023-08-16
    Description: Plastic pollution has become ubiquitous with very high quantities detected even in ecosystems as remote as arctic sea ice and deepsea sediments. Ice algae growing underneath sea ice are released upon melting and can form fast-sinking aggregates. In this pilot study, we sampled and analyzed the ice algaeMelosira arcticaand ambient sea water from three locations in the Fram Strait to assess their microplastic content and potential as a temporary sink and pathway to the deep seafloor. Analysis by μ-Raman and fluorescence microscopy detected microplastics (≥2.2 μm) in all samples at concentrations ranging from 1.3 to 5.7 × 104 microplastics (MP) m−3 in ice algae and from 1.4 to 4.5 × 103 MP m−3 in sea water, indicating magnitude higher concentrations in algae. On average, 94% of the total microplastic particles were identified as 10 μm or smaller in size and comprised 16 polymer types without a clear dominance. The high concentrations of microplastics found in our pilot study suggest thatM. arctica could trap microplastics from melting ice and ambient sea water. The algae appear to be a temporary sink and could act as a key vector to food webs near the sea surface and on the deep seafloor, to which its fast-sinking aggregates could facilitate an important mechanism of transport.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-10-03
    Description: In part 1, we run multiple GIT decomposition for different choices of model assumptions, namely three different window duration for Fourier calculation, two different parametrization of the attenuation, two different site constraints. We also considered different source models (Brune, Boatwright, Brune with kappa_source) and different approaches to estimate uncertainties of source parameters (i.e., considering the covariance matrix, Monte Carlo sampling of the residual distribution, model selection with threshold based on F-test).
    Description: As part of the community stress-drop validation study initiative, we apply a spectral decomposition approach to isolate the source spectra of 556 events occurred during the 2019 Ridgecrest sequence (Southern California). We perform multiple decompositions by introducing alternative choices for some processing and model assumptions, namely: three different S-wave window durations (i.e., 5 s, 20 s, and variable between 5 and 20 s); two attenuation models that account differently for depth dependencies; and two different site amplification constraints applied to restore uniqueness of the solution. Seismic moment and corner frequency are estimated for the Brune and Boatwright source models, and an extensive archive including source spectra, site amplifications, attenuation models, and tables with source parameters is disseminated as the main product of the present study. We also compare different approaches to measure the precision of the parameters expressed in terms of 95% confidence intervals (CIs). The CIs estimated from the asymptotic standard errors and from Monte Carlo resampling of the residual distribution show an almost one-to-one correspondence; the approach based on model selection by setting a threshold for misfit chosen with an F-ratio test is conservative compared to the approach based on the asymptotic standard errors. The uncertainty analysis is completed in the companion article in which the outcomes from this work are used to compare epistemic uncertainty with precision of the source parameters.
    Description: Published
    Description: 1980–1991
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: source parameters ; GIT ; uncertainties ; moment magnitude ; corner frequency ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-10-03
    Description: This paper is the second part of a previous publication (Bindi et al. 2023 DOI: 10.1785/0220230019). All the decompositions of part 1 are organized in a sort of logic tree and mixed-effect regressions are performed to partition the variability into contributions related to duration, attenuation and site-constraint grouping factors. Statistical uncertainties computed in part 1 (i.e., coming from the fit) are compared with epistemic uncertainties associated to the logic tree, and Sammon's maps are used to visualize the impact of the grouping factors on the overall shape of the source spectra.
    Description: As part of the community stress‐drop validation study, we evaluate the uncertainties of seismic moment M0 and corner frequency fc for earthquakes of the 2019 Ridgecrest sequence. Source spectra were obtained in the companion article by applying the spectral decomposition approach with alternative processing and model assumptions. The objective of the present study is twofold: first, to quantify the impact of different assumptions on the source parameters; and second, to use the distribution of values obtained with different assumptions to estimate an epistemic contribution to the uncertainties. Regarding the first objective, we find that the choice of the attenuation model has a strong impact on fc results: by introducing a depth‐dependent attenuation model, fc estimates of events shallower than 6 km increase of about 10%. Also, the duration of the window used to compute the Fourier spectra show an impact on fc ⁠: the average ratio between the estimates for 20 s duration to those for 5 s decreases from 1.1 for Mw〈3 to 0.66 for Mw〉4.5. For the second objective, we use a mixed‐effect regression to partition the intraevent variability into duration, propagation, and site contributions. The standard deviation ϕ of the intraevent residuals for log(fc) is 0.0635, corresponding to a corner frequency ratio 102ϕ=1.33. When the intraevent variability is compared to uncertainties on log(fc), we observe that 2ϕ is generally larger than the 95% confidence interval of log(fc), suggesting that the uncertainty of the source parameters provided by the fitting procedure might underestimate the model‐related (epistemic) uncertainty. Finally, although we observe an increase of log(Δσ) with log(M0) regardless of the model assumptions, the increase of Δσ with depth depends on the assumptions, and no significant trends are detected when depth‐dependent attenuation and velocity values are considered.
    Description: Published
    Description: 1992–2002
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-27
    Description: We study the spectral decay parameter κ using S-wave recordings from the central Italy dense regional array. The data set used consists of 266 earthquakes, 353 stations, and 13,952 observations of κ with a mean value of 0.0412 ± 0.0177 within the distance range of 7.1–168.8 km. We model the variation of κ with hypocenter distance r as κ r κ0 κs ̃κ r , in which κ0 and κs represent the near-site and the near-source decay parameters, respectively, and ̃κ r the average κ along the S-wave source-station paths. We first determine ̃κ r with a nonparametric inversion approach and then we solved for κ0 and κs with a second inversion. We found that ̃κ r increases with distance within the whole distance range analyzed (9.2–80.6 km). The near-source decay parameter takes values in the range 0:0 〈 κs ≤ 0:026 with a mean value of 0.003 ± 0.006, which represents 7.52% of the mean value of the observed κ. The values of the near-site decay parameter vary in the range 0:0035 ≤ κ0 ≤ 0:0823 with a mean value of 0.0298 ± 0.0133, that is, 72.28% of the mean value of the κ observed. We conclude that most of the high- frequency attenuation takes place near the site, because ̃κ r contributes with only 20.2% of the spectral decay. We also investigate the spatial variability of κ by determining ̃κ r within four quadrants that divide the studied region taking as a reference axis the Apennines chain orientation. We found higher values of ̃κ r in the southern quad- rants, where seismicity and faulting are more active, and less attenuation in the more stable northeast quadrant.
    Description: Published
    Description: 2299–2310
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...