ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus Publications (EGU)
  • Inter Research
  • 2020-2024  (358)
  • 1995-1999  (50)
  • 1
    Publication Date: 2023-03-08
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Ferguson, S., Jensen, F., Hyer, M., Noble, A., Apprill, A., & Mooney, T. Ground-truthing daily and lunar patterns of coral reef fish call rates on a US Virgin Island reef. Aquatic Biology, 31, (2022): 77–87, https://doi.org/10.3354/ab00755.
    Description: Coral reefs comprise some of the most biodiverse habitats on the planet. These ecosystems face a range of stressors, making quantifying community assemblages and potential changes vital to effective management. To understand short- and long-term changes in biodiversity and detect early warning signals of decline, new methods for quantifying biodiversity at scale are necessary. Acoustic monitoring techniques have proven useful in observing species activities and biodiversity on coral reefs through aggregate approaches (i.e. energy as a proxy). However, few studies have ground-truthed these acoustic analyses with human-based observations. In this study, we sought to expand these passive acoustic methods by investigating biological sounds and fish call rates on a healthy reef, providing a unique set of human-confirmed, labeled acoustic observations. We analyzed acoustic data from Tektite Reef, St. John, US Virgin Islands, over a 2 mo period. A subset of acoustic files was manually inspected to identify recurring biotic sounds and quantify reef activity throughout the day. We found a high variety of acoustic signals in this soundscape. General patterns of call rates across time conformed to expectations, with dusk and dawn showing important and significantly elevated peaks in soniferous fish activity. The data reflected high variability in call rates across days and lunar phases. Call rates did not correspond to sound pressure levels, suggesting that certain call types may drive crepuscular trends in sound levels while lower-level critical calls, likely key for estimating biodiversity and behavior, may be missed by gross sound level analyses.
    Description: This research was funded by the National Science Foundation Biological Oceanography award 1536782. The experiments were conducted under National Park Service Scientific Research and Collecting Permits VIIS-2016-SCI-0017-20, and we thank the Park staff for their support.
    Keywords: Marine protected area ; Soundscape ; Noise ; Biodiversity ; Acoustic behavior ; Monitoring ; Tropics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 166 . pp. 231-236.
    Publication Date: 2017-07-06
    Description: The only known population of coelacanths, in the Comores, western Indian Ocean, is endangered by human predation. Historical catch data from Grande Comore reveal that annual catch rates increased steadily from 1954 until the 1970s. This trend was temporarily interrupted due to an international policy introducing motorized boats and promoting offshore fishing techniques. Coelacanths are only caught from traditional unmotorized outrigger canoes as an incidental by-catch of deep water line fishing. A complete survey of all motorized and unmotorized vessels in 1995 at Grande Comore in comparison to earlier years indicated that a recent decreased use of motors and increase of unmotorized canoe fishing has led to an increase in coelacanth catches. Conservation measures and strategies for reducing the fishing pressure exerted on coelacanths are discussed. The southwest coast of Grande Comore should be designated as a nature reserve and protected area where immediate protection measures should be taken, an opinion which is supported by Comorian authorities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Journal of Micropalaeontology, 17 (1). pp. 1-14.
    Publication Date: 2018-03-23
    Description: Pliensbachian and Toarcian Ostracoda first described by Exton (Geological Paper, Carleton University, Ottawa, 79: 1–104 1979) from the Lusitanian Basin, west-central Portugal have been re-examined. As a result, a greater diversity in the Ostracoda (80 species) is now recognized. Two species are newly described (Eucytherura zambujalensis sp. nov., Ektyphocythere mediodepressa sp. nov.) from the marls and calcareous shales of the Maria Pares Hill section near the village of Zambujal. Poor preservation precludes a complete taxonomic review of the present material. Five ostracod zones are proposed; Gammacythere ubiquita–Ogmoconchella gruendeli Zone, Poly cope cerasia–Polycope cincinnata Zone, Liasina lanceolata–Ogmoconcha convexa Zone, Bairdiacypris rectangularis–Kinkelinella sermoisensis Zone, and Cytherella toarcensis-Kinkelinella costata Zone. Although the ostracod assemblages possess strong similarities to those described from Northwest Europe, some of the Zambujal assemblages are dominated by the genus Polycope. A marked faunal turnover, in association with the extinction of the Metacopina occurs in the lower Subzone of the tenuicostatum Zone of Lower Toarcian age. These faunal events are discussed in relation to changing environmental conditions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 162 . pp. 279-286.
    Publication Date: 2018-05-08
    Description: VHF telemetry was used in November and December 1995 on 8 Humboldt penguins Spheniscus humboldti breeding at Pan de Azúcar Island (26°S, 70°W), Northern Chile, to determine at-sea behaviour of the birds. We obtained 2710 locations, 90% of which were within a radius of 20 km around the island. Mean travelling speed of the birds was 0.92 m s-1 and speed distribution showed peaks at 1.6 and 3 m s-1. Penguins travelling between foraging areas remained submerged for an average of 8.4 s between surfacings, whereas foraging dives lasted on average 61 s. The analysis of 79 complete foraging trips showed that tracks deviated from a straight course, and range (maximum distance from island) was only 0.37 times total horizontal distance swum. Birds did not forage synchronously or in the same foraging areas. However, foraging ranges were correlated between birds, indicating similar search strategies during periods of low food availability. The results obtained here via VHF telemetry agreed well with those of previous studies employing satellite transmitters and data loggers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 123 . pp. 149-153.
    Publication Date: 2018-06-15
    Description: The tissue of 31 demosponge and 7 hexachnelhd species was analyzed for its composition of organic and lnorganic matter With one excephon (Hahclona cf gausaana) inorganic matter i e n~ostly the siliceous skeleton, accounted for most of the dry weight, varying between about 60 and 95%dry wt There were no general trends in the ratio of organic to inorganic matter within sponge orders or genera, and within one species, the ratio could vary between stations For one of the hexactinellids Bathydorus spmosus, several size classes were analyzed and there was no systematic change in the organic inorganic matter ratio w t h specimen size For some species the results from the Weddell Sea sponges are in good agreement with earlier data from McMurdo Sound The low organic matter content in Weddell Sea sponges mphes that sponge biomasses are much lower than hitherto assumed on the basis of then high abundances and large sizes In consequence Antarctic sponges despite their ubiquitousness, may only channel a m n o r fractlon of the general bentho-pelagic flow of matter and energy and their maln role in the ecosystem is likely structural rather than dynamic
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-15
    Description: During 5 consecutive summer seasons (1990 to 1994) both Aureliaaurita medusa and mesozooplankton abundances were investigated at 2 stations in the Kiel Bight (western Baltic Sea). Stocks of medusae varied considerably between the years, with median abundance of 1 and 0.3 ind. 100 m-3 in 1990 and 1991, 3 and 4 ind. 100 m-3 in 1992 and 1994, but 9 ind. 100 m-3 in 1993. Significant differences in the mesozooplankton stock and community composition were observed in 1993 when compared with the year of rather low Aurelia abundance (1991). Total zooplankton and copepod numbers both exhibited an inverse relationship with the abundance of medusae and were thus considerably lower in 1993 than in 1991. However, not all copepod species were affected by A. aurita. Pseudo- and Paracalanus spp. and Oithonasimilis showed dramatically reduced stocks in the bloom year when compared with the medusa-poor situation, but no significant changes were found for Centropageshamatus and Acartia spp. Also other zooplankton groups with the exception of bivalve larvae were reduced by the medusae. The differential response of zooplankton to varying abundance of medusae led to a shift in the trophic structure of the zooplankton community. Fine-filter feeders and raptorial feeders were much more important in years when medusae occurred in low densities, whereas coarse-filter feeders dominated in the opposite situation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-15
    Description: From the Gulf of Aden along a transect to the central-northern Red Sea the abundance and taxonomic composition of metazoan plankton was studied during the southwest monsoon period (summer 1987). Samples were taken with 0.055 mm mesh nets down to a maximum depth of 1050 m. In the epipelagic zone, a distinct decrease in total plankton abundance was observed from south to north, which was much more pronounced in biomass (by a factor of up to 10) as compared to numbers (by a factor of 2). This could partly be explained by differences in the taxonomic and/or size composition of the planktonic fauna. Among non-calanoid copepods, 40 out of 75 species or taxa investigated decreased in abundance from south to north. Sixteen of these species were completely absent in the central-northern area. Nineteen species or taxa, however, showed the opposite feature of a higher abundance in the central-northern Red Sea. The stations were grouped according to similarities in the taxonomic composition of non-calanoid copepods in the epipelagic zone. The following 3 geographical regions could be separated: (1) Gulf of Aden and Strait of Bab al Mandab; (2) southern Red Sea; and (3) central-northern Red Sea. In the meso- and bathypelagic zones, regional differences were not evident. The results are discussed in relation to hydrographic conditions during summer 1987.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-15
    Description: A spring investigation of the phytoplankton in the western Alboran Sea (Mediterranean) was undertaken using chlorophyll and carotenoid biomarkers to characterize the community in the water column and in drifting sediment traps set at 100 and 200 m. During 2 drifter experiments, calm and sunny conditions induced a progressive thermal stratification that reduced pigment sedimentation into deeper water and confined the phytoplankton to the surface layer, resulting in an increase in chlorophyll biomass. 19'-Hexanoyloxyfucoxanthin (prymnesiophytes) and chlorophyll b (chlorophytes, prasinophytes, prochlorophytes) were the major accessory pigments, while fucoxanthin, alloxanthin and peridinin indicated the presence of diatoms, cryptophytes and dinoflagellates, respectively. The proportional contribution of each algal group to the chlorophyll a (chl a) biomass, as derived from multiple regression analysis, revealed that prymnesiophytes, cryptophytes and the green algal group collectively accounted for at least 75% in the upper 100 m, emphasizing the importance of the nanophytoplankton. Phaeopigments, dominated by phaeophorbide a2, were the main pigments observed in sediment traps, although chl a, fucoxanthin and 19'-hexanoyloxyfucoxanthin were detected in smaller concentrations as well as traces of chlorophyll b (chl b). In deep water, fucoxanthin and 19'-hexanoyloxyfucoxanthin were the only accessory pigments present while total phaeopigment/chl a molar ratios 〉1 reflected the active transformation of fine phytogenic material at depth. High particulate organic carbon (POC)/chl a ratios (〉100 in surface water; 〉1000 in deep water) suggested that phytoplankton was a relatively small component of the total carbon biomass down the water column. Using simple budget calculations, we determined that 58 to 65% of the chl a produced in the upper 100 m accumulated in the water column over both experiments. During Expt 1, 29% of the chl a sedimented out, mostly as phaeopigment, at 100 m (24%), and 6% was degraded to colourless residues in the water column. In contrast, only 12% of the chl a sedimented in Expt 2, while 20% was degraded to colourless residues.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-07-06
    Description: Five hormone-treated female Japanese silver eels Anguilla japonica were tagged with ultrasonic transmitters and released by submersible in the West Pacific at seamounts of the West Mariana Ridge, their supposed spawning grounds. Four eels were tracked for 60 to 423 min in the vicinity of the seamounts. They did not settle at the seamounts but swam at a mean speed of 0.37 m s-1 into open water above deep ground. Their mean swimming depth ranged from 81 to 172 m. Experiments suggest that pre-matured A. japonica migrate to their spawning grounds in temperate warm water and at shallow depths.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 173 . pp. 127-137.
