ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (108)
  • ddc:551.5  (64)
  • AERODYNAMICS
  • Inorganic Chemistry
  • Pflanzenschädling
  • 2020-2024  (64)
  • 1945-1949  (44)
  • 1
    Publication Date: 2023-01-17
    Description: In this study, a spectral model for convective transport is coupled to a thermal population model on a two‐dimensional horizontal “microgrid,” covering the typical gridbox size of general circulation models. The goal is to explore new ways of representing impacts of spatial organization in cumulus cloud fields. The thermals are considered the smallest building block of convection, with thermal life cycle and movement represented through binomial functions. Thermals interact through two simple rules, reflecting pulsating growth and environmental deformation. Long‐lived thermal clusters thus form on the microgrid, exhibiting scale growth and spacing that represent simple forms of spatial organization and memory. Size distributions of cluster number are diagnosed from the microgrid through an online clustering algorithm, and provided as input to a spectral multiplume eddy‐diffusivity mass flux scheme. This yields a decentralized transport system, in that the thermal clusters acting as independent but interacting nodes that carry information about spatial structure. The main objectives of this study are (a) to seek proof of concept of this approach, and (b) to gain insight into impacts of spatial organization on convective transport. Single‐column model experiments demonstrate satisfactory skill in reproducing two observed cases of continental shallow convection. Metrics expressing self‐organization and spatial organization match well with large‐eddy simulation results. We find that in this coupled system, spatial organization impacts convective transport primarily through the scale break in the size distribution of cluster number. The rooting of saturated plumes in the subcloud mixed layer plays a key role in this process.
    Description: Plain Language Summary: Recent studies have emphasized the importance of the spatial structure of convective cloud fields in Earth's climate, yet this phenomenon is not yet represented well in Earth System Models (ESMs). This study explores a new way to achieve this goal, by considering spatial organization at the scale of small bubbles of rising air called thermals that together make up convective clouds. Populations of interacting thermals are modeled in a computationally efficient way on a small two‐dimensional grid. This microgrid is then coupled to a convection scheme, which stands for the set of equations used to statistically represent the impact of convective transport at scales that remain unresolved in ESMs. The coupling makes the scheme decentralized, in that the transport becomes dependent on a population of longer‐lived convective structures that slowly develop and evolve on the microgrid. The new scheme is tested for observed conditions at a meteorological site in the Southern Great Plains area of the United States, making use of a combination of high‐resolution simulations and measurements to evaluate performance. Apart from proof of concept for the new modeling approach, the results provide new insights into how the spatial structure of convective cloud populations can affect its vertical transport.
    Description: Key Points: A multiplume spectral convection scheme is coupled to a binomial thermal population model on a horizontal microgrid. Observed diurnal cycles of continental shallow convection are reproduced, including good agreement on scale growth and spatial organization. Spatial organization impacts convective transport through the scale break in the cluster number density, with a key role played by plume rooting.
    Description: U.S. Department of Energy http://dx.doi.org/10.13039/100000015
    Description: https://doi.org/10.5281/zenodo.6044338
    Keywords: ddc:551.5 ; convective parameterization ; spatial organization ; population dynamics ; thermals ; microgrid modeling ; shallow cumulus
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-14
    Description: Specular meteor radars (SMRs) have significantly contributed to the understanding of wind dynamics in the mesosphere and lower thermosphere (MLT). We present a method to estimate horizontal correlations of vertical vorticity (Qzz) and horizontal divergence (P) in the MLT, using line‐of‐sight multistatic SMRs velocities, that consists of three steps. First, we estimate 2D, zonal, and meridional correlation functions of wind fluctuations (with periods less than 4 hr and vertical wavelengths smaller than 4 km) using the wind field correlation function inversion (WCFI) technique. Then, the WCFI's statistical estimates are converted into longitudinal and transverse components. The conversion relation is obtained by considering the rotation about the vertical direction of two velocity vectors, from an east‐north‐up system to a meteor‐pair‐dependent cylindrical system. Finally, following a procedure previously applied in the upper troposphere and lower stratosphere to airborne wind measurements, the longitudinal and transverse spatial correlations are fitted, from which Qzz, P, and their spectra are directly estimated. The method is applied to a special Spread spectrum Interferometric Multistatic meteor radar Observing Network data set, obtained over northern Germany for seven days in November 2018. The results show that in a quasi‐axisymmetric scenario, P was more than five times larger than Qzz for the horizontal wavelengths range given by ∼50–400 km, indicating a predominance of internal gravity waves over vortical modes of motion as a possible explanation for the MLT mesoscale dynamics during this campaign.
