ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 01.02. Ionosphere  (5)
  • 04.02. Exploration geophysics  (4)
  • Elsevier  (8)
  • EGU  (1)
  • American Chemical Society
  • 2020-2024  (9)
  • 1935-1939
  • 1
    Publication Date: 2023-11-21
    Description: During the 2016–2017, a seismic sequence struck the Central Italy, involving four regions (Umbria, Marche, Abruzzo and Lazio) and causing important damages and victims in inhabited areas such as Norcia and Amatrice towns. The strongest event of the seismic sequence was a Mw 6.5 event with epicenter at about 5 km far from the Norcia area, which is an intermontane basin prone to ground motion amplification. The historical town of Norcia and the surrounding hamlets were recently investigated by the microzonation activity, but information on the geometry and velocity are still partial considering the entire basin. Indeed, past studies aimed at reconstructing the elastic and geometrical properties focusing mainly on the northern part of the basin. Specifically in this paper, we integrated seismic and geological data to get a better knowledge of the properties of the Quaternary Norcia basin. A geological survey was carried out to provide a geological map and three geological cross-sections. We analyzed new seismic ambient vibrations data, collected by single-seismic stations, to infer the distribution of resonant frequency (f0) for the entire basin. We used passive arrays of seismic stations to better define the velocity profiles of the area. In the northern part of the basin, two 2D arrays with elliptical-like shapes were deployed showing strong discrepancies of the elastic soil properties in proximity of Norcia town. We found shear-wave velocities of the near-surface profile of about 300–400 and 500–800 m/s in presence of palustrine and alluvial fan deposits, respectively. Further, the values of f0 are abruptly varying from 0.5 Hz in the SW sector of Norcia village up to 2 Hz in its NE sector. Ambient vibration data reveal less pronounced variation of f0 in the southern part of the basin, with resonant values that are almost in the range 1–1.3 Hz. In the southern sector, a 1D array was arranged along a 5-km line and was analyzed by means of seismic noise cross-correlation analysis suggesting the presence of a deeper seismic contrast. The integration of geophysical and geological results has allowed to infer insights on the subsurface geometry of the basin.
    Description: Published
    Description: 105501
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: 04.02. Exploration geophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-01-08
    Description: Several empirical formulations used over time to estimate the fundamental ionospheric parameter hmF2 have been compared in this study. These are the first formulation proposed by Shimazaki (1955) (SHI-1955) as a function of the propagation parameter M(3000)F2, the more accurate BSE-1979 formula proposed by Bilitza et al. (1979) and firstly adopted by the International Reference Ionosphere (IRI) model, and the newest Altadill-Magdaleno-Torta-Blanch (AMTB-2013) (Altadill et al., 2013) and SHU-2015 (Shubin, 2015) models, obtained with a different approach with no explicit dependence on any ionospheric parameter and added as alternative options in the IRI-2016. The evaluation of the accuracy of the available formulation is performed by comparing the modeled values of hmF2 with those simultaneously obtained with independent measurements from the Incoherent Scatter Radar (ISR) installed at the Millstone Hill ionospheric station. The database considered consists of 3626 measurements, thus allowing the evaluation of the results for different heliogeophysical conditions. SHI-1955 and BSE-1979 formulations are evaluated also using input data manually scaled from ionograms recorded at the same location, with the aim of evaluating their accuracy when updated with validated data rather than modeled ones. The SHU-2015 is confirmed the best option in any condition, while AMTB-2013 turns out to perform poorly during night, when SHI-1955 and BSE-1979 fed by validated data can be used for trend analyses due to the high correlation with ISR data. Despite this, BSE-1979 performs better with modeled parameters as input, in terms of RMSE and mean deviation from ISR data. The use of SHI-1955 with CCIR-modeled M(3000)F2 is discouraged under daytime conditions even for long trend analyses.
    Description: Published
    Description: 3202-3211
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Keywords: hmF2 ; IRI-2020 ; ISR ; Ionosonde ; 01.02. Ionosphere ; 05.07. Space and Planetary sciences
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-01-08
    Description: Experimental data are publicly available here: https://data.mendeley.com/datasets/f78bmhr628/1
    Description: Temperature is a major source of inaccuracy in high-sensitivity accelerometers and gravimeters. Active thermal control systems require power and may not be ideal in some contexts such as airborne or spaceborne applications. We propose a solution that relies on multiple thermometers placed within the accelerometer to measure temperature and thermal gradient variations. Machine Learning algorithms are used to relate the temperatures to their effect on the accelerometer readings. However, obtaining labeled data for training these algorithms can be difficult. Therefore, we also developed a training platform capable of replicating temperature variations in a laboratory setting. Our experiments revealed that thermal gradients had a significant effect on accelerometer readings, emphasizing the importance of multiple thermometers. The proposed method was experimentally tested and revealed a great potential to be extended to other sources of inaccuracy, such as rotations, as well as to other types of measuring systems, such as magnetometers or gyroscopes.