    Publication Date: 2018-05-08
    Description: The stable carbon isotope composition (δ13C) of particulate organic carbon (POC) was measured in 3 size fractions (POCtotal, POC〉20 µm, POC〈20 µm) during a phytoplankton spring bloom dominated by the diatom Skeletonema costatum in Lindåspollene, a land-locked fjord in southern Norway. In addition to standard parameters for characterizing the phytoplankton bloom (chlorophyll, nutrient, and POC concentrations, and species composition), simultaneous measurements of δ13C of dissolved inorganic carbon (DIC), total alkalinity and DIC concentration were obtained to determine temporal trends in dissolved carbon dioxide concentration and in carbon isotope fractionation (ε p) of the POC size fractions. The carbon isotope composition of the 〉20 µm size fraction, which was dominated by diatoms, was ca 2o/oo heavier than that of the 〈20 µm fraction, which was mainly composed of flagellates. δ13C of both size fractions increased by about 3o/oo over the course of the bloom. A 5o/oo increase in δ13C-PO Ctotal during the bloom resulted partly from a shift in the phytoplankton community from a flagellate- to a diatom-dominated one. Carbon isotope fractionation of all fractions decreased with declining CO2(aq) concentration (14 to 〉6 µmol l-1). A positive correlation between ε p and [CO2(aq)] in the diatom size fraction was obtained for the period of exponential growth. Deviation from this correlation occurred after the peak in cell density and chlorphyll a (chl a) concentration, when POC still continued to increase, and may be related to changing phytoplankton growth rates or to possible effects of nutrient (nitrate) limitation on ε p. Comparison of these results with those of previous field studies shows that, while an inverse relationship is consistently observed between ε p and the ratio of instantaneous growth rate and CO2 concentration {µi/[CO2(aq)]}, considerable scatter exists in this relationship. While this scatter may have partly resulted from inconsistencies between the different studies in estimating phytoplankton growth rate, it could also reflect that factors other than growth rate and CO2 concentration significantly contribute to determining isotope fractionation by marine phytoplankton in the natural environment
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    facet.materialart.
    Unknown
    Inter Research
    In:  Aquatic Microbial Ecology, 19 . pp. 139-148.
    Publication Date: 2016-05-26
    Description: Phosphatase (P-ase) activity was determined together with other extracellular enzyme activities, bacterial abundance and production rates during the 2 SW Monsoon process studies of the German JGOFS Arabian Sea Program. Water samples were collected along the cruise tracks from the equator to the upwelling region at the shelf edge off Oman. Depth profiles of P-ase activity were strikingly different from those of the other enzymes. While values of aminopeptidase and β-glucosidase generally decreased below the euphotic zone, P-ase increased by factors of 1 to 7. The relation between peptidase- and P-ase activity was from 4 to 21 at the surface and from 3 to 5 at 800 m depth. Because P-ase production (dissolved and cell-bound) in deep waters is mainly dependent on bacteria, P-ase activities per bacterial cell were calculated: these were, on average, 37 times higher at 800 m than at the surface. We also observed a positive correlation of P-ase activity with phosphate concentrations in the depth profiles below the euphotic zone, while this relationship was much more variable in the mixed surface layer. These observations suggest that C-limited bacteria in the deep strata did not primarily focus on the phosphate generated by their P-ase activity but on the organic C compounds which were simultaneously produced and which could probably not be taken up prior to the hydrolytic detachment of phosphate. It is hypothesised that a considerable part of the measured P-ase activity was dissolved (though it might have originated from bacteria). These enzymes may be important for the slow, but steady regeneration of phosphate and organic C in mesopelagic waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 133 . pp. 275-285.
    Publication Date: 2018-05-08
    Description: A predictive model of carbon isotope fractionation (sigma p) and abundance (delta13C phyto) is presented under circumstances where photosynthesis is strictly based on CO2(aq) that passively diffuses into marine phytoplankton cells. Similar to other recent models, the one presented here is based on a formulation where the expression of intracellular enzymatic isotope fractionation relative to that imposed by CO2(aq) transport is scaled by the ratio of intracellular to external [CO2(aq)], ci/ce. Unlike previous models, an explicit calculation of ci is made that is dependent on ce as well as cell radius, cell growth rate, cell membrane permeability to CO2(aq), temperature, and, to a limited extent, pH and salinity. This allows direct scaling of ci/ce to each of these factors, and thus a direct prediction of sigma p and delta13C phyto responses to changes in each of these variables. These responses are described, and, where possible, compared to recent experimental and previous modeling results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-05-08
    Description: Stomach contents of 17 sperm whales Physeter macrocephalus stranded in Scotland and Denmark during 1990-96 were analysed. All were sub-adult or adult males and stranded between November and March. They had presumably entered the North Sea during their southward migration from feeding grounds in Arctic waters. Other studies indicate that the majority of the whales were apparently healthy. The diet of these whales was found to consist almost entirely of cephalopods, principally squid of the genus Gonatus (hereafter 'Gonatus', but probably G. fabricii, an oceanic species characteristic of Arctic waters). The other prey species identified were also mostly oceanic cephalopods: the squids Histioteuthis bonnellii, Teuthowenia megalops and Todarodes sagittatus and the octopus Haliphron atlanticus. Although these results are consistent with other recent studies in the area based on single stranded whales, they differ from results of work on whales caught during commercial whaling operations in Icelandic waters (1960s to 1980s) in that little evidence of predation on fish was found in the present study. Remains of single individuals of the veined squid Loligo forbesi, the northern octopus Eledone cirrhosa and the saithe Pollachius virens provided the only possible evidence of feeding in the North Sea. We infer that sperm whales do not enter the North Sea to feed. The timing, and large and uniform sizes of the Gonatus species eaten (most had mantle lengths in the range 195 to 245 mm), as estimated from measurements of the lower beaks, and the seasonality of the strandings is consistent with the whales having fed on mature squid, possibly spawning concentrations--as has recently been reported for bottlenose whales. Assuming that the diet recorded in this study was representative of sperm whales during the feeding season, as much as 500000 t of Gonatus could be removed by sperm whales in Norwegian waters each year and up to 3 times that figure from the eastern North Atlantic as a whole. Evidence from other studies indicates that Gonatus is an important food resource for a wide range of marine predators in Arctic waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 185 . pp. 293-296.
