ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MiniSEED  (16)
  • General Chemistry
  • Seismology
  • GFZ Data Services  (19)
  • 2020-2024  (19)
  • 1985-1989
  • 1950-1954
Collection
Years
Year
  • 1
    Publication Date: 2023-09-01
    Description: Abstract
    Description: We present a new, consistently processed seismicity catalogue for the Eastern and Southern Alps, based on the temporary dense Swath-D monitoring network. The final catalogue includes 6,053 earthquakes for the time period 2017-2019 and has a magnitude of completeness of −1.0ML. The smallest detected and located events have a magnitude of −1.7ML. Aimed at the low to moderate seismicity in the study region, we generated a multi-level, mostly automatic workflow which combines a priori information from local catalogues and waveform-based event detection, subsequent efficient GPU-based event search by template matching, P & S arrival time pick refinement and location in a regional 3-D velocity model. The resulting seismicity distribution generally confirms the previously identified main seismically active domains, but provides increased resolution of the fault activity at depth. In particular, the high number of small events additionally detected by the template search contributes to a more dense catalogue, providing an important basis for future geological and tectonic studies in this complex part of the Alpine orogen.
    Description: TableOfContents
    Description: Seismicity catalogue Python codes & metadata Seismicity cross-sections
    Keywords: Seismology ; Seismic Waveform Analysis ; Eastern Alps ; Earthquake ; Geophysics ; Template matching ; 4DMB ; 4D Mountain Building ; EARTH SCIENCE ; EARTH SCIENCE 〉 SOLID EARTH ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE MAGNITUDE/INTENSITY ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES 〉 EARTHQUAKE OCCURRENCES ; geophysics ; seismology ; surface processes ; tectonics
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-10-18
    Description: Abstract
    Description: This data publication contains (i) a slab model of the Cascadia subduction zone, derived from receiver functions, parameterized as depth to the three interfaces: t (top), c (central) and m (Moho), in NetCDF format; (ii) the station measurements of all parameters in the model in tabular and Raysum model file format; (iii) the raw receiver functions in SAC format; and (iv) auxiliary scripts for loading and plotting the data. A total of 45,601 individual receiver functions recorded at 298 seismic stations distributed across the Cascadia forearc contributed to the slab model. For each station, 100 s recordings symmetric about the P -wave arrival (i.e. 50 s noise and 50 s signal) of earthquakes with magnitudes between 5.5 and 8, in the distance range between 30 and 100 degree, were downloaded from the Incorporated Research Institutions for Seismology (IRIS) data center, the Northern California Earthquake Data Center (NCEDC), and the Natural Resources Canada Data Center (NRCAN). After quality control, radial and transverse receiver functions were computed through frequency-domain simultaneous deconvolution, with an optimal damping factor found through generalized cross validation. The continental forearc and subducting slab were parameterized as three layers over a mantle half-space, with the subduction stratigraphy bounding interfaces labeled as t (top), c (central) and m (Moho). Synthetic receiver functions were calculated through ray-theoretical modeling of plane-wave scattering at the model interfaces. The thickness, S -wave velocity (VS) and P - to S -wave velocity ratio (VP/VS) of each layer, as well as the common strike and dip of the bottom two layers and the top of the half space (in total 11 parameters) were optimized simultaneously through a simulated annealing global parameter search scheme. The misfit was defined as the anti-correlation (1 minus the cross-correlation coefficient) between the observed and predicted receiver functions, bandpass filtered between 2 and 20 s period duration. In total, 171, 143 and 137 quality A nodes were determined to constrain the t, c and m interfaces, respectively. At the trench, 105 nodes at 3 km below the local bathymetry were inserted to constrain the t and c interfaces, and at 6.5 km deeper to constrain the m interface, representing typical sediment and igneous crustal thicknesses. A spline surface was fitted to these nodes to yield margin-wide depth models. The spline coefficients were found using singular value decomposition, with the nominal depth uncertainties supplied as weights. The solution was damped by retaining the 116, 117, and 116 largest singular values for the t, c and m interfaces, respectively, based on analysis of L-curves and the Akaike information criterion. The data set is the supplemental material to Bloch, W., Bostock, M. G., Audet, P. (2023) A Cascadia Slab Model from Receiver Functions. Geochemistry, Geophysics, Geosystems.