    Description: Key Points: We investigate the horizontal correlation functions of vertical vorticity and horizontal divergence for mesoscale wind fluctuations in the mesosphere and lower thermosphere. 2D zonal and meridional correlation functions and 1D longitudinal and transverse correlation functions as a function of horizontal lags are analyzed. The divergence dominated over the vorticity during November 2018 in northern Germany.
    Description: Leibniz SAW
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: French Ministry of Foreign and European
    Description: https://doi.org/10.22000/536
    Keywords: ddc:551.5 ; MLT ; vorticity ; correlation function ; meteor radar ; mesoscales ; divergence
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-14
    Description: High‐resolution flight data obtained from in situ measurements in the free atmosphere aboard the High Altitude and Long Range Research Aircraft (HALO) are used to determine eddy dissipation rates along extended flights during the recent Southern Hemisphere Transport, Dynamics, and Chemistry aircraft campaign (SOUTHTRAC) in the 2019 austral winter. These data are analyzed and correlated with quantities characterizing the ambient airflow and the magnitudes of vertical energy propagation through internal gravity waves. The observed turbulence events are strongly correlated with elevated shear values, and overturning gravity waves do not appear to play a role. A highlight of the analysis is the validation of a recently implemented Clear Air Turbulence (CAT) forecast index in the European Centre for Medium‐Range Weather Forecast integrated forecast system. Here we find a slightly better correlation of the CAT prediction with the HALO research aircraft observations compared to those of commercial aircraft. The observed turbulence during SOUTHTRAC was never stronger than moderate, as EDR values remained below 0.3 m2/3 s−1. In general, light and light‐to‐moderate turbulence events were extremely rare, occurring in only about 5% of the flight time, and stronger events in less than 0.2%. These results are also reflected in the local atmospheric conditions, which were dominated by a thermally very stable airflow with low vertical shear and large Richardson numbers.
    Description: Plain Language Summary: This study analyzes high‐resolution data of velocity components in the upper troposphere and lower stratosphere collected with the German research aircraft High Altitude and Long Range Research Aircraft during the Southern Hemisphere Transport, Dynamics, and Chemistry (SOUTHTRAC) campaign in September–November 2019. Flights were conducted predominantly over the southern part of South America, the Drake Passage, and the Antarctic Peninsula. The objective of the analysis was to determine the eddy dissipation rates during the 22 flights. The cubic root of eddy dissipation rates is a common measure used to characterize turbulent regions in the atmosphere. High quality observations with a very accurately calibrated sensor are rare, especially in the remote areas of the SOUTHTRAC campaign. Observed eddy dissipation rates have been correlated with gravity wave activity, but these correlations are very small. A much stronger dependence of the eddy dissipation rates exists on the vertical shear of the horizontal wind. Thus, mechanical generation of turbulence appears to dominate in the observed cases. Overall, the observed turbulence was never stronger than moderate. Turbulence events were extremely rare, occurring in only about 5% of the flight time, and stronger events less than 0.2%. Finally, the observed eddy dissipation rates were compared with weather model forecasts, demonstrating their reliability in predicting turbulent regions.
    Description: Key Points: Small eddy dissipation rates were observed in the free atmosphere along extended research flights during Southern Hemisphere Transport, Dynamics, and Chemistry in austral winter 2019. Stronger turbulence events are rare and are mostly correlated with enhanced vertical shear of the horizontal wind. EDR predictions of a 15‐member ensemble shows higher correlation with research aircraft observations than with those by commercial aircraft.
    Description: Federal Ministry for Education and Research
    Description: German Science Foundation
    Description: https://halo-db.pa.op.dlr.de/mission/116
    Description: https://halo-db.pa.op.dlr.de/dataset/8497
    Description: https://halo-db.pa.op.dlr.de/dataset/8496
    Description: https://apps.ecmwf.int/codes/grib/param-db/?id=260290
    Description: https://doi.org/10.21957/xbar-5611
    Description: https://halo-db.pa.op.dlr.de/dataset/8955
    Description: https://madis.ncep.noaa.gov/acars_variable_list.shtml
    Keywords: ddc:551.5 ; turbulence in the free atmosphere ; eddy dissipation rate ; clear‐air turbulence predictions ; ECMWF integrated forecast system
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-13
    Description: Low‐level mixed‐phase clouds (MPCs) occur extensively in the Arctic, and are known to play a key role for the energy budget. While their characteristic structure is nowadays well understood, the significance of different precipitation‐formation processes, such as aggregation and riming, is still unclear. Using a 3‐year data set of vertically pointing W‐band cloud radar and K‐band Micro Rain Radar (MRR) observations from Ny‐Ålesund, Svalbard, we statistically assess the relevance of aggregation in Arctic low‐level MPCs. Combining radar observations with thermodynamic profiling, we find that larger snowflakes (mass median diameter larger than 1 mm) are predominantly produced in low‐level MPCs whose mixed‐phase layer is at temperatures between −15 and −10°C. This coincides with the temperature regime known for favoring aggregation due to growth and subsequent mechanical entanglement of dendritic crystals. Doppler velocity information confirms that these signatures are likely due to enhanced ice particle growth by aggregation. Signatures indicative of enhanced aggregation are however not distributed uniformly across the cloud deck, and only observed in limited regions, suggesting a link with dynamical effects. Low Doppler velocity values further indicate that significant riming of large particles is unlikely at temperatures colder than −5°C. Surprisingly, we find no evidence of enhanced aggregation at temperatures warmer than −5°C, as is typically observed in deeper cloud systems. Possible reasons are discussed, likely connected to the ice habits that form at temperatures warmer than −10°C, increased riming, and lack of particle populations characterized by broader size distributions precipitating from higher altitudes.