    Publication Date: 2018-05-08
    Description: Interpretation of diving profiles of aquatic animals would be considerably enhanced by additional behavioural information. A new sensor is presented here which records animal movements. This sensor was tested on a captive loggerhead turtle Caretta caretta which showed similar activity patterns to free-living green turtles Chelonia mydas. A computer program with user-selectable options was developed to analyse the data consistently and rapidly. Using our sensor we calculated the total resting time, which differed by less than 5% from the real resting time when the sampling interval was 2 s. The method was additionally tested for different sampling intervals to find out its applicability for field studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2016-11-14
    Description: A total of 354 adult European smelts Osmerus eperlanus (L.) were tested for their ability to survive the screen system of the cooling water inflow of a power plant. With increasing number of musculature parasitic third-stage larvae of Pseudoterranova decipiens, the survival rate of O. eperlanus decreased while the total number of externally visible injuries as well as the number of seriously injured specimens increased. The results indicate that even a single specimen of P. decipiens influences resistance and stamina and affects overall mortality of 7 to 20 cm long smelts. The initial effect of the parasites is to reduce swimming speed of infested fish, which leads to more frequent contact of these fish with the fine meshed screen of the cooling water inlet before they are removed by the automatic cleaning system. If the separated fishes are returned to the main stream, it becomes apparent that the cooling water inflow selectively reduces the number of living parasitised smelt in the area. Thus, the number of parasitic third-stage P. decipiens larvae in the local smelt population which are able to complete their life-cycle is also reduced. P. decipiens makes infested smelt more susceptible to negative anthropogenic influences such as cooling water intake or trawl fisheries.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-05-07
    Description: Sediment cores of 20 cm diameter contaning the natural benthic fauna were subjected to low oxygen conditions in a laboratory microcosm system. After several days of oxic conditions ('oxic stage') the oxygen content of the water was reduced to 25% saturation for 15 d ('hypoxic stage'), followed by a 'reoxygenation stage'. Effective solute transport rates were calculated using measurements with the conservative tracer ion bromide. Profiles of oxygen and ΣCO2 were measured and molecular diffusive as well as effective fluxes, account mg for effective solute exchange, were calculated. The overall response of the benthic community was to compensate for low oxygen content of the overlying water by increased pumping activity. On average, effective diffusion coefficients (Den} were 3 times higher in hypoxia than under oxic conditions. D eff reached 1.5 x 10^-4 cm2 s^-1, a value 30 times that of molecular diffusion. During hypoxia we observed low molecular diffusive O2 flux, higher effective O2 flux, as well as an increase in ΣCO2 within the sediment. We interpret this as a shift of transport away from diffusion within the bulk sediment interstices (oxic conditions) to the advective transport pathways along burrows during hypoxia. This facilitates fast transport of oxygen and bromide along burrows and contrasts with the slower transport of CO2 from the interstices governed by molecular diffusion. In this transient situation calulations based on gradients result in an unrealistic molar ratio of fluxes(CO2/O2)as high as 11.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-08-27
    Description: Nematodes of the family Stilbonematinae are known for their highly specific association with ectosymbiotic bacteria. These worms are members of the meiofauna in marine, sulfide-rich sediments, where they migrate around the redox boundary layer. In this study, bacterial ectosymbionts of 2 species of marine nematodes, Stilbonema sp. and Laxus oneistus, were shown to be capable of the respiratory reduction of nitrate and nitrite (denitrification). The use of these alternative electron acceptors to oxygen by the bacteria allows the animals to migrate into the deeper, anoxic sediments, where they can exploit the sulfide-rich patches of the deeper sediment layers. The accumulation of thiols (sulfide, thiosulfate, sulfate and glutathione) in body tissues of the worms was determined following incubation in the presence of various electron donors (sulfide, thiosulfate) and acceptors (nitrate). In their chemoautotrophic metabolic potential, the ectosymbionts of the 2 nematode species were found to resemble the phylogenetically related, intracellular symbionts of macrofaunal hosts of deep-sea hydrothermal vents and other sulfide-rich habitats.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2016-05-26
    Description: The role of tetrathionate in the sulfur cycle of Baltic Sea sediments was investigated in different habitats and under a variety of environmental conditions. Sediment profiles were recorded with regard to numbers of thiosulfate oxidizing bacteria, concentrations of sulfur compounds, and potential rates of thiosulfate oxidation. Products of thiosulfate oxidation were quantified in incubated sediment samples and in pure cultures. Evidence was found that tetrathionate is formed within these sediments, that sulfur oxidizing bacteria are present in considerable numbers, that these bacteria are of major importance in the oxidation of reduced sulfur compounds in their habitat, and that tetrathionate is an important oxidation product of these bacteria. Thiosulfate is oxidized by bacteria isolated from these sediments to varying proportions of tetrathionate, sulfate, and also elemental sulfur. In highly sulfidic sediments and in the presence of large amounts of organic matter, tetrathionate was present in sediment horizons in which thiosulfate and elemental sulfur also accumulated. A tetrathionate cycle is proposed to be active in natural marine and brackish water sediments in which, due to combined bacterial action and chemical reactions, a net oxidation of sulfide to elemental sulfur occurs in the presence of catalytic amounts of thiosulfate and tetrathionate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 155 . pp. 67-76.
    Publication Date: 2018-05-08
    Description: The effect of variable CO2 concentrations on the elemental composition (C:N:P) of marine diatoms was investigated in 2 strains of Skeletonema costatum (Grev.) Cleve. Five or 6 concentrations of dissolved molecular carbon dioxide [CO2 (aq)], ranging from 0.5 to 39 µmol l-1, were applied in dilute batch cultures. In both strains, elemental ratios were clearly dependent on [CO2 (aq)]. With decreasing CO2 concentrations, a decline in C:P and N:P and an increase in C:N was observed. The close correlation between C:P or N:P and [CO2 (aq)] corresponded to a ca 45 to 65% decrease in elemental ratios from highest (〉=30 µmol l-1) to lowest (ca 1 µmol l-1) CO2 concentrations. C:N at low [CO2 (aq)] was up to 24% higher than at high [CO2 (aq)]. To date, the elemental composition of marine phytoplankton has been considered to be independent of CO2 availability. If dependency of the C:N:P ratio on [CO2 (aq)] proves to be a general phenomenon in marine phytoplankton, changes in the elemental composition may be expected in response to the currently observed increase in partial pressure of atmospheric CO2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 116 . pp. 137-151.
    Publication Date: 2016-06-15
    Description: This experimental study investigated the vertical migratory response of benthic forammifera in sediments that were initially oxygenated, to variations in dissolved-oxygen concentrations ranging from well-oxygenated to dysaerobic conditions. Two box cores, with a carpet of polychaete tubes extending above the sediment-seawater interface, were recovered from 71 m water depth in Oslofjord, southern Norway. The seawater oxygen concentration of one box core was decreased every 4 wk, to a minimum value of 〈0.2 ml 0; 1'. Aerated seawater circulation was maintained in the other (control) box core. In a time course, 2 subcores were taken from each mesocosm every 4 wk and sectioned in 0 5 cm mtervals to depths of 2.0 cm, and 1.0 cm intervals from 2.0 to 4.0 cm. The portion of the polychaete tubes extending into the overlymg water was collected and treated as an additional sample. Live foramimferal distributions were examined in the 〉 63 pm fraction of each interval shallower than 2 cm using both an ATP assay and a rose Bengal staining method, while only rose Bengal was used to assess distributions from 2 to 4 cm. Results indicate that larger numbers of live and stained forammifera are found on the polychaete tubes and in the superficial 0.5 cm of sediment after exposure to dysaerobic conditions compared to original and control abundances. After re-oxygenation for 4 mo, the foraminifera re-migrated into the sediments, exhibiting distributions similar to those of the control mesocosm. These observations suggest that some species actively migrate to a microenvironment with a particular oxygen concentration, rather than maintaining a stable position with respect to the sediment-water interface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 188 . pp. 305-309.
    Publication Date: 2018-05-08
    Description: Seabirds, like all marine endotherms, have to compensate for the extensive cooling effect of water when diving. Alone among them, cormorants (Phalacrocoracidae) have a wettable plumage and are predicted to require disproportionately large amounts of food to balance heat losses. These piscivorous birds are thus thought to have a detrimental impact on fish stocks. However, we show here that even in great cormorants from Greenland, which dive in water at 3 to 7°C, daily food intake is lower than for well-insulated European seabirds. Despite their wettable plumage, cormorants thus appear to manage their energy budgets in a remarkably efficient way. Nevertheless, the specific foraging strategies which enable this performance make cormorants dependent on high prey density areas, a feature that should be taken into account by future management plans.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 178 . pp. 169-177.
    Publication Date: 2018-05-08
    Description: In Eckernförde Bay (western Baltic Sea) pockmark structures are induced by groundwater seeping out of the sediment. On 3 occasions in winter and spring 1993-94 we investigated the influence of groundwater on the reduction of salinity, on porewater chemistry, and on bacterial activities (methane oxidation and sulphate reduction). In 2 out of 3 sampling campaigns groundwater discharge could be detected. The concentration gradients of Cl- and SO4= are moved towards the sediment surface by the vertical advection of groundwater during seep times. Without groundwater discharge the porewater chemistry resembled the control site. Compared to the control site, the methane oxidation and sulphate reduction rates were elevated at the pockmark site, reaching maximum values of 49 and 269 µmol l-1 d-1 respectively. The groundwater venting from the pockmark had an end member composition of 80 mM Na+, 1.0 mM Ca++ and was depleted in Mg++. Due to mixing of these major cations along the groundwater/seawater interface, no CaCO3 precipitation was found around the pockmark site.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 182 . pp. 69-76.