    Description: This work was funded by “Regione Lazio” (Italy) with European Regional Development Fund (Italy, Lazio) through the call “Gruppi di Ricerca 2020 (POR FESR LAZIO 2014 – 2020), project number: A0375-2020-36674
    Description: Published
    Description: 114090
    Description: OSA1: Variazioni del campo magnetico terrestre, imaging crostale e sicurezza del territorio
    Description: JCR Journal
    Keywords: gravimeter ; gravimetry ; 05.04. Instrumentation and techniques of general interest ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-12-28
    Description: The Swarm satellite mission has been used for numerous studies of the ionosphere. Here we use a global product, based on electron density measurements from Swarm that characterises ionospheric variability. The IPIR (Ionospheric Plasma IRregularities product) provides characteristics of plasma irregularities in terms of their amplitudes, gradients and spatial scales and assigns them to geomagnetic regions. Ionospheric irregularities and fluctuations are often the cause of errors in position, navigation, and timing (PNT) based on the Global Navigation Satellite Systems (GNSS), in which signals pass through the ionosphere. The IPIR dataset also provides an indication, in the form of a numerical value index (IPIR index), of the severity of irregularities affecting the integrity of trans-ionospheric radio signals and hence, the accuracy of GNSS positioning. We analysed datasets from Swarm A and ground-based scintillation receivers. Time intervals (when Swarm A passes over the field of view of the ground-based GPS receiver) are compared to ground-based scintillation data, collecting an azimuthal selection of the GNSS data relevant to the Swarm satellite overpass. We provide validations of the IPIR product against the ground-based measurements from 23 ground-based receivers, focusing on GPS TEC and scintillation data in low-latitude, auroral and polar regions, and in different longitudinal sectors. We have determined the median, mean, maximum and standard deviation of the parameter values for both datasets and each conjunction point. We found a weak correlation of the intensity of both phase and amplitude scintillation with the IPIR index.
    Description: Published
    Description: 5399-5415
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Keywords: 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-02-14
    Description: A two-dimensional basin and petroleum system modeling approach was applied to the Burano-Bolognano petroleum system (Central Italy) to constrain some factors (position, lateral extension and maturity of the source rock, the role of fractures and faults in hydrocarbon migration) which influenced its structural evolution and the related migration pathways. The petroleum system extends from the Majella Mountain to the northern Cigno, Vallecupa, Bonanno oil fields, intensively explored during the past century. Some features, such as the location and extension of the source rock and its maturity, and hydrocarbon pathways, are still undefined. Thus, we developed a 3D geological static model of the Cenozoic carbonate succession and then, we performed basin modeling along a 2D geological section, integrating the petrophysical properties of rocks measured in laboratory. Our results prove that the Burano source rock reached a low-middle maturity, and the best representation of the actual hydrocarbon occurrences is reached when the source rock is at north of the Majella Mountain with a minimum extension of 3 km. For the BBPS a strong lateral migration and a gradual oil biodegradation towards the Majella area must be considered. Moreover, modeling results highlight a minor control of the faults on the migration in this area. This basin modeling is relevance for investigations in similar settings since carbonate-ramp reservoir studies are usually very challenging to be correctly modeled due to their high heterogeneities.
    Description: Published
    Description: 105436
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: Basin modeling ; Carbonate reservoir ; Geological modeling ; Hydrocarbon migration and accumulation ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-29
    Description: Recent advances in underwater and airborne robotic systems and ocean technologies have opened new perspectives in marine geology and its applications in the context of coastal and marine economic activities, whose sustainable development is increasingly acknowledged as a pillar for the new blue economy. BridgET (Bridging the gap between the land and the sea in a virtual Environment for innovative Teaching and community involvement in the science of climate change-induced marine and coastal geohazard) is an EU ERASMUS+ project designed to develop innovative and inclusive teaching methods to address a growing demand for strategic skills and scientific expertise in the field of 3D geological mapping of coastal environments. Seamless integration of the wide variety of multisource and multiscale onshore, nearshore and offshore geospatial data is indeed one of the main areas for improvement in the implementation of efficient management practices in coastal regions, where climate change, rising sea level, and geohazards are considerable environmental issues. BridgET involves a partnership consisting of six European universities with outstanding expertise in the study of geological hazards, and climate impacts in marine and coastal areas (i.e., University of Milano-Bicocca, Italy, Arctic University of Tromsø/CAGE - Norway, National and Kapodistrian University of Athens - Greece, Kiel University, Germany, University of Liege – Belgium, and the University of Malta), two Italian research institutes (INGV and INAF) and a German company (Orthodrone GmvH) specialized in UAS-based LiDAR and photogrammetry data acquisition services and analyses. Project implementation relies on delivering learning and teaching activities through dedicated summer schools for MSc students by efficiently combining the partner’s expertise. Schools focus on giving students a hands-on experience with the variety of methods and procedures adopted in geospatial data acquisition and processing, including the use of drones (Uncrewed Aerial System – UAS), acoustic remote sensing techniques and underwater robotic systems, together with the progress made by computer visions and digital image analysis by using Artificial Intelligence (AI). Students are also introduced to the opportunity to easily examine multiple viewing angles of the seabed and coastal 3D surfaces by using immersive and nonimmersive Virtual Reality (VR), to bring them closer to a more straightforward observation of geomorphological data and geological phenomena. The first Summer School was held in Santorini between the 3rd and 14th of October, 2022. It was attended by 26 students coming from 13 different countries. Teaching and learning activities included several classrooms, fieldwork, laboratory sessions, and seven seminars and cultural visits dealing with transversal topics, allowing students to approach an integrated understanding of human interaction with physical processes from social and economic perspectives. In this presentation, we give examples of course content used to allow students to develop a deeper understanding of theoretical and practical knowledge of climate-induced coastal and marine geohazards. Participants' opinions on the quality of the offered learning/training activities of the Erasmus+ BridgET Santorini Summer School (collected through a dedicated questionnaire) will also be presented. Erasmus+ BridgET Team: Varvara Antoniou, Fabio Luca Bonali, Clara Drummer, Theynushya Esalingam, Luca Fallati, Susanna Falsaperla, Felix Gross, Hans-Balder havenith, Juri Klusak, Sebastian Krastel, Iver Martens, Aaron Micallef, Paraskevi Nomikou, Giuliana Panieri, Danilo Reitano, Julian Teege, Alessandro Tibaldi, Andrea Giulia Varzi, Fabio Vitello, Othonas Vlasopoulos
    Description: Published
    Description: Vienna (Austria)
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Keywords: marine geosciences ; education ; Europe ; 04.02. Exploration geophysics ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-02-07
    Description: It is well known that space weather can cause significant disruptions to modern communications and navigation systems, leading to increased safety risks, economic losses, and reduced quality of life. Operators of critical infrastructures (both national and international) are also increasingly aware that extreme space-weather events can have severe impacts on their systems. For example, strong ionospheric disturbances can degrade, and sometimes deny access to satellite positioning, navigation, and timing services, central to the operation of many infrastructures. The mitigation of the effects of space weather on technical systems on the ground and in space, and the development of possible protective measures, are therefore of essential importance. We discuss how space weather drives a wide variety of ionospheric phenomena that can disrupt communications and navigation systems and how scientific understanding can help us to mitigate those effects. We also provide recommendations on further research and collaboration with industrial and governmental partners, which are essential for the development and operation of space weather services.
    Description: In press
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Keywords: Radio communication ; navigation ; satellite positioning ; broadcast ; ionosphere ; radio propagation ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-05-17
    Description: We present the first investigation of Equatorial Plasma Bubble (EPB) intensities across longitudinal sectors of the globe using observations from global navigation satellite system (GNSS) receivers. GNSS data from a total of 93 receiver stations located within ±20 degrees of the geomagnetic equator across the globe were used. The data covered periods of years 2014 and 2019 which are respectively years of high and low solar activity in solar cycle 24. We define a parameter known as the Standard deviation of Residual TEC (SRT) to characterize the EPB intensities. The EPB occurrence was defined by day-night differences of the rate of change of TEC index (ROTI). We observed a high correlation (r ∼ 0.80) between the magnitudes of the SRT and ROTI during the EPB occurrence, but the correlation is low (r ∼ 0.37) during non occurrence of EPB. The EPB intensities are greater during seasons with high occurrence rates. The EPB intensities and occurrence rates are also greater during the high solar activity. We found that the post-sunset intensities are greatest in the Atlantic region, followed by the African region, then the American, Australian, Asian, and Pacific regions in that order. The post-midnight intensities are greatest in the African region, followed by the Atlantic, American, Australian, Asian, and Pacific regions in that order.
    Description: Published
    Description: 106097
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Keywords: 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-06-13
    Description: The topside ionosphere extends from the F2-layer peak, where the electron density reaches its absolute maximum in the ionosphere, to the overlying plasmasphere and magnetosphere. In the topside ionosphere, the electron density decreases with height with a vertical variation rate strongly dependent on height itself. The last version of the International Reference Ionosphere (IRI) model, i.e., IRI-2020, describes this complex behavior through four topside options based on different sub-models (i.e., options) developed from the 1970s to the present. All these options have in common the F2-layer peak as an anchor point, while they differ in their topside electron density profile and/or plasma effective scale height formulations. In this work, we perform a validation of the accuracy of the four IRI-2020 topside options based on the comparison against in-situ electron density observations by Gravity Recovery and Climate Experiment (GRACE), Ionospheric Connection Explorer (ICON), and Defense Meteorological Satellite Program (DMSP) F15 low-Earth-orbit satellites. Datasets used in this study encompass observations recorded from 1999 to 2022, covering different diurnal, seasonal, and solar activity conditions, on a global basis and for the height range 400–850 km above the ground. The nearly two solar cycles dataset facilitated the evaluation of IRI-2020 topside options ability to reproduce the spatial and time variations of the topside ionosphere for different solar activity conditions. The weaknesses and strengths of each IRI-2020 topside option are highlighted and discussed, and suggestions on how to improve the modeling of the challenging topside ionosphere region within the IRI model are provided for future reference.
    Description: In press
    Description: OSA3: Climatologia e meteorologia spaziale
    Description: JCR Journal
    Keywords: Topside ionosphere modeling ; International Reference Ionosphere (IRI) model ; In-situ electron density observations ; Low-Earth-Orbit satellites ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...