ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.02. Exploration geophysics  (4)
  • 01.01. Atmosphere  (3)
  • Elsevier  (6)
  • EGU  (1)
  • American Chemical Society
  • 2020-2024  (7)
  • 1935-1939
  • 1
    Publication Date: 2023-10-24
    Description: •Anthropogenic CO2 flux can be estimated by stable isotopic surveying. •Gas emissions from human activities force the atmospheric CO2. •The monitoring of stable isotopes allows identifying the CO2 sources in the air. •Several tons per day of CO2 flow through the geosphere in urban zones. •Transient in the air CO2 occurs owing to changes in weather variables.
    Description: Atmospheric carbon dioxide (CO2) concentrations increase due to volcanic emissions, diffuse degassing from fault zones, and various human-caused gas emissions, especially in densely populated urban zones, which play a pivotal role in the ongoing climate change. This study aims to examine changes in the concentration and stable isotopic composition of atmospheric CO2. A laser-based analyzer provided the δ13C and δ18O values based on concentration measurements for various CO2 isotopologues. Multiple linear regression (MLR) showed that almost 30% of the atmospheric CO2 changes are caused by weather variations, while ~70% of the changes involve CO2 from various gas sources related to human activities. The Keeling plot approach was used to identify the isotopic signature of the extra CO2, which points to the gas produced by hydrocarbon combustion. An isotopic mass balance model was designed to show the relation between excess atmospheric CO2 and the flux of human-related gas emissions. Calculating the CO2 flux in the atmosphere based on this isotopic mass balance model showed that several tons of CO2 move daily between geospheres. This study shows that surveying atmospheric CO2 in urban zones allows quantifying the CO2 emissions from various sources.
    Description: Published
    Description: 119302
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 1TR. Georisorse
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: 2IT. Laboratori analitici e sperimentali
    Description: 6IT. Osservatori non satellitari
    Description: JCR Journal
    Keywords: CO2 flux ; Carbon stable isotopes ; Oxygen isotope composition ; Atmospheric CO2 ; Geochemical modeling ; Gas Hazard ; Stable isotopes ; Isotopes ; 01.01. Atmosphere ; 04.08. Volcanology ; environmental geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-14
    Description: A two-dimensional basin and petroleum system modeling approach was applied to the Burano-Bolognano petroleum system (Central Italy) to constrain some factors (position, lateral extension and maturity of the source rock, the role of fractures and faults in hydrocarbon migration) which influenced its structural evolution and the related migration pathways. The petroleum system extends from the Majella Mountain to the northern Cigno, Vallecupa, Bonanno oil fields, intensively explored during the past century. Some features, such as the location and extension of the source rock and its maturity, and hydrocarbon pathways, are still undefined. Thus, we developed a 3D geological static model of the Cenozoic carbonate succession and then, we performed basin modeling along a 2D geological section, integrating the petrophysical properties of rocks measured in laboratory. Our results prove that the Burano source rock reached a low-middle maturity, and the best representation of the actual hydrocarbon occurrences is reached when the source rock is at north of the Majella Mountain with a minimum extension of 3 km. For the BBPS a strong lateral migration and a gradual oil biodegradation towards the Majella area must be considered. Moreover, modeling results highlight a minor control of the faults on the migration in this area. This basin modeling is relevance for investigations in similar settings since carbonate-ramp reservoir studies are usually very challenging to be correctly modeled due to their high heterogeneities.
    Description: Published
    Description: 105436
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: Basin modeling ; Carbonate reservoir ; Geological modeling ; Hydrocarbon migration and accumulation ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-15
    Description: Volcanoes are currently to be regarded as natural sources of air pollutants. Climatic and environmental forcing of large volcanic eruptions are well known, although gases emitted through passive degassing during periods of quiescence or hydrothermal activity can also be highly dangerous for the environment and public health. Based on compositional and isotopic data, a survey on the spatial distribution in air of the main volatile compounds of carbon (CO2 and CH4) and sulfur (H2S and SO2) emitted from the fumarolic field of Pisciarelli (Campi Flegrei, Pozzuoli, Naples), a hydrothermal area where degassing activity has visibly increased since 2009, was carried out. The main goals of this study were (i) to evaluate the impact on air quality of these natural manifestations and (ii) inquire into the behavior of the selected chemical species once released in air, and their possible use as tracers to distinguish natural and anthropogenic sources. Keeling plot analysis of CO2 and CH4 isotopes revealed that the hydrothermal area acts as a net source of CO2 in air, whilst CH4 originated mainly from anthropogenic sources. Approaching the urban area, anthropogenic sources of CO2 increased and, at distances greater than 800 m from the Pisciarelli field, they prevailed over the hydrothermal signal. While hydrothermal CO2 simply mixed with that in the atmospheric background, H2S was possibly affected by oxidation processes. Therefore, SO2 measured in the air near the hydrothermal emissions had a secondary origin, i.e. generated by oxidation of hydrothermal H2S. Anthropogenic SO2 was recognized only in the furthest measurement site from Pisciarelli. Finally, in the proximity of a geothermal well, whose drilling was in progress during our field campaign, the H2S concentrations have reached values up to 3 orders of magnitude higher than the urban background, claiming the attention of the local authorities.