    Publication Date: 2018-05-08
    Description: Sinking velocities of more than 300 Nitzschia closterium aggregates were determined during roller table incubation using digital image analysis. To examine the influence of transparent exopolymer particles (TEP) on aggregate settling speed, 3 experiments with different ratios of TEP to cell volume concentration were conducted. The results showed that, for N. closterium aggregates without TEP, sinking velocity (U) was significantly related to the equivalent spherical diameter (ESD) of the aggregates, yielding U (cm s-1) = 1.89 (ESD, cm)0.55. The higher was the specific TEP content of an aggregate, the lower was the sinking velocity and the less pronounced was the size versus velocity relationship. Excess densities (Δρ) of aggregates were derived from velocity measurements and 3-dimensional fractal dimensions (D3) of aggregates were calculated from scaling properties of Δρ. Values for D3 never exceeded 2 and fit well to values of the 2-dimensional fractal dimension (D2) attained from image analysis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2016-05-26
    Description: During a transition period from oxic to anoxic conditions in the bottom water, rates of sulfate reduction and methane production, methane fluxes, as well as concentration profiles of sulfate, sulfide and methane were measured in sediments at a central site of the Gotland Deep (Stn AL 93, 241 m depth), which is regarded as representative for the deepest part of this basin. During this period from 1993 to 1996 oxic conditions in the bottom water prevailed from spring 1994 until summer 1995 with oxygen concentrations decreasing progressively with time. In the sediments methane production occurred primarily in layers below 1 m depth and flux rates of methane to the sediment surface were characterized by a steep concentration gradient from approx. 5 mM at 4 m depth to values close to 30 μM at the surface, determined by diffusion processes and anaerobic oxidation of methane. Both processes were independent of changes at the sediment surface. Differences in the flux rates of methane between the deeper part with a mean value of 259 μmol m-2 d-1 and the upper layers with a mean of 47.7 μmol m-2 d-1 indicate that a considerable proportion of the methane is oxidized within the anoxic horizon of the sediment (71 to 86% in the layer from 40 to 70 cm). Low rates of methane production found within the top 20 cm of the sediment during periods of oxic bottom water increased after depletion of oxygen and resulted in a clear maximum of the methane concentration in the top 2 cm. Sulfate concentrations declined exponentially from values of 11.5 mM in June 1994 and 8.5 mM in October 1995 at the sediment surface to values of 2.5 mM at 20 cm depth and of less than 0.5 mM at 50 to 60 cm depth. High sulfate reduction rates (150 to 250 nmol cm-3 d-1) in the upper part of the sediment (8 to 13 cm) coincided with maxima of sulfide concentrations. During the time period of this investigation an increase of maximum sulfide concentrations in the sediment from 1 to 10 mM was measured together with decreasing oxygen concentrations in the deep water. At the same time sulfate reduction established a small but distinct maximum at the top layer of the sediment (0 to 2 cm). The relative importance of sulfate reduction and methanogenesis in the carbon budget of the Gotland Deep sediments is calculated on the basis of the actual measurements.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-05-08
    Description: Stable carbon isotope fractionation (ε p) of 7 marine phytoplankton species grown in different irradiance cycles was measured under nutrient-replete conditions at a high light intensity in batch cultures. Compared to experiments under continuous light, all species exhibited a significantly higher instantaneous growth rate (μi), defined as the rate of carbon fixation during the photoperiod, when cultivated at 12:12 h, 16:8 h, or 18:6 h light:dark (L/D) cycles. Isotopic fractionation by the diatoms Skeletonema costatum, Asterionella glacialis, Thalassiosira punctigera, and Coscinodiscus wailesii (Group I) was 4 to 6o/oo lower in a 16:8 h L/D cycle than under continuous light, which we attribute to differences in μi. In contrast, ε p in Phaeodactylum tricornutum, Thalassiosira weissflogii, and in the dinoflagellate Scrippsiella trochoidea (Group II) was largely insensitive to daylength-related differences in instantaneous growth rate. Since other studies have reported growth-rate dependent fractionation under N-limited conditions in P. tricornutum, μi-related effects on fractionation apparently depend on the factor controlling growth rate. We suggest that a general relationship between εi and μi/[CO2,aq] may not exist. For 1 species of each group we tested the effect of variable CO2 concentration, [CO2,aq], on isotopic fractionation. A decrease in [CO2,aq] from ca 26 to 3 µmol kg-1 caused a decrease in ε p by less than 3o/oo. This indicates that variation in μi in response to changes in daylength has a similar or even greater effect on isotopic fractionation than [CO2,aq] in some of the species tested. In both groups ε p tended to be higher in smaller species at comparable growth rates. In 24 and 48 h time series the algal cells became progressively enriched in 13C during the day and the first hours of the dark period, followed by 13C depletion in the 2 h before beginning of the following light period. The daily amplitude of the algal isotopic composition (δ13C), however, was 〈=1.5o/oo, which demonstrates that diurnal variation in δ13C is relatively small.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    facet.materialart.
    Unknown
    Inter Research
    In:  Aquatic Microbial Ecology, 17 (2). pp. 207-209.
    Publication Date: 2016-05-26
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-05-08
    Description: Diverse coastal seaweed communities dominated by perennial fucoids become replaced by species-poor turfs of annual algae throughout the Baltic Sea. A large-scale field survey and factorial field experiments indicated that grazers maintain the fucoid community through selective consumption of annual algae. Interactive effects between grazers and dormant propagules of annual algae, stored in a 'marine seed bank', determine the response of this system to anthropogenic nutrient loading. Nutrients override grazer control and accelerate the loss of algal diversity in the presence but not in the absence of a propagule bank. This implies a novel role of propagule banks for community regulation and ecosystem response to marine eutrophication.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-09-23
    Description: An experimental laboratory set-up was used to study the influence of different grain size compositions and temperatures on the growth of benthic cyanobacteria and diatoms, and on the competition between these 2 groups. Monospecific cultures of 3 species of cyanobacteria (Merismopedia punctata, Microcoleus chthonoplastes, Oscillatoria limosa), and of 2 species of benthic diatoms (Phaeodactylum tricornutum and Nitzschia sp.) were used. The organisms were cultured in 100 ml flasks filled with medium and 3 different kinds of sediment: (1) Sand (fine sand, 63 to 200 µm), (2) Mud-I (mixed fine sand and mud 〈63 µm in the ratio 80:20 wt %), (3) Mud-II (mixed fine sand and mud in the ratio 50:50 wt %). Experimental temperatures were 10, 15 and 25°C. At 10°C and 15°C, both diatom species achieved the highest biomass on the sediments of the finest grain size (50 wt % 〈 63 µm) while cyanobacteria achieved low biomass levels. Coarsening of sediments at the same temperature levels revealed a gradually lower biomass of the diatoms. Particularly on sand, the diatoms never reached the same concentrations of chlorophyll a as on mud. The cyanobacteria, on the other hand, had the highest biomass on sand at 15°C. In the competition experiments the benthic diatom species Nitzschia sp. dominated all types of sediments at 10°C and 15°C. The experiments at 25°C were dominated by the filamentous cyanobacterium M. chthonoplastes. This indicates the importance of abiotic conditions for the distribution and abundance of benthic phototrophic micro-organisms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 160 . pp. 35-46.
    Publication Date: 2018-05-08
    Description: The response of epilithic microphytobenthos to in situ nutrient enrichments was studied in the Kiel Fjord, Western Baltic Sea. For this purpose an experimental setup with continuous nutrient supply was designed and installed. Experiments followed the colonization of artificial substrates and the responses of benthic algae to different concentrations and combinations of nitrogen and phosphate. They revealed nitrogen limitation of epilithic microflora from late spring to autumn, such that there was higher biovolume with increasing nitrogen concentrations. Diatoms became dominant in all experiments except one in which the rhodophyte Ceramium strictum prevailed. Species composition was altered by nutrient treatments; one to several species were highly favoured by nutrient enrichment. Consequently, diversity was negatively correlated with final yield. These findings support the hypothesis that competition is an important factor structuring microphytobenthic communities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 140 . pp. 161-167.
    Publication Date: 2018-05-08
    Description: Nutrient competition experiments were performed with periphytic microalgae from the Kiel Fjord, western Baltic Sea. Diatoms were dominant competitors at high Si:N ratios (under N-limited conditions) and high Si:P ratios (under P-limited conditions). Under low silicate supply, cyanobacteria became dominant at low N:P ratios and chlorophytes at high ones. Changes in light intensity influenced the outcome of competition at the species level but not at the level of higher taxa. The nitrogen source (ammonium or nitrate) had no impact on the outcome of competition.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 190 . pp. 125-132.
    Publication Date: 2018-05-08
    Description: The multivariate patterns resulting from analyses of macrobenthic abundance data at different taxonomic levels are compared to the pattern derived from various measurements obtained through sediment profiling imagery (SPI). A time-series data set from 1 station in Kiel Bay (Western Baltic) at 22 m depth including macrobenthic and SPI replicates covering 8 yr (1989 to 1996) was analyzed by means of multidimensional scaling (MDS) ordination. The macrobenthos data showed similar patterns, and there was little information loss, with decreasing taxonomic resolution from species to phylum level. The multivariate pattern in the SPI data was not significantly correlated to any of the macrofaunal patterns. However, macrofaunal and SPI patterns seemed to be complementary since they emphasized different aspects of the long-term succession in the Southern Baltic Sea. While macrofaunal patterns were sensitive to anoxia events, changes of SPI-recorded seabed characteristics were primarily related to physical disturbances possibly due to variations in fishing intensity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2018-05-08
    Description: Cod larvae from laboratory rearing experiments aged from 1 to 12 d after hatching, both fed and deprived of food, were analysed. The number of increments on the otolith and the width of these increments were determined together with the RNA/DNA ratios on the same individual larva. Alizarin marking of the otoliths was performed to confirm the formation of daily increments. Cod larvae reared at 6*C formed the first ring right after hatching and deposited increments on a daily basis. A comparison of the measurements between the right and the left lapillus showed that these can differ, if the radius is taken. The lapillae core showed especially high individual variability, whereas the sum of the increments did not differ between both lapilli. Until Day 10 after hatching, while the larvae were still feeding on their yolk, the external food situation did not affect the increment width of the lapilli or the RNA/DNA ratios. In larvae older than 10 d the width of the daily increments was dependent on the nutritional situation and RNA/DNA ratios decreased in starving larvae in comparison to feeding larvae. RNA/DNA ratios and increment widths were correlated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-05-08
    Description: Mixed cultures of 4 polar diatoms regularly found in Antarctic pack ice were grown over 20 d in closed bottles at high light (200 to 250 umol photons m-2 s-1) and at 0*C in order to investigate growth physiology and biomass production under conditions simulating the sea ice habitat during summer. Species tested were: Chaetoceros cf. neogracile, Fragilariopsiscylindrus, Thalassiosiraantarctica and Porosira pseudodenticulata. Initially, all species grew exponentially, but exponential growth ceased for P. pseudodenticulata and T.antarctica after 6 d, for F.cylindrus after 8 d, and for C. cf. neogracile after 10 d. Slight increases in cell number were observed for all species 2 d later. Peak biomass amounted to 140 ug chl a (850 umol particulate organic carbon, POC) l-1. At the same time, concentrations of dissolved inorganic carbon (DIC) were reduced by 1000 uM, oxygen concentrations increased to 1400 uM, and pH increased to 10.5. At this stage, a substantial decline in plasma-containing cells was recorded for F.cylindrus. C. cf. neogracile accounted for 80%, and C. cf. neogracile and F.cylindrus accounted for 〉95% of total carbon biomass. The carbon isotope composition of POC (expressed as delta13C) increased from -24 to -9 during the experiment. Model calculations showed that diffusive uptake of dissolved CO2 satisfied cellular carbon demand for all species except P. pseudodenticulata at CO2(aq) concentrations 〉0.5 uM, whereas direct HCO3- utilization was observed for C. cf. neogracile below this concentration. Our data confirm that intense photosynthetic carbon assimilation may lead to profound chemical changes in isolated interstitial brine solutions, with significant consequences for sea ice biota. We propose that the capacity to efficiently utilize ambient DIC, possibly mediated by virtue of favorable surface to volume ratios as well as active pathways of inorganic carbon acquisition, favors growth of small diatoms, and may be an important factor driving ice algal species succession during summer blooms. Since only 2 species continued to grow in fresh medium following experimental incubation (C. cf. neogracile and P. pseudodenticulata), differential tolerance to chemical variations may influence the seeding potential of ice algae following release into the open water.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 183 . pp. 263-273.