    Description: Plain Language Summary: Low‐level mixed‐phase clouds (MPCs), that is, shallow clouds containing both liquid droplets and ice crystals, form frequently in the Arctic region. Their characteristic structure—consisting of one or multiple liquid layers at sub‐zero temperatures, from which ice crystals form and precipitate—is nowadays well understood. However, the processes that lead to the growth of ice crystals into snow have been overlooked. Using a 3‐year data set of radar observations from Ny‐Ålesund, in Svalbard, Norway, we are able to identify situations when the ice particle growth is dominated by aggregation of several individual crystals. Combining radar observations with temperature information, we find that larger snowflakes are only produced in MPCs if their liquid portion is at temperatures between −15 and −10°C. This coincides with the temperature regime known for favoring aggregation due to growth and subsequent entanglement of branched crystals. Surprisingly, we find no evidence of enhanced ice aggregation at temperatures warmer than −5°C, as is typically observed in deeper cloud systems. Possible reasons are discussed, likely connected to the ice crystal shapes that develop at temperatures warmer than −10°C, increased liquid droplet production, and lack of particles precipitating from higher altitudes.
    Description: Key Points: Low‐level mixed‐phase clouds (MPCs) at Ny‐Ålesund produce large aggregates predominantly at dendritic‐growth temperatures. Enhanced aggregation due to dendritic growth occurs intermittently in limited regions of the MPC. The typically observed enhanced aggregation zone close to 0°C is absent in low‐level MPCs at the site.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:551.5 ; Arctic mixed‐phase clouds ; aggregation ; riming ; dendritic‐growth zone ; radar
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-19
    Description: Europe has been affected by record‐breaking heat waves in recent decades. Using station data and a gridded reanalysis as input, four commonly used heat wave indices, the heat wave magnitude index daily (HWMId), excess heat factor (EHF), wet‐bulb globe temperature (WBGT) and universal thermal climate index (UTCI), are computed. The extremeness of historical European heat waves between 1979 and 2019 using the four indices and different metrics is ranked. A normalisation to enable the comparison between the four indices is introduced. Additionally, a method to quantify the influence of the input parameters on heat wave magnitude is introduced. The spatio‐temporal behaviour of heat waves is assessed by spatial–temporal tracking. The areal extent, large‐scale intensity and duration are visualized using bubble plots. As expected, temperature explains the largest variance in all indices, but humidity is nearly as important in WBGT and wind speed plays a substantial role in UTCI. While the 2010 Russian heat wave is by far the most extreme event in duration and intensity in all normalized indices, the 2018 heat wave was comparable in size for EHF, WBGT and UTCI. Interestingly, the well‐known 2003 central European heat wave was only the fifth and tenth strongest in cumulative intensity in WBGT and UTCI, respectively. The June and July 2019 heat waves were very intense, but short‐lived, thus not belonging to the top heat waves in Europe when duration and areal extent are taken into account. Overall, the proposed normalized indices and the multi‐metric assessment of large‐scale heat waves allow for a more robust description of their extremeness and will be helpful to assess heat waves worldwide and in climate projections.
    Description: Europe has been affected by record‐breaking heat waves in recent decades. Using station data and a gridded reanalysis, the extremeness of European heat waves between 1979 and 2019 is ranked using four indices: heat wave magnitude index daily (HWMId), excess heat factor (EHF), wet‐bulb globe temperature (WBGT) and universal thermal climate index (UTCI). In order to assess heatwaves worldwide and in climate projections, the spatial extent, large‐scale intensity and duration of heatwaves are visualized using bubble plots.