    Keywords: Seismology ; Cascadia ; North America ; Reveiver Functions ; Subduction ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 PLATE TECTONICS 〉 PLATE BOUNDARIES ; lithosphere ; The Present
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-23
    Description: Abstract
    Description: The main aim of this project is to investigate the crustal and mantle structure beneath the Longmenshan fault zone in China, based on a very dense passive seismology profile. The Longmenshan fault zone hosted the Wenchuan earthquake of May 2008 with a magnitude (Mw) of 7.9 and the Lushan earthquake of June 2013 with a magnitude (Mw) of 6.6. It is planned to mainly use the receiver-function method, to investigate the crustal and mantle structure beneath the Longmenshan fault zone. Waveform data are available from the GEOFON data center, under network code 4O, and are embargoed until February 2024.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Earthquake ; Receiver functions ; Crustal and mantle structure ; China ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-03-21
    Description: Abstract
    Description: To seismically monitor the GEOREAL hydraulic stimulation experiment, that took place during the period 6-15 November 2023, a station network was set up in the vicinity of the Kontinentale Tiefbohrung/ KTB deep crustal lab near Windischeschenbach, Germany. The network comprised both surface stations, shallow borehole (25-150 m deep) stations as well as a borehole chain at 2000 m depth in the main borehole, ca. 200m apart from the pilot borehole. First stations were installed in early 2022 and removed in mid-2024. A total of 600 m³ of water was injected into the 4 km deep pilot borehole (KTB-VB, 12° 7.16' E, 49° 48.98' N, 513.418 m above NN ). This volume was injected through a stuck packer in the cased borehole into the open borehole section a depth of 3.85-4 km. No induced seismicity was observed during the injection experiment. Waveform data is available from the GEOFON data centre, under network code 4R, and is fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; MiniSEED ; Seismometers ; GIPP ; Local network
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-04-11
    Description: Abstract
    Description: Irpinia seismic Array is part of the DEnse mulTi-paramEtriC observations and 4D high resoluTion imaging (DETECT) project focused on the acquisition of a unique multiparametric dataset and fosters collaboration among various institutions. The University of Naples Federico II (UniNa) and the German Research Centre for Geosciences (GFZ) are leading this effort carried out in collaboration with various local institutions and supported by the local municipalities. The DETECT project aims at exploiting very dense seismic networks deployed across a segmented fault system (Irpinia and Pergola-Melandro) to foster the development of scientific integrated methodologies for monitoring and imaging the fault behavior during the inter-seismic phase. The Irpinia seismic Array consists of a dense constellation of seismic antennas using more than 200 seismic stations deployed for one year. Each seismic antenna, with maximum aperture of ~2 km, uses one broad-band sensor, one short period sensor with 1 Hz and 8 with 4.5 Hz natural frequency. The antennas are deployed above and near the fault segments that generated during the last centuries many strong earthquakes in the southern Apennines. Waveform data are available from the GEOFON data centre, under network code ZK.
    Keywords: Seismological stations ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Local network ; Temporary ; Array ; Velocity ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~1T
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-04-11
    Description: Abstract
    Description: Understanding physical processes prior and during eruptions remains challenging, due to uncertainties about subsurface structures and undetected processes within the volcano. Here, the authors use a dedicated fibre-optic cable to obtain strain data and identify volcanic events and image hidden near-surface volcanic structural features at Etna volcano, Italy. In the paper Jousset et al. (2022), we detect and characterize strain signals associated with explosions, and we find evidences for non-linear grain interactions in a scoria layer of spatially variable thickness. We also demonstrate that wavefield separation allows us to incrementally investigate the ground response to various excitation mechanisms, and we identify very small volcanic events, which we relate to fluid migration and degassing. We recorded seismic signals from natural and man-made sources with 2-m spacing along a 1.5-km-long fibre-optic cable layout near the summit of actives craters of Etna volcano, Italy. Those results provide the basis for improved volcano monitoring and hazard assessment using DAS. This data publication contains the full data set used for the analysis. This data set comprises strain-rate data from 1 iDAS interrogator (~750 traces), velocity data from 15 geophones and 4 broadband seismometers, and infrasonic pressure data from infrasound sensors. For further explanation of the data and related processing steps, please refer to Jousset et al. (2022). Waveform data are available from the GEOFON data centre, under network code 9N.