    Publication Date: 2018-05-08
    Description: Diving seabirds should evolve a variety of foraging characteristics which enable them to minimize energy expenditure and to maximize net energy gain while searching for prey underwater. In order to assess the related ecological adaptations in a marine predator, we studied the at-sea distribution and the diving behaviour of 23 cormorants Phalacrocorax carbo (Linnaeus) breeding at the Chausey Islands (France) using VHF-telemetry and data loggers recording hydrostatic pressure. Birds foraged within an area of approximately 1131 km2 situated north-east of the breeding colony. This zone represents only 25% of the maximal potentially available area that the birds may utilize considering their maximum foraging range of 35 km. Individual birds remained within restricted individual foraging areas (on average 18 and 10% of the total utilized area in 1994 and 1995, respectively) throughout the study period. Moreover, the cormorants studied conducted an average of 42 dives per foraging trip, lasting for an average of 40 s (maximum 152 s), and reached an average maximum dive depth of 6.1 m (maximum 32 m) with median descent and ascent angles calculated to be 18.7° and 20.3°, respectively. Overall, 64% of all dives were U-shaped dives and 36% V-shaped dives. We use these results to demonstrate how both specialization and opportunism may support the remarkably high foraging efficiency of this marine predator.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 151 . pp. 291-293.
    Publication Date: 2016-07-04
    Description: Snails Littorina littorea with and without artificial epibionts were exposed in situ for nearly 1 mo. Measurement of individual shell length increase over this period revealed that clean snails grew 3 times faster than fouled snails. These results compare well with previously conducted flume experiments (Wahl 1996). This epibiosis effect is thought to be due to increased drag-the only feature distinguishing the 2 treatment groups-caused by the presence of epibionts on the shell. Increased drag probably entails higher energy expenditure for pedal activities (attachment and locomotion) and a reduced allocation of resources towards growth and, possibly, reproduction
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 138 . pp. 157-168.
    Publication Date: 2019-02-05
    Description: Epibiosis is one of the closest interspecies associations. The presence of epibionts potentially causes a multitude of beneficial or detrimental effects for the basibiont. It has been shown previously that large epibionts may increase the risk of dislodgement of bivalves. In this study, sublethal effects of epibiont-induced drag increase are investigated. I assessed (1) the effects of common epibiont species (Balanus improvisus, Enteromorpha intestinalis, Ectocarpus sp.) on drag properties of the host (the periwinkle Littorina littorea), and (2) the long-term consequences of drag increase on growth rates of snails living in steady flow. All epibiont species increase drag on the host snail. They do so to unequal extents. This may be due to morphological and hydrodynamic differences among the epibionts. Thus, per unit volume of epibiont, the filamentous alga Ectocarpus sp, has a substantially stronger effect than the barnacles. Synergistic effects on drag increase can be observed in a mixed aufwuchs community. As compared to clean conspecifics, snails bearing artificial epibionts grow 35% more slowly when exposed to moderate, steady flow (8 cm s(-1)) for 5 mo. This difference in growth rates is enhanced when food is limited. I hypothesize that fouled snails coping with higher drag invest more energy into foot activities (muscles and mucus). As a consequence, when food is limited, growth rates decrease in fouled snails.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 131 . pp. 263-273.
    Publication Date: 2013-07-17
    Description: The dynamics of methane production and oxidation in the sediments of Kiel Harbour (Baltic Sea) were studied over a period of 2 yr. Experimentally determined rates of methanogenesis varied between 13 and 82 mu mol CH4 m(-2) h(-1) integrated over the top 30 cm of sediment. The zone of maximum production was between 20 and 30 cm depth. High potential rates could be induced in sulfate-containing surface layers by the addition of molybdate, acetate or methanol, indicating competition with sulfate-reducing bacteria. The methane content in the sediment pore water increased from the surface to a seasonally varying depth of between 5 and 20 cm, where sulfate concentrations approached zero and methane concentrations of 3 to 4 mM were recorded. Aerobic methane oxidation rates in the surface sediment layer were in most cases higher than the methane flux expected to reach the sediment surface. Oxygen-depleted or anoxic conditions in the deep water, which frequently occurred during stratification periods in summer, resulted in methane gradients with increasing concentrations from the chemocline to the sediment. After recirculation of the water column in autumn in both years, unexpectedly high methane concentrations were also measured in the oxic water column of Kiel Harbour. This coincided with very reduced conditions in the surface sediment that allowed measurable methane production in the 0 to 10 cm layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-04-16
    Description: It has often been suggested that, given their large food requirements, sperm whale Physeter macrocephalus distributions should reflect the distribution of productive ocean environments, and it seems therefore that chlorophyll concentration might be a good indicator of sperm whale distribution. To examine the existence of such a relationship, and to determine over which sclaes it occurs, sperm whale density was correlated with phytoplankton pigment concentration over a range of spatial and temporal scales. Sperm whale distribution was detrmined using records of kills from 19th century Yankee whaling, and the distribution of pigment concentration from satellite colour observations averaged over 8yr interval. These measures were compared over scales of 220km square to 1780km square. The distribution of sperm whales in the temperature and tropical Pacific Ocean was associated with distributions of phytoplankton pigment over every spatial scale considered, and the coefficient of correlation increased with increasing spatial scale. However, a few exceptions to this scheme were found, implying that other factors would be of importance in some regions. This study confirmed the existence of space lag and a time lag between a peak in chlorophyll concentration and a peak in sperm whale density. It also demonstrated that over large spatial scales, and when the data are averaged over large temporal scales, chlorophyll concentration is a good indicator of sperm whale distribution and that over these scales ocean colour recorded from space could help predict areas of high or low sperm whale density.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-04-14
    Description: Stomach contents from 30 long-finned pilot whales Globicephala melas captured incidentally in the Distant Water Fleet (DWF) mackerel fishery off the northeastern United States were examined. Several methods of assessing prey importance were used in order to construct a true representation of the pilot whale diet. Separate analyses of trace (free, durable body parts from well-digested prey) and non-trace (relatively intact prey) food materials were conducted to address biases caused by differential rates of digestion and passage. Squids dominated the diet and long-finned squid Loligo pealei was the most important prey, but we noted large yearly fluctuations in prey importance. Metric multidimensional scaling analyses of trace and non-trace stomach contents of individual whales suggest that many animals were cuaght while feeding opportunistically near fishing operations, resulting in a bias of non-trace (intact) stomach contents. The diversity of prey in this study was greater than previous reports of the food habits of western North Atlantic non-finned pilot whales.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 156 . pp. 205-223.
    Publication Date: 2021-02-19
    Description: We investigated the foraging location, diving behaviour, dietary composition, feeding rates and foraging trip durations of emperor penguins Aptenodytes forsteri raising chicks at the Auster and Taylor Glacier colonies on the Mawson Coast of Antarctica in the winter, spring and early summer of 1993, to examine seasonal changes in the penguins' foraging ecology. As day-length increased after winter, the penguins' daily swimming time increased from 7.83 ± 1.50 h in August to 12.23 ± 1.25 h in September and 12.95 ± 1.24 h in October. Accordingly, the penguins' dive rate increased from 92.7 ± 28.5 to 149.4 ± 23.4 and 161.6 ± 19.3 dives d-1 in the respective months. The birds targeted prey in the vicinity of the continental slope mainly at depths 〈100 m, although some individuals frequently hunted at depths 〉200 m, and the maximum depth achieved was 438 m. Antarctic krill Euphausia superba were the most common prey taken overall, 41% of the diet by mass, and dominated the diets between August and October. The contribution of Antarctic krill to the diet reduced over time from 68% in August to 1% in early December. In November, the glacier squid Psychroteuthis glacialis dominated the diet (47 to 63%), and in early December the diet comprised various species of fish, Trematomus species (27%), Pagothenia borchgrevinki (24%), and Pleuragramma antarcticum (8%), and squid, P. glacialis (13%) and Alluroteuthis antarcticus (9%). The birds' prey consumption rates more than doubled between late winter and early summer, from 4.0 ± 1.0 to 8.7 ± 1.7 kg d-1 spent foraging; these values are equivalent to metabolisable energy intakes of 628 ± 134 and 1422 ± 308 kJ kg-1 d-1, respectively. During brooding (late winter to early spring), females spent less time at sea than males (8.7 ± 2.7 vs 17.7 ± 3.8 d); thereafter trip durations of both sexes were similar and declined from 15-19 d in spring to 〈10 d in early summer. Between hatching and about 1 wk prior to fledging each parent fed its chick 7 or 8 times. To raise a chick, females and males consumed approximately 410 and 470 kg of prey respectively, or 880 kg for each breeding pair. Seasonal variations in the penguins' foraging were probably influenced by fluctuating sea-ice conditions, differences in the prey types available, changes in day-length toward summer, and increasing demands of the growing chicks.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 188 . pp. 93-104.