    Description: Published
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Air quality; Carbon and sulfur volatile compounds; Carbon isotopes; Hydrothermal systems; Natural sources of pollutants. ; 04.08. Volcanology ; 01.01. Atmosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-11-21
    Description: During the 2016–2017, a seismic sequence struck the Central Italy, involving four regions (Umbria, Marche, Abruzzo and Lazio) and causing important damages and victims in inhabited areas such as Norcia and Amatrice towns. The strongest event of the seismic sequence was a Mw 6.5 event with epicenter at about 5 km far from the Norcia area, which is an intermontane basin prone to ground motion amplification. The historical town of Norcia and the surrounding hamlets were recently investigated by the microzonation activity, but information on the geometry and velocity are still partial considering the entire basin. Indeed, past studies aimed at reconstructing the elastic and geometrical properties focusing mainly on the northern part of the basin. Specifically in this paper, we integrated seismic and geological data to get a better knowledge of the properties of the Quaternary Norcia basin. A geological survey was carried out to provide a geological map and three geological cross-sections. We analyzed new seismic ambient vibrations data, collected by single-seismic stations, to infer the distribution of resonant frequency (f0) for the entire basin. We used passive arrays of seismic stations to better define the velocity profiles of the area. In the northern part of the basin, two 2D arrays with elliptical-like shapes were deployed showing strong discrepancies of the elastic soil properties in proximity of Norcia town. We found shear-wave velocities of the near-surface profile of about 300–400 and 500–800 m/s in presence of palustrine and alluvial fan deposits, respectively. Further, the values of f0 are abruptly varying from 0.5 Hz in the SW sector of Norcia village up to 2 Hz in its NE sector. Ambient vibration data reveal less pronounced variation of f0 in the southern part of the basin, with resonant values that are almost in the range 1–1.3 Hz. In the southern sector, a 1D array was arranged along a 5-km line and was analyzed by means of seismic noise cross-correlation analysis suggesting the presence of a deeper seismic contrast. The integration of geophysical and geological results has allowed to infer insights on the subsurface geometry of the basin.
    Description: Published
    Description: 105501
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Keywords: 04.02. Exploration geophysics ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-01-08
    Description: Experimental data are publicly available here: https://data.mendeley.com/datasets/f78bmhr628/1
    Description: Temperature is a major source of inaccuracy in high-sensitivity accelerometers and gravimeters. Active thermal control systems require power and may not be ideal in some contexts such as airborne or spaceborne applications. We propose a solution that relies on multiple thermometers placed within the accelerometer to measure temperature and thermal gradient variations. Machine Learning algorithms are used to relate the temperatures to their effect on the accelerometer readings. However, obtaining labeled data for training these algorithms can be difficult. Therefore, we also developed a training platform capable of replicating temperature variations in a laboratory setting. Our experiments revealed that thermal gradients had a significant effect on accelerometer readings, emphasizing the importance of multiple thermometers. The proposed method was experimentally tested and revealed a great potential to be extended to other sources of inaccuracy, such as rotations, as well as to other types of measuring systems, such as magnetometers or gyroscopes.
    Description: This work was funded by “Regione Lazio” (Italy) with European Regional Development Fund (Italy, Lazio) through the call “Gruppi di Ricerca 2020 (POR FESR LAZIO 2014 – 2020), project number: A0375-2020-36674
    Description: Published
    Description: 114090
    Description: OSA1: Variazioni del campo magnetico terrestre, imaging crostale e sicurezza del territorio
    Description: JCR Journal
    Keywords: gravimeter ; gravimetry ; 05.04. Instrumentation and techniques of general interest ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-01-08
    Description: This study is focused on fluids characterization and circulations through the crust of the Irpinia region, an active seismic zone in Southern Italy, that has experienced several high-magnitude earthquakes, including a catastrophic one in 1980 (M = 6.9 Ms). Using isotopic geochemistry and the carbon‑helium system in free and dissolved volatiles in water, this study aims to explore the processes at depth that can alter pristine chemistry of these natural fluids. Gas-rock-water interactions and their impact on CO2 emissions and isotopic composition are evaluated using a multidisciplinary model that integrates geochemistry and regional geological data. By analyzing the He isotopic signature in the natural fluids, the release of mantle-derived He on a regional scale in Southern Italy is verified, along with significant emissions of deep-sourced CO2. The proposed model, supported by geological and geophysical constraints, is based on the interactions between gas, rock, and water within the crust and the degassing of deep-sourced CO2. Furthermore, this study reveals that the Total Dissolved Inorganic Carbon (TDIC) in cold waters results from mixing between a shallow and a deeper carbon endmember that is equilibrated with carbonate lithology. In addition, the geochemical signature of TDIC in thermal carbon-rich water is explained by supplementary secondary processes, including equilibrium fractionation between solid, gas, and aqueous phases, as well as sinks such as mineral precipitation and CO2 degassing. These findings have important implications for developing effective monitoring strategies for crustal fluids in different geological contexts and highlight the critical need to understand gas-water-rock interaction processes that control fluid chemistry at depths that can affect the assessment of the CO2 flux in atmosphere. Finally, this study highlights that the emissions of natural CO2 from the seismically active Irpinia area are up to 4.08·10+9 mol·y-1, which amounts is in the range of worldwide volcanic systems.