    Keywords: fibre optics ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Local network ; Temporary ; Volcano ; Velocity ; DAS ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~600G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-11
    Description: Abstract
    Description: In January 2020, a swarm of earthquakes started under Thorbjorn volcano, Reykjanes, SW Iceland, associated to the uplift of up to 0.5 cm per day. Concern in Iceland was growing and the Iceland Meteorological Office suggested at that time that possibly magma intruded in the crust at shallow depth (3 to 9 km). The first eruption occurred on 19.03.2021, followed by many others in the foolwing years. The GFZ started a seismological Hazard and Risk Team (HART), as soon as February 2020 in cooperation with IMO, ISOR and the University of Iceland. The interrogator was located in Grindavik and was connected to a standard telecom cable. The full data dataset of this 5J network comprise 250 Tb of raw data. The standard infrastructure is not designed for such large data set. Therefore, we implement here several datasets, corresponding to several processing and associated publications. Specific full data set is available upon request to the authors. In Flovenz et al., 2022, the data subset comprise a selection of wave-forms recorded along an optical fibre of 21 km length. The subset consists of 40 channels at 100 Hz (spatially stacked 9x). The whole time period from January until August 2020 is covered, with a total size of 496 GB. The data is MiniSEED at 4096 bytes record length with STEIM2. In Maass et al., 2024, the data subset consists of two sections of contiguous channels (1701-2000 and 3921-4218, spatial sampling 4 meters) of dynamic strain rate down sampled at 5 Hz. The whole time period from January until August 2020 is covered, with a total size of 340 GB. The data is MiniSEED at 4096 bytes record length with STEIM2.
    Keywords: fibre optics ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Local network ; Temporary ; Volcano ; Velocity ; DAS ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~500G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-04-11
    Description: Abstract
    Description: The Eifel Large-N Seismic Network is a concentric network of about 80km aperture around the Laacher See. Instrumentation consists of broad band seismometers, short period instruments (1Hz eigenfrequency) and 4.5Hz geophones. While the broadband and short period stations cover the area rather homogeneously for about 12 month, the geophone stations were moved after 6 month from a layout focussed on the closer vicinity of the Laacher See onto a line crossing the network from south-west to north-east with a dense station spacing. The goal of the experiment is the structural investigation of the feeding system of the East Eifel and a detailed study of the tectonic and volcanic seismic activity in this area. Waveform data is available from the GEOFON data centre, under network code 6E.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Local network ; Temporary ; Large-N ; Volcano ; Velocity ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-11
    Description: Abstract
    Description: “Gakkel Deep is a pilot project that installed a network of four broadband ocean bottom seismometers (OBS) near Gakkel Deep, the deepest depression in the Arctic Ocean, at the eastern end of the ultraslow spreading Gakkel Ridge. The area is covered year-round by sea ice. In order to enable a safe recovery of the OBS in a sea ice covered ocean, the OBS were modified to include a positioning system that allows to track the instruments at meter accuracy during descent and ascent and when stuck beneath ice floes. This pilot studied aimed at testing the recovery procedure of the OBS, checking the performance of the modified instrument design, getting an overview of ambient seismic noise at the bottom of the Arctic Ocean and at contributing to a better understanding of the origin of the Gakkel Deep depression with more than 3000 m of topography. The network is shaped as a rectangle with 8 km and 10 km side length and is centered at about 82°N 119.5°E at water depths between 3600 m and 4100 m. It is positioned slightly to the east of the present plate boundary in an area with volcanic structures. Instruments from the German Instrument Pool of Amphibian Seismology (DEPAS) were deployed during RV Polarstern cruise PS115/2 on September 15, 2018. Instrument recovery was completed during RV Polarstern cruise PS122/1 on September 27, 2019. The data set contains about 377 days of continuous records at 250 Hz sample rate. The station locations were determined with Ultra Short Baseline (USBL) ranging, the accuracy is approx. 10 m. The non-linear clock drift was determined by means of noise cross-correlations and applied to the data set. Waveform data are available from the GEOFON data centre, under network code 8F and are embargoed until June 2025.