    Publication Date: 2021-06-17
    Description: Cephalopods play an important role in the trophic web of the Southern Ocean, but little information is available on their biology. The 2 largest sub-Antarctic seabirds, the king penguin Aptenodytes patagonicus and the wandering albatross Diomedea exulans, feed primarily on squids during the austral winter at the Crozet Islands. We examined a large number of accumulated cephalopod beaks in the stomach of these birds together with some undigested items; first, to understand how these 2 predators share the squid resource during winter, a period of supposed low food availability, and, second, to use a diving and a flying seabird as biological samplers of Southern Ocean cephalopods. Individuals of the family Onychoteuthidae formed the bulk of the squid diet, accounting for 72.6 and 57.0% of the number of lower beaks in samples from king penguins and wandering albatrosses, respectively. Seven different species were identified, the 3 main squids being Kondakovia longimana (38.8 and 28.0% by number for penguins and albatrosses, respectively), Moroteuthis ingens (13.5 and 26.2%) and M. knipovitchi (20.1 and 2.3%). Both seabirds preyed upon the same cephalopod species, but penguins primarily took small- to medium-sized juveniles (99.0% of the onychoteuthids) and albatrosses preyed on larger adult specimens (96.0%). Fresh remains indicated that adult K. longimana and M. ingens were mature individuals which, as shown by satellite tracking of albatrosses, were taken over the slope and nearby oceanic waters surrounding the archipelago. The present study indicates that mating/spawning of K. longimana and M. ingens occurs in Crozet waters during the winter months. It also extends the biogeography of K. longimana to north of the Antarctic Polar Front, in the Polar Frontal Zone, where it has not previously been recorded.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-06-17
    Description: The marine habitat exploited by black-browed Diomedea melanophrys and grey-headed albatrosses D. chrysostoma breeding at Campbell Island, New Zealand, was studied using satellite telemetry. Data were analysed in relation to the bathymetry and sea-surface temperature of the foraging zones. Black-browed albatrosses spent 55% of their time on the Campbell Plateau but also carried out long foraging trips to the Polar Front and Antarctic Zone at a distance of over 2000 km. They relied heavily on juvenile Micromesistius australis, a schooling fish, during foraging trips to the shelf but over oceanic waters the squid Martialia hyadesi was the main prey taken. Grey-headed albatrosses spent 71% of their time foraging over the deep waters of the Polar Frontal Zone where M. hyadesi comprised over 90% of the mass of prey taken. No satellite-tracked birds fed over the shelf, but data from the duration of foraging trips and dietary analysis suggests that shelf-feeding is important for this species. Significant inter-species differences in the time spent in neritic and oceanic zones show that black-browed albatrosses are reliant primarily on shelf resources while grey-headed albatrosses are primarily oceanic feeders. In addition, the 2 species overlapped little in the zones used over oceanic waters, with black-browed albatrosses feeding in more southerly waters than grey-headed albatrosses. However, both species feed on M. hyadesi when foraging in association with the Polar Front.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-06-23
    Description: The fishery for Illex argentinus in the Southwest Atlantic is subject to large inter-annual variability in recruitment strength. In this paper we attempt to build a predictive model using sea surface temperature (SST) to examine links between recruitment to the Falkland Islands fishery and environmental variability during the juvenile and adult life history stages. SST data from the National Center for Atmospheric Research (NCAR) were found to be comparable with near-surface data derived from in situ expendable bathy-thermograph (XBT) profiles in the southern Patagonian shelf. Variation in SST during the early life stages appears to be important in determining recruitment of I. argentinus. SST in the hatching grounds of the northern Patagonian shelf during the period of hatching (particularly June and July) was negatively correlated with catches in the fishery in the following season. SST anomaly data from positions in the Pacific and Southwest Atlantic were used to examine teleconnections between these areas. Links were seen at a lag of 2 yr between the Pacific and southern Patagonian shelf, and at about 5 yr between the Pacific and northern Patagonian shelf. This is consistent with SST anomalies associated with El Niño in the Pacific propagating around the globe via the Antarctic Circumpolar Wave (ACW). Predicting cold events via teleconnections between SST anomalies in the Pacific and Atlantic would appear to have the potential to predict the recruitment strength of I. argentinus in the Southwest Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2020-11-09
    Description: A survey of parasites in 600 short-finned squid Illex coindetii (Vérany, 1839) taken from 2 locations (north and south Galicia) off the northwesterb Iberian Peninsula revealed the presence of numerous somatoxenous helminths. Three genera of Tetraphyllidean plerocercoids were represented (prevalences: Phyllobothrium sp., 45,7%; Dinobothrium sp., 0.8%; and Pelichnibothrium speciosum, 0.001%); 1 Trypanorhynchidean metacestode was also present (Nybelinia yamagutii, 0.4%). In addition, larval nematodes of Anisakis simplex (L3) were recorded (10.6%). Abundance of infection was examined in relation to squid sex, standard length, maturity and locality. This analysis indicated that parasite infection was lower in the southern squids than in the northern squid group. Over the entire survey area, parasite infection showed a positive correlation with host life.cycle, often with the greatest number of parasites among the largest and highest maturity individuals (〉18 to 20cm; maturity stage V).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-06-24
    Description: Levels of genetic diversity and population differentiation were examined in temporally (1990 to 1997) and geographically separated samples of the argentine short-finned squid Illex argentinus using 7 microsatellite loci. Number of alleles (mean number of alleles per locus over all samples = 24.1) and heterozygosity (mean observed heterozygosity per sample = 0.84) were high for all samples, indicating that these loci have a greater potential utility for investigating population genetic structure than allozyme markers used in previous studies. Genetic diversity did not differ significantly between samples taken 5 yr after commencement of the fishery (1990) and those collected during a period of progressively intense fishing pressure (1994 and 1997). Several small but significant differences in between-sample genetic variation (FST) were observed, but these could not confirm the previous suggestion of cryptic species or several well-defined stocks within the fished population.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 187 . pp. 59-66.
    Publication Date: 2019-08-29
    Description: Epibiosis is a spatially close association between 2 or more organisms belonging to the same or different species. Through direct and indirect interactions, this association has major effects on the species involved and on community dynamics. When the effects are predominantly beneficial for epibiont and basibiont, coevolution can be expected to lead to associational specificity. Circumstantial evidence, however, suggests that many epibionts are non-specific substratum-generalists. In this arti-cle, we investigate the commonness of specificity in epibiotic associations. In a first approach, we inves-tigated the in situ recruitment preferences of potential epibionts when choosing between artificial and living substrata. After exposure for 3 wk in early summer, an early successional community had estab-lished, comprising cyanobacteria, diatoms, sesslle colonial ciliates and red algae. All species recruited on almost all substrata available. However, artificial substrata were usually preferred over living sur-faces. Consequently, the species studied are class~fied as facultative epibionts. An analysis of a list of over 2000 epibiotic associations corroborated these results, the majority of described 'epibionts' are not basibiont-specific and generally occur on non-living substrata as well. Also, basibiont species usually bear more than 1 epibiont species. Relative to each other, epibionts and basibionts are characterised by a typical set of life history traits. We conclude that specific and obligate epibionts are rare. Their scarcity is discussed in view of multilevel antifouling defences and presumptive evolutionary transi-tions from epibiosis towards endoparasitism or endosymbiosis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 185 . pp. 101-112.
    Publication Date: 2018-05-08
    Description: Diving reptiles, unlike most diving birds and mammals, return infrequently to the surface to breathe. Spending the bulk of their lives underwater, they are likely to have developed a large variety of specific behavioural patterns different from those of their warm-blooded counterparts. However, for technical reasons, underwater behaviour of these aquatic reptiles remains poorly understood. In this study green turtles Chelonia mydas nesting on Cyprus (Eastern Mediterranean) were equipped with multi-channel data loggers monitoring diving behaviour and activity (via a logger-integrated 3-D compass which served as an activity sensor) during the inter-nesting interval. Data from 2 turtles for 2 consecutive inter-nesting intervals were available for detailed dive analysis. Both turtles showed highly variable dive patterns ranging from travelling subsurface dives to specific dive types such as U- (mainly resting and foraging dives), S- (a form of energy saving swimming) and V-dives. The green turtles stayed near the coast throughout the study, dived no deeper than ca 25 m, but remained underwater for up to ca 40 min. The recordings of the activity sensor revealed high activity levels (less than 20% resting d-1) during the whole inter-nesting period which was attributed to extensive foraging. The combination of both the activity data and the dive data showed that the turtles were engaged in travelling movements for 46% of the inter-nesting time spent underwater, foraged for 34% and rested for 12% of the time. We discuss the physiological, ecological and conservation implications of these results.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2018-05-08
    Description: Serial dilution experiments were conducted on JGOFS-North Atlantic cruise of RV 'Meteor' M36/2 at a 20° W transect in June and July 1996 to assess the role of microzooplankton grazing and nitrogen supply in controlling phytoplankton stocks in the subtropical and temperate northeast Atlantic. Rates of microzooplankton grazing ranged from 0.08 d-1 at 54° N to 0.53 d-1 at 40° N and mean growth rates of phytoplankton ranged from 0.19 d-1 at 54° N to 0.75 d-1 at 40° N. Both rates were positively related to seawater temperature, whereas the apparent growth yield of phytoplankton declined with increasing temperature from 0.19 µg chl a dm-3 d-1 at 54° N to 0.01 µg chl a dm-3 d-1 at 33° N. Complete nitrogen saturation of phytoplankton growth indicated light or non-nitrogenous limitation at the nitracline at 47° N and in the deep chlorophyll maximum at 33° N, whereas in the mixed layer at 47° N and 54° N the ambient nitrogen supply was sub-saturated and yielded 63 and 39% of nitrogen- saturated growth. Nitrogen supply of phytoplankton growth was dominated by external and cellular sources in nitrate-rich waters of the mixed layer at 54° N and at the nitracline at 47° N, whereas nitrogen regeneration dominated at the nitrate-depleted surface waters at 47° N. However, in the deep chlorophyll maxima at 33° N and 40° N phytoplankton growth was primarily maintained by nitrogen regeneration, although external nitrogen was sufficiently available. The recycling efficiency of the microbial community was defined as the ratio of regenerated growth yield to herbivorous grazing loss. Efficiencies of ~100% under post-bloom situations indicated tight coupling of predation, nitrogen supply and phytoplankton growth. We suggest that microzooplankton grazing has a high potential for nitrogen supply and biomass control of phytoplankton communities during summer in the temperate and subtropical northeast Atlantic.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2018-05-08
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Inter Research
    In:  Marine Ecology Progress Series, 145 . pp. 303-304.