    Description: AXA Research Fund http://dx.doi.org/10.13039/501100001961
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Karlsruher Institut für Technologie http://dx.doi.org/10.13039/100009133
    Keywords: ddc:551.5 ; duration ; heat wave ; indices ; intensity ; large‐scale ; spatial extent
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-20
    Description: This study develops an advanced physically‐based parameterization of heterogeneous ice nucleation in cirrus clouds that includes an updated parameterization of stochastic homogeneous freezing of supercooled solution droplets. Both components are formulated based on the same methodology and level of approximation, without numerical integration of the underlying ice supersaturation equation. The new scheme includes measured ice nucleation spectra describing deterministic ice activation from an arbitrary number of types of ice‐nucleating particles (INPs), tracks the competition for available water vapor between the different ice nucleation modes, and allows for new ice formation and growth within pre‐existing cirrus clouds. The computationally efficient scheme works with a minimal set of physical input parameters and predicts total nucleated ice crystal number concentrations (ICNCs) along with the maximum ice supersaturation attained during cirrus formation events. Aspects of its implementation into host models are discussed, including the provision of suitably parameterized vertical wind speeds. The parameterization is validated by comparisons to numerical simulations. First off‐line applications to mineral dust and aviation soot particles are presented, including ICNC ensemble statistics resulting from the coupling with statistics of updraft speed variability.
    Description: Plain Language Summary: Two decades after introduction of the first parameterization of cirrus cloud formation by freezing of ubiquitous liquid solution droplets, an improved version is developed based on the latest experimental findings regarding solid ice‐nucleating particles, a small subset of the atmospheric aerosol. The new scheme allows to predict ice crystal formation in cirrus from competing homogeneous freezing and heterogeneous ice activation more realistically and with greater computational efficiency. It considers new developments regarding the properties of vertical wind speeds (triggering ice formation) and the molecular kinetics of water vapor uptake onto ice crystals (controlling ice growth). This study explains the foundation of cirrus ice formation and growth based on cloud physical theory, derives and explains the parameterization, discusses its use in host models to facilitate applications, checks its performance by comparison to comprehensive numerical simulations, and presents first results involving mineral dust and aircraft‐emitted soot particles as examples for good and poor atmospheric ice‐nucleating particles, respectively.
    Description: Key Points: Competing ice nucleation processes in cirrus are predicted reliably and efficiently. Partial activation of dust particles may occur frequently in cirrus formation. Nucleation of ice within already‐existing cirrus requires high updraft speeds.
    Keywords: ddc:551.5 ; cirrus ; ice nucleation ; parameterization ; dust
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-06-21
    Description: Measurements of kinetic energy in vortical and divergent fluctuations in the mesosphere and lower thermosphere can be used to study stratified turbulence (ST) and gravity waves. This can be done using horizontal correlation functions of the fluctuating component of velocity. This study introduces a novel method for estimating these correlation functions using radars that observe Doppler shifts of ionized specular meteor trails. The technique solves the correlation functions directly on a longitudinal‐transverse‐up coordinate system, assuming axial symmetry. This procedure is more efficient and leads to smaller uncertainties than a previous approach. The new technique is applied to a year‐long data set from a multistatic specular meteor radar network in Germany, to study the annual variability of kinetic energy within turbulent fluctuations at 87–93 km of altitude. In monthly averages, the kinetic energy is found to be nearly equipartitioned between vortical and divergent modes. Turbulent fluctuations maximize during the winter months with approximately 25% more energy in these months than at other times. The horizontal correlation functions are in agreement with the inertial subrange of ST, exhibiting a 2/3 power law in the horizontal lag direction, with an outermost scale of ST to be about 380 km. This suggests that horizontal correlation functions could be used to estimate turbulent energy transfer rates.
    Description: Plain Language Summary: Flows exhibit a phenomenon called turbulence, which transfers energy from large scales into smaller scales. This effect is important to quantify the energy budget of the Earth's upper atmosphere. The range of length scales where this phenomenon occurs is called the inertial subrange of turbulence. The classical theory of isotropic turbulence predicts that this energy transfer occurs on length scales smaller than ∼100 m, at 60–110 km altitude. Recent work has shown that horizontal velocity fluctuations can extend the inertial subrange to length scales of up to hundreds of kilometers horizontally. This type of turbulence is called stratified turbulence (ST). So far no comprehensive study has been made to experimentally examine ST in the mesosphere and lower thermosphere (MLT) region on horizontal mesoscales. This study introduces a method for doing so by measuring how the wind fluctuations are correlated as a function of horizontal separation. This is achieved by using meteor radar measurements. The technique is applied to a year‐long data set over Germany. It is found that the MLT wind fluctuations are compatible with ST theory. The introduced method could potentially be used for routinely measuring how kinetic energy flows from large‐scale to small‐scale atmospheric fluctuations.