    Description: Published
    Description: 165367
    Description: OST3 Vicino alla faglia
    Description: OST5 Verso un nuovo Monitoraggio
    Description: JCR Journal
    Keywords: CO(2) output; Carbon isotopes; Degassing; Earthquakes; Noble gases; Precipitation ; 04.04 Solid Earth ; 01.01. Atmosphere ; 03.01. General ; 03.02. Hydrology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-01-29
    Description: Recent advances in underwater and airborne robotic systems and ocean technologies have opened new perspectives in marine geology and its applications in the context of coastal and marine economic activities, whose sustainable development is increasingly acknowledged as a pillar for the new blue economy. BridgET (Bridging the gap between the land and the sea in a virtual Environment for innovative Teaching and community involvement in the science of climate change-induced marine and coastal geohazard) is an EU ERASMUS+ project designed to develop innovative and inclusive teaching methods to address a growing demand for strategic skills and scientific expertise in the field of 3D geological mapping of coastal environments. Seamless integration of the wide variety of multisource and multiscale onshore, nearshore and offshore geospatial data is indeed one of the main areas for improvement in the implementation of efficient management practices in coastal regions, where climate change, rising sea level, and geohazards are considerable environmental issues. BridgET involves a partnership consisting of six European universities with outstanding expertise in the study of geological hazards, and climate impacts in marine and coastal areas (i.e., University of Milano-Bicocca, Italy, Arctic University of Tromsø/CAGE - Norway, National and Kapodistrian University of Athens - Greece, Kiel University, Germany, University of Liege – Belgium, and the University of Malta), two Italian research institutes (INGV and INAF) and a German company (Orthodrone GmvH) specialized in UAS-based LiDAR and photogrammetry data acquisition services and analyses. Project implementation relies on delivering learning and teaching activities through dedicated summer schools for MSc students by efficiently combining the partner’s expertise. Schools focus on giving students a hands-on experience with the variety of methods and procedures adopted in geospatial data acquisition and processing, including the use of drones (Uncrewed Aerial System – UAS), acoustic remote sensing techniques and underwater robotic systems, together with the progress made by computer visions and digital image analysis by using Artificial Intelligence (AI). Students are also introduced to the opportunity to easily examine multiple viewing angles of the seabed and coastal 3D surfaces by using immersive and nonimmersive Virtual Reality (VR), to bring them closer to a more straightforward observation of geomorphological data and geological phenomena. The first Summer School was held in Santorini between the 3rd and 14th of October, 2022. It was attended by 26 students coming from 13 different countries. Teaching and learning activities included several classrooms, fieldwork, laboratory sessions, and seven seminars and cultural visits dealing with transversal topics, allowing students to approach an integrated understanding of human interaction with physical processes from social and economic perspectives. In this presentation, we give examples of course content used to allow students to develop a deeper understanding of theoretical and practical knowledge of climate-induced coastal and marine geohazards. Participants' opinions on the quality of the offered learning/training activities of the Erasmus+ BridgET Santorini Summer School (collected through a dedicated questionnaire) will also be presented. Erasmus+ BridgET Team: Varvara Antoniou, Fabio Luca Bonali, Clara Drummer, Theynushya Esalingam, Luca Fallati, Susanna Falsaperla, Felix Gross, Hans-Balder havenith, Juri Klusak, Sebastian Krastel, Iver Martens, Aaron Micallef, Paraskevi Nomikou, Giuliana Panieri, Danilo Reitano, Julian Teege, Alessandro Tibaldi, Andrea Giulia Varzi, Fabio Vitello, Othonas Vlasopoulos
    Description: Published
    Description: Vienna (Austria)
    Description: OSA4: Ambiente marino, fascia costiera ed Oceanografia operativa
    Keywords: marine geosciences ; education ; Europe ; 04.02. Exploration geophysics ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...