    Publication Date: 2016-11-23
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2020-11-09
    Description: Predator data and exploratory fishing in the Scotia Sea have revealed the presence of cephalopod stocks in the Antarctic Polar Frontal Zone (PFZ). This is a vast, remote region where large epipelagic cephalopods aggregate into highly mobile schools making them difficult to locate and sample. We used satellite tagged predators and shipboard acoustics for coarse and fine scale location of cephalopods concentrations, and sampled them with commercial and scientific nets to determine the relationship between cephalopod distribution and mesoscale oceanographic features at the PFZ. Saltellite tags were attached to 9 grey-headed albatrosses Diomedea chrysostoma, breeding at Bird Island, South Georgia, to monitor foraging at sea in January-March 1994. A foraging area at the PFZ, north of South Georgia, was located, an acoustic survey undertaken and a fixed situation established where gular midwater trawl 25m² (RTM25), a horizontal multiple plankton sampler and a neuston net. Acoustic layers were targeted and the RMT25 sampled 200m layers to 1000m in daylight and darkness. Cephalopods were simultaneously recovered from food samples fed to D. chrysostoma chicks at Bird Island. Two CTD transects, approximately normal to the major current flow, were undertaken across the PFZ and remote-sensed-sea-surface temperature images from NOAA polar orbiting satellites that exploited by D. chrysostoma. The largest and most conspicious species was the ommastrphid squid Martialia hyadesi which is the most important cephalopod prey species. Net-sampled M. hyadesi had been feeding on crustaceans and mesopelagic fish. The cephalopod community was sampled in a feature, interpreted as a warm core ring, in an area characterised by mesoscale features associated with the bathymetry of the northern end of the Northeast Georgia Rise and near a gap in the Falkland Ridge. The association of these mesoscale features with the bathymetry suggests that they may be predictable foraging locations for the cephalopods and their predators.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2023-01-04
    Description: Glacial isostatic adjustment is largely governed by the rheological properties of the Earth's mantle. Large mass redistributions in the ocean–cryosphere system and the subsequent response of the viscoelastic Earth have led to dramatic sea level changes in the past. This process is ongoing, and in order to understand and predict current and future sea level changes, the knowledge of mantle properties such as viscosity is essential. In this study, we present a method to obtain estimates of mantle viscosities by the assimilation of relative sea level rates of change into a viscoelastic model of the lithosphere and mantle. We set up a particle filter with probabilistic resampling. In an identical twin experiment, we show that mantle viscosities can be recovered in a glacial isostatic adjustment model of a simple three-layer Earth structure consisting of an elastic lithosphere and two mantle layers of different viscosity. We investigate the ensemble behaviour on different parameters in the following three set-ups: (1) global observations data set since last glacial maximum with different ensemble initialisations and observation uncertainties, (2) regional observations from Fennoscandia or Laurentide/Greenland only, and (3) limiting the observation period to 10 ka until the present. We show that the recovery is successful in all cases if the target parameter values are properly sampled by the initial ensemble probability distribution. This even includes cases in which the target viscosity values are located far in the tail of the initial ensemble probability distribution. Experiments show that the method is successful if enough near-field observations are available. This makes it work best for a period after substantial deglaciation until the present when the number of sea level indicators is relatively high.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2023-01-04
    Description: Based on the numerical weather prediction model COSMO of Germany's national meteorological service (Deutscher Wetterdienst, DWD), regional reanalysis datasets have been developed with grid spacing of up to 2 km. This development started as a fundamental research activity within the Hans-Ertel-Centre for Weather Research (HErZ) at the University of Bonn and the University of Cologne. Today, COSMO reanalyses are an established product of the DWD and have been widely used in applications on European and national German level. Successful applications of COSMO reanalyses include renewable energy assessments as well as meteorological risk estimates. The COSMO reanalysis datasets are now publicly available and provide spatio-temporal consistent data of atmospheric parameters covering both near-surface conditions and vertical profiles. This article reviews the status of the COSMO reanalyses, including evaluation results and applications. In many studies, evaluation of the COSMO reanalyses point to an overall good quality and often an added value compared to different contemporary global reanalysis datasets. We further outline current plans for the further development and application of regional reanalyses in the HErZ research group Cologne/Bonn in collaboration with the DWD.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2023-01-04
    Description: The effective radiative forcing, which includes the instantaneous forcing plus adjustments from the atmosphere and surface, has emerged as the key metric of evaluating human and natural influence on the climate. We evaluate effective radiative forcing and adjustments in 17 contemporary climate models that are participating in the Coupled Model Intercomparison Project (CMIP6) and have contributed to the Radiative Forcing Model Intercomparison Project (RFMIP). Present-day (2014) global-mean anthropogenic forcing relative to pre-industrial (1850) levels from climate models stands at 2.00 (±0.23) W m−2, comprised of 1.81 (±0.09) W m−2 from CO2, 1.08 (± 0.21) W m−2 from other well-mixed greenhouse gases, −1.01 (± 0.23) W m−2 from aerosols and −0.09 (±0.13) W m−2 from land use change. Quoted uncertainties are 1 standard deviation across model best estimates, and 90 % confidence in the reported forcings, due to internal variability, is typically within 0.1 W m−2. The majority of the remaining 0.21 W m−2 is likely to be from ozone. In most cases, the largest contributors to the spread in effective radiative forcing (ERF) is from the instantaneous radiative forcing (IRF) and from cloud responses, particularly aerosol–cloud interactions to aerosol forcing. As determined in previous studies, cancellation of tropospheric and surface adjustments means that the stratospherically adjusted radiative forcing is approximately equal to ERF for greenhouse gas forcing but not for aerosols, and consequentially, not for the anthropogenic total. The spread of aerosol forcing ranges from −0.63 to −1.37 W m−2, exhibiting a less negative mean and narrower range compared to 10 CMIP5 models. The spread in 4×CO2 forcing has also narrowed in CMIP6 compared to 13 CMIP5 models. Aerosol forcing is uncorrelated with climate sensitivity. Therefore, there is no evidence to suggest that the increasing spread in climate sensitivity in CMIP6 models, particularly related to high-sensitivity models, is a consequence of a stronger negative present-day aerosol forcing and little evidence that modelling groups are systematically tuning climate sensitivity or aerosol forcing to recreate observed historical warming.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2023-01-04
    Description: We present the result of the third Marine Ice Sheet Intercomparison project, MISMIP+. MISMIP+ is intended to be a test of ice flow models which include fast sliding marine ice streams and floating ice shelves and in particular a treatment of viscous stress that is sufficient for buttressing, where upstream ice flow is restrained by a downstream ice shelf. A set of idealized experiments test the models in circumstances where buttressing contributes to a stable steady state, and where a reduction in that buttressing causes ice stream acceleration, thinning, and grounding line retreat. We find that the most important distinction between models in this particular type of simulation is in the treatment of sliding at the bed, with other distinctions – notably the difference between the simpler and more complete treatments of englacial stress, but also the differences between numerical methods – taking a secondary role.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2023-01-04
    Description: Varved lake sediments provide long climatic records with high temporal resolution and low associated age uncertainty. Robust and detailed comparison of well-dated and annually laminated sediment records is crucial for reconstructing abrupt and regionally time-transgressive changes as well as validation of spatial and temporal trajectories of past climatic changes. The VARved sediments DAtabase (VARDA) presented here is the first data compilation for varve chronologies and associated palaeoclimatic proxy records. The current version 1.0 allows detailed comparison of published varve records from 95 lakes. VARDA is freely accessible and was created to assess outputs from climate models with high-resolution terrestrial palaeoclimatic proxies. VARDA additionally provides a technical environment that enables to explore the database of varved lake sediments using a connected data-model and can generate a state-of-the-art graphic representation of multi-site comparison. This allows to reassess existing chronologies and tephra events to synchronize and compare even distant varved lake records. Furthermore, the present version of VARDA permits to explore varve thickness data. In this paper, we report in detail on the data mining and compilation strategies for the identification of varved lakes and assimilation of high-resolution chronologies as well as the technical infrastructure of the database. Additional paleoclimate proxy data will be provided in forthcoming updates. The VARDA graph-database and user interface can be accessed online at https://varve.gfz-potsdam.de, all datasets of version 1.0 are available at http://doi.org/10.5880/GFZ.4.3.2019.003 (Ramisch et al., 2019).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2023-01-04
    Description: Various observational estimates indicate growing mass loss at Antarctica's margins but also heavier precipitation across the continent. In the future, heavier precipitation fallen on Antarctica will counteract any stronger iceberg discharge and increased basal melting of floating ice shelves driven by a warming ocean. Here, we use from nine CMIP5 models future projections, ranging from strong mitigation efforts to business-as-usual, to run an ensemble of ice-sheet simulations. We test, how the precipitation boundary condition determines Antarctica's sea-level contribution. The spatial and temporal varying climate forcings drive ice-sheet simulations. Hence, our ensemble inherits all spatial and temporal climate patterns, which is in contrast to a spatial mean forcing. Regardless of the applied boundary condition and forcing, some areas will lose ice in the future, such as the glaciers from the West Antarctic Ice Sheet draining into the Amundsen Sea. In general the simulated ice-sheet thickness grows in a broad marginal strip, where incoming storms deliver topographically controlled precipitation. This strip shows the largest ice thickness differences between the applied precipitation boundary conditions too. On average Antarctica's ice mass shrinks for all future scenarios if the precipitation is scaled by the spatial temperature anomalies coming from the CMIP5 models. In this approach, we use the relative precipitation increment per degree warming as invariant scaling constant. In contrast, Antarctica gains mass in our simulations if we apply the simulated precipitation anomalies of the CMIP5 models directly. Here, the scaling factors show a distinct spatial pattern across Antarctica. Furthermore, the diagnosed mean scaling across all considered climate forcings is larger than the values deduced from ice cores. In general, the scaling is higher across the East Antarctic Ice Sheet, lower across the West Antarctic Ice Sheet, and lowest around the Siple Coast. The latter is located on the east side of the Ross Ice Shelf.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2023-01-04