    Keywords: In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; OBS ; DEPAS ; Passive seismic ; Local network ; Temporary ; Velocity ; Hydrophones ; Seismometers ; MiniSEED
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-26
    Description: Abstract
    Description: A network of 210 continuously running, digital seismic stations equipped with short-period sensors (200 stations) and broadband sensors (10 stations) was deployed in an area of ~8 x ~6 km in the Irish Midlands (north of Collinstown) for a time period of ~6 weeks. The network was part of the EU project VECTOR (https://vectorproject.eu) aiming to investigate – among others – possible solutions for least invasive forms of exploration for mineral resources. In this context the collected data was mainly used to derive a 3D model of the subsurface (seismic shear wave velocity) using ambient noise tomography (down to ~1.5km depth). We thank all field crews for their excellent work rendered to the project. Waveform data is available from the GEOFON data centre, under network code 7W, and is embargoed until Feb 2025.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Seismometers ; Geophone[g] ; Velocity ; MiniSEED ; Passive seismic ; GIPP ; MESI ; Raw[g] ; Local network ; Vertical component[g] ; Three-component[g] ; Land[g] ; Geophysics ; Natural
    Type: Dataset , Seismic Network
    Format: ~300G
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-17
    Description: Abstract
    Description: The Irish Seismological Lithospheric Experiment (ISLE) was originally designed to investigate the deep lithospheric and asthenospheric structure across the late-Caledonian Iapetus Suture Zone in southern Ireland. The project was a collaboration between the Dublin Institute for Advanced Studies (DIAS), Ireland, and the Geophysical Institute (GPI) of the University of Karlsruhe, Germany. It was the first passive teleseismic experiment conducted in Ireland, building upon a large body of earlier work on the crustal structure offshore and onshore Ireland, based on controlled source seismics and potential field studies. The Irish Seismological Upper Mantle Experiment (ISUME) was a continuation of ISLE by DIAS to extend the data coverage to most of Ireland. Data are available at the GEOFON data centre under network code 1M.
    Keywords: In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 668.9GB
    Format: SEED data
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The goal of the UPFLOW project is to develop new high-resolution seismic imaging approaches along with new data collection, and to use them to constrain upward flow in unprecedented detail. We conducted a large off-shore experiment in the Azores-Madeira-Canary Islands region, which is a unique natural laboratory with multiple upwellings that are poorly understood in general. UPFLOW deployed and recovered 49 ocean bottom seismometers (OBSs) in a ~1,000×2,000 km2 area in the Azores-Madeira-Canary Islands region starting in July 2021 for ~13 months, with an average spacing of ~150-200 km. The seismic deployment and recovery involved institutions from five different countries: Portugal (IPMA, IDL, Univ. of Lisbon, ISEL), Ireland (DIAS), UK (UCL), Spain (ROA) and Germany (Potsdam University, GFZ, Geomar, AWI). 32 OBSs were rented from the DEPAS international pool of instruments maintained by the Alfred Wegener Institute (Bremerhaven), Germany, while other institutions borrowed additional instruments (7 from DIAS, 4 from IDL, 3 from ROA, 4 from GEOMAR). Most of the instruments have three-component wideband seismic sensors, but three different designs of OBS frames were used. Waveform data is available from the GEOFON data centre, under network code 8J, and is embargoed until 4 years after publishing but may be accessible upon request. We want to acknowledge the exceptional support of the whole team of able seaman, steward, cooks, engineers, mechanicians, electricians and motorman assistants of the vessel RRV Mário Ruivo. With special Thanks to José Ângelo Gomes (Captain), Luís Ramos (Superintendent), Mafalda Carapuço Vessel’s manager (IPMA), Henrique Ferreira Land logistics (IPMA), Celine Ahmed and Jen Amery (Administrative support at UCL)
    Keywords: GEOMAR ; iMarl-DIAS ; IDL ; ROA ; Pressure ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; OBS ; Passive seismic ; Velocity ; MiniSEED ; DEPAS ; Amphibious ; Mantle plume ; Regional network ; Pressure ; Three-component[g] ; Natural
    Type: Dataset , Seismic Network
    Format: 2700GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-05-21
    Description: Abstract