    Description: Key Points: A more efficient estimator for horizontal correlation functions is introduced. The rotational and divergent correlation functions of mesosphere and lower thermosphere wind fluctuations are found to be balanced at horizontal mesoscales. Horizontal correlations of wind fluctuations follow a 2/3‐power law for horizontal separations of up to 300–400 km.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: French Ministry of Foreign and European Affairs
    Description: Leibniz SAW project FORMOSA
    Keywords: ddc:551.5 ; mesosphere ; lower thermosphere ; wind fluctuations
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-06-21
    Description: Surface windstress transfers energy to the surface mixed layer of the ocean, and this energy partly radiates as internal gravity waves with near-inertial frequencies into the stratified ocean below the mixed layer where it is available for mixing. Numerical and analytical models provide estimates of the energy transfer into the mixed layer and the fraction radiated into the interior, but with large uncertainties, which we aim to reduce in the present study. An analytical slab model of the mixed layer used before in several studies is extended by consistent physics of wave radiation into the interior. Rayleigh damping, controlling the physics of the original slab model, is absent in the extended model and the wave-induced pressure gradient is resolved. The extended model predicts the energy transfer rates, both in physical and wavenumber-frequency space, associated with the wind forcing, dissipation in the mixed layer, and wave radiation at the base as function of a few parameters: mixed layer depth, Coriolis frequency and Brunt-Väisälä frequency below the mixed layer, and parameters of the applied windstress spectrum. The results of the model are satisfactorily validated with a realistic numerical model of the North Atlantic Ocean.
    Description: Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659
    Keywords: ddc:551.5 ; Wind-driven internal gravity waves ; Wave radiation physics
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-06-12
    Description: Ethane is the most abundant non-methane hydrocarbon in the Earth’s atmosphere and an important precursor of tropospheric ozone through various chemical pathways. Ethane is also an indirect greenhouse gas (global warming potential), influencing the atmospheric lifetime of methane through the consumption of the hydroxyl radical (OH). Understanding the development of trends and identifying trend reversals in atmospheric ethane is therefore crucial. Our dataset consists of four series of daily ethane columns. As with many other decadal time series, our data are characterized by autocorrelation, heteroskedasticity, and seasonal effects. Additionally, missing observations due to instrument failure or unfavorable measurement conditions are common in such series. The goal of this paper is therefore to analyze trends in atmospheric ethane with statistical tools that correctly address these data features. We present selected methods designed for the analysis of time trends and trend reversals. We consider bootstrap inference on broken linear trends and smoothly varying nonlinear trends. In particular, for the broken trend model, we propose a bootstrap method for inference on the break location and the corresponding changes in slope. For the smooth trend model, we construct simultaneous confidence bands around the nonparametrically estimated trend. Our autoregressive wild bootstrap approach, combined with a seasonal filter, is able to handle all issues mentioned above (we provide R code for all proposed methods on https://www.stephansmeekes.nl/code.).
    Description: Horizon 2020 https://doi.org/10.13039/501100007601
    Description: Fonds De La Recherche Scientifique - FNRS https://doi.org/10.13039/501100002661
    Keywords: ddc:551.5 ; Trend analysis ; Atmospheric ethane ; Bootstrapping ; Break point estimation
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-10-26
    Description: For the purpose of monitoring for compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), the International Monitoring System (IMS) is being established that includes 40 sensor systems for atmospheric xenon radioactivity. Its purpose is to monitor the atmosphere for signatures that may indicate a nuclear explosion. Normal operational releases of radioxenon from nuclear facilities can regularly be observed by these very high-sensitive noble gas systems. Existing best estimates of releases for a generic year are unlikely to apply for any specific year at the level of individual facilities because their releases are highly variable and can change by several orders of magnitude from year to year. In this paper, best knowledge of the radioxenon emission inventory from nuclear power plants (NPPs) is collected for the calendar year 2014. The distribution function for each CTBT relevant radioxenon isotope is derived from all releases from NPPs as reported for 2014. The data of this paper can be used for developing and validating methods based on atmospheric transport modelling that are designed to enhance understanding of the impact of known sources on the IMS background observations.
    Description: Universität Hamburg (1037)
    Keywords: ddc:551.5 ; CTBT ; radioxenon ; emission inventory ; radionuclide monitoring ; atmospheric radioactivity
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...