    Description: 15 station seismological network spanning the North Anatolian Fault Zone (NAFZ) toward the east of Ismetpasa to detect possible microseismicity and slow slip events in the creeping section of the NAFZ. The network consists of 10 three component 4.5 Hz geophone sensors in combination with DATACUBE3 recorders and five Trillium Horizon 120 broadband seismometers connected to Centaur data loggers. Geophone stations are buried at shallow depths while two of the broadband seismometers are installed in-house at basement level. The other three Trillium sensors are posthole installations in the field. The seismic network spans the same part of the NAFZ that is also monitored by a GNSS network installed by École Normale Supérieure (ENS) with two broadband seismometers being co-located with GNSS sensors. In addition, a set of creepmeters is installed close to Ismetpasa at the western end of the seismological network. The aim of the seismological study is twofold: a) Finding possible seismological expressions of the slow slip transients visible in the GNSS data and b) detecting microseismicity that is not listed in the regional Turkish earthquake catalogs based on seismological networks with much larger station spacing in the study area. The obtained results will hopefully give new insights into the seismological characteristics of a segment of a major continental transform fault capable of hosting M7 events but showing at the same time transient slow slip events and seismic creep.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI
    Type: Dataset , Seismic Network
    Format: ~307GB(still growing)
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Project SWEAP (Southwest Indian Ridge Earthquakes and Plumes), a collaborative effort led by the Alfred-Wegener-Institute, installed a network of 10 broad-band ocean bottom seismometers (OBS) along the ultraslow-spreading Oblique Supersegment of the Southwest Indian Ridge. The presented data set covers the continuous records of 8 stations of the network provided by the DEPAS instrument pool. One station of the original network could not be recovered, another one did not return data. The instruments were spaced at roughly 15 km intervals in a triangular shape network to either side of the rift axis covering about 60 km along axis between 13°E and 13.8°E and 60 km across axis between 52°S and 52.6°S. The determination of the OBS positions is described by Schmid et al. (2016). The network design was optimized for detecting and locating deep seismicity in the area. The rift valley was filled with soft silica ooze, producing considerable delay of S-phases at selected stations. Instrument deployment started during RV Polarstern cruise ANT-XXIX/2 on December 05 2012. Instrument recovery was completed during RV Polarstern cruise ANT-XXIX/8 on November 26 2013. 5 Refraction seismic lines were acquired by RV Polarstern cruise ANT-XXIX/8 from November 17 to 19 in 2013. All OBS could be synchronized with the GPS clock upon recovery such that skew values describing the clock drift are available for all stations. The non-linear clock drift of station SWE05 was determined by means of noise cross-correlations and applied to the data set. All other stations show a linear drift, which was corrected.
    Keywords: Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; DEPAS ; OBS
    Type: Dataset , Seismic Network
    Format: 161GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-05-21
    Description: Abstract
    Description: The STRATEGy network was a temporary seismic network in the NW Argentinean Andean Foreland. It run for about 15 months between June 2016 and August 2017 and consisted of 13 stations for the most parts. Each station contains a Lennartz LE3D/5s seismometer, an Omnirecs DataCube³ext digitizer (100 Hz sampling rate) with external GPS antenna and internal flash memory. Station 14A consisted of a Mark L-4C-3D short-period sensor. The power was supplied through an external batteries that were recharged during the day via a solar panel. The sensors were oriented to magnetic north. The header of the waveform files (NSLC-IDs) still remained in its prior form (network code ST) and haven’t been adapted to the FDSN given code. Station codes (double digits) were assigned from North to South. The last digit of the station code is either A (for their initial position of a station site) or B (the station has been moved during the networks operation time due to low quality recordings at the respective initial site). Each site was chosen on 3 criteria: (1) minimizing the depth to bedrock, (2) maximizing remoteness, and (3) maximizing security, preferentially located within sight of nearby settlements. However, one station (02A) was lost due to theft and many others experienced recording gaps due to animals chewing on cables, malfunctions of electrical parts and mainly flooding of the stations during the austral summer monsoon. The overall network geometry evolved partially due to accessibility of remote locations, maintaining similar interstation distances and focusing around the epicenter of the Mw 5.7 El Galpón earthquake 9 months prior to the network’s starttime. The smallest depths to bedrock were achieved by concentrating the sites around two major bedrock ranges and their piedmont, Cerro Colorado and Sierra de la Candelaria. Waveform data are available from the GEOFON data centre, under network code 2S.
    Keywords: Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 111GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Continuous passive seismic monitoring is carried out between September 2017 and December 2021 around the Theistareykir geothermal area located at the intersection between the active Northern Rift Zone and the active Tjörnes Fracture Zone in NE Iceland. This experiment, in addition to an extensive gravimetric monitoring survey, was conducted in the framework of the MicroGraviMoTiS project for a better understanding of the structures and behavior of the local geothermal system under exploitation and for further development of local and regional geothermal resources. 14 broadband stations (Trillium C-120s) recording at 200 Hz comprise the temporary network, that is installed to complement stations of the national seismological network of IMO and stations of Landsvirkjun, the National Power Company of Iceland. The stations were placed in and around the producing zone to primarily retrieve local natural and/or induced seismicity associated to the injection and production operations. The retrieved seismic data is also used for obtaining a representative 1D velocity model of the region, for computing a seismic ambient noise tomography, and for monitoring the system using coda wave interferometry techniques. Funding for this project is provided by the German Federal Ministry for Education and Research (MicroGraviMoTiS , BMBF, grant: 03G0858A), the Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences and Landsvirkjun. Waveform data are available from the GEOFON data center, under network code 3P, and are embargoed until December 2025.
    Keywords: Broadband seismic waveforms ; Seismology ; temporary local seismic experiment ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; GIPP ; MESI ; Volcano
    Type: Dataset , Seismic Network
    Format: 783GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    GFZ Data Services
    Publication Date: 2024-05-21
    Description: Abstract
    Description: This dataset includes five stations of an Ocean Bottom Seismometer (OBS) experiment conducted at the southern end of the Fonualei Rift and Spreading Center in the Lau Basin, southwestern Pacific. The OBS recorded continuously for 32-days on 4 components, including a hydrophone and a 3-component 4.5 Hz geophone. The experiment was conducted during RV Sonne cruise SO267, project ARCHIMEDES I.
    Keywords: Monitoring system ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; OBS
    Type: Dataset , Seismic Network
    Format: 61GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-05-21
    Description: Abstract
    Description: Geophysical section of Dublin institute for Advanced studies is a publicly funded (government) academic research organization that develop new methods for studying the earth. In this project we are trying to develop new environmentally friendly ways to monitoring ground integrity. The idea is to use ground vibrations from natural and man-made sources, that already exist in everyday life for monitoring ground integrity. Here we would like to see if ground vibrations made by passing trains can be used to determine the integrity of the ground beneath the train track itself. This project involves the recording and analysis in detail the seismic vibrations generated by trains in order to better understand the proprieties of the waves propagating from the railway trough the shallow underground. Waveform data are available from the GEOFON data centre.
    Keywords: Broadband seismic waveforms ; Seismic monitoring ; temporary local seismic network ; Monitoring system ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Seismometers ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED
    Type: Dataset , Seismic Network
    Format: 8.3GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-05-28
    Description: Abstract
    Description: From June to August 2021 the DEEPEN project deployed a dense seismic network across the Hengill geothermal area in southwest Iceland to image and characterize faults and high-temperature zones at high resolution. The nodal network comprised 498 geophone nodes spread across the northern Nesjavellir and southern Hverahlíð geothermal fields and was complemented by an existing permanent and temporary backbone seismic network of a total of 44 short-period and broadband stations. In addition, two fiber optic telecommunication cables near the Nesjavellir geothermal power plant were interrogated with commercial DAS-interrogators. The here published dataset contains a subset of the downsampled DAS-recordings from the western fiber optic array. The original data were downsampled from 2000Hz to 250 Hz using the das-convert tool (https://doi.org/10.5880/GFZ.2.1.2021.005). Note that there was a problem with the GNSS timing in the original recorded data which caused significant temporal drift. This has mostly been corrected in the downsampled data, but some residual timing error may exist. Waveform data is available from the GEOFON data centre, under network code 1D, and is fully open.
    Keywords: EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 EARTHQUAKES ; EARTH SCIENCE 〉 SOLID EARTH 〉 TECTONICS 〉 VOLCANIC ACTIVITY ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SEISMOLOGICAL STATIONS ; Passive seismic ; Seismometers ; Velocity ; MiniSEED ; DAS
    Type: Dataset , Seismic Network
    Format: 1700GB
    Format: .mseed
    Format: XML
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...