    Description: A finely laminated lake sediment record with a basal age of 11,619 ± 603 years BP was retrieved from Lake Chatyr Kol (Kyrgyz Republic). Microfacies analysis reveals the presence of seasonal laminae (varves) from the sediment basis to ~ 360 ± 40 years BP. The Chatvd19 floating varve chronology covers the time span from 360 ± 40 years BP to the base and relies on replicate varve counts on overlapping petrographic thin sections with an uncertainty of ± 5 %. The uppermost non-varved interval was chronologically constrained by 210Pb and 137Cs γ-spectrometry and interpolation based on varve thickness measurements of adjacent varved intervals with an assumed uncertainty of 10 %. Six varve types were distinguished, are described in detail and show a changing predominance of clastic-organic, clastic-calcitic or -aragonitic, calcitic-clastic, organic-clastic and clastic-diatom varves throughout the Holocene. Variations in varve thickness and the number and composition of seasonal sublayers are attributed to 1) changes in the amount of summer or winter/spring precipitation affecting local runoff and erosion and/or to 2) evaporative conditions during summer. Radiocarbon dating of bulk organic matter, daphnia remains, aquatic plant remains and Ruppia maritima seeds reveal reservoir ages with a clear decreasing trend up core from ~ 6,150 years in the early Holocene, to ~ 3,000 years in the mid-Holocene, to ~ 1,000 years and less in the late Holocene and modern times. In contrast, two radiocarbon dates from terrestrial plant remains are in good agreement with the varve-based chronology.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2023-01-04
    Description: Ice flow models of the Antarctic ice sheet are commonly used to simulate its future evolution in response to different climate scenarios and inform on the mass loss that would contribute to future sea level rise. However, there is currently no consensus on estimated the future mass balance of the ice sheet, primarily because of differences in the representation of physical processes and the forcings employed. This study presents results from 18 simulations from 15 international groups focusing on the evolution of the Antarctic ice sheet during the period 2015–2100, forced with different scenarios from the Coupled Model Intercomparison Project Phase 5 (CMIP5) representative of the spread in climate model results. The contribution of the Antarctic ice sheet in response to increased warming during this period varies between −7.8 and 30.0 cm of Sea Level Equivalent (SLE). The evolution of the West Antarctic Ice Sheet varies widely among models, with an overall mass loss up to 21.0 cm SLE in response to changes in oceanic conditions. East Antarctica mass change varies between −6.5 and 16.5 cm SLE, with a significant increase in surface mass balance outweighing the increased ice discharge under most RCP 8.5 scenario forcings. The inclusion of ice shelf collapse, here assumed to be caused by large amounts of liquid water ponding at the surface of ice shelves, yields an additional mass loss of 8 mm compared to simulations without ice shelf collapse. The largest sources of uncertainty come from the ocean-induced melt rates, the calibration of these melt rates based on oceanic conditions taken outside of ice shelf cavities and the ice sheet dynamic response to these oceanic changes. Results under RCP 2.6 scenario based on two CMIP5 AOGCMs show an overall mass loss of 10 mm SLE compared to simulations done under present-day conditions, with limited mass gain in East Antarctica.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2023-01-24
    Description: Doppler wind lidars (DWLs) have increasingly been used over the last decade to derive the mean wind in the atmospheric boundary layer. DWLs allow the determination of wind vector profiles with high vertical resolution and provide an alternative to classic meteorological tower observations. They also receive signals from altitudes higher than a tower and can be set up flexibly in any power-supplied location. In this work, we address the question of whether and how wind gusts can be derived from DWL observations. The characterization of wind gusts is one central goal of the Field Experiment on Sub-Mesoscale Spatio-Temporal Variability in Lindenberg (FESSTVaL). Obtaining wind gusts from a DWL is not trivial because a monostatic DWL provides only a radial velocity per line of sight, i.e., only one component of a three-dimensional vector, and measurements in at least three linearly independent directions are required to derive the wind vector. Performing them sequentially limits the achievable time resolution, while wind gusts are short-lived phenomena. This study compares different DWL configurations in terms of their potential to derive wind gusts. For this purpose, we develop a new wind retrieval method that is applicable to different scanning configurations and various time resolutions. We test eight configurations with StreamLine DWL systems from HALO Photonics and evaluate gust peaks and mean wind over 10 min at 90 m a.g.l. against a sonic anemometer at the meteorological tower in Falkenberg, Germany. The best-performing configuration for retrieving wind gusts proves to be a fast continuous scanning mode (CSM) that completes a full observation cycle within 3.4 s. During this time interval, about 11 radial Doppler velocities are measured, which are then used to retrieve single gusts. The fast CSM configuration was successfully operated over a 3-month period in summer 2020. The CSM paired with our new retrieval technique provides gust peaks that compare well to classic sonic anemometer measurements from the meteorological tower.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2023-01-24
    Description: A challenge of an energy system that nowadays more strongly depends on wind power generation is the spatial and temporal variability in winds. Nocturnal low-level jets (NLLJs) are typical wind phenomena defined as a maximum in the vertical profile of the horizontal wind speed. A NLLJ has typical core heights of 50–500 m a.g.l. (above ground level), which is in the height range of most modern wind turbines. This study presents NLLJ analyses based on new observations from Doppler wind lidars. The aim is to characterize the temporal and spatial variability in NLLJs on the mesoscale and to quantify their impacts on wind power generation. The data were collected during the Field Experiment on Submesoscale Spatio-Temporal Variability (FESSTVaL) campaign from June to August 2020 in Lindenberg and Falkenberg (Germany), located at about 6 km from each other. Both sites have seen NLLJs in about 70 % of the nights with half of them lasting for more than 3 h. Events longer than 6 h occurred more often simultaneously at both sites than shorter events, indicating the mesoscale character of very long NLLJs. Very short NLLJs of less than 1 h occurred more often in Lindenberg than Falkenberg, indicating more local influences on the wind profile. We discussed different meteorological mechanisms for NLLJ formation and linked NLLJ occurrences to synoptic weather patterns. There were positive and negative impacts of NLLJs on wind power that we quantified based on the observational data. NLLJs increased the mean power production by up to 80 % and were responsible for about 25 % of the power potential during the campaign. However, the stronger shear in the rotor layer during NLLJs can also have negative impacts. The impacts of NLLJs on wind power production depended on the relative height between the wind turbine and the core of the NLLJ. For instance, the mean increase in the estimated power production during NLLJ events was about 30 % higher for a turbine at 135 m a.g.l. compared to one at 94 m a.g.l. Our results imply that long NLLJs have an overall stronger impact on the total power production, while short events are primarily relevant as drivers for power ramps.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2023-02-08
    Description: The reaction between ozone and iodide at the sea surface is now known to be an important part of atmospheric ozone cycling, causing ozone deposition and the release of ozone-depleting reactive iodine to the atmosphere. The importance of this reaction is reflected by its inclusion in chemical transport models (CTMs). Such models depend on accurate sea surface iodide fields, but measurements are spatially and temporally limited. Hence, the ability to predict current and future sea surface iodide fields, i.e. sea surface iodide concentration on a narrow global grid, requires the development of process-based models. These models require a thorough understanding of the key processes that control sea surface iodide. The aim of this study was to explore if there are common features of iodate-to-iodide reduction amongst diverse marine phytoplankton in order to develop models that focus on sea surface iodine and iodine release to the troposphere. In order to achieve this, rates and patterns of changes in inorganic iodine speciation were determined in 10 phytoplankton cultures grown at ambient iodate concentrations. Where possible these data were analysed alongside results from previous studies. Iodate loss and some iodide production were observed in all cultures studied, confirming that this is a widespread feature amongst marine phytoplankton. We found no significant difference in log-phase, cell-normalised iodide production rates between key phytoplankton groups (diatoms, prymnesiophytes including coccolithophores and phaeocystales), suggesting that a phytoplankton functional type (PFT) approach would not be appropriate for building an ocean iodine cycling model. Iodate loss was greater than iodide formation in the majority of the cultures studied, indicating the presence of an as-yet-unidentified “missing iodine” fraction. Iodide yield at the end of the experiment was significantly greater in cultures that had reached a later senescence stage. This suggests that models should incorporate a lag between peak phytoplankton biomass and maximum iodide production and that cell mortality terms in biogeochemical models could be used to parameterise iodide production.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2023-02-08
    Description: Nitric oxide (NO) is a short-lived intermediate of the oceanic nitrogen cycle. However, our knowledge about its production and consumption pathways in oceanic environments is rudimentary. In order to decipher the major factors affecting NO photochemical production, we irradiated several artificial seawater samples as well as 31 natural surface seawater samples in laboratory experiments. The seawater samples were collected during a cruise to the western tropical North Pacific Ocean (WTNP, a N-S section from 36 to 2 degrees N along 146 to 143 degrees E with 6 and 12 stations, respectively, and a W-E section from 137 to 161 degrees E along the Equator with 13 stations) from November 2015 to January 2016. NO photoproduction rates from dissolved nitrite in artificial seawater showed increasing trends with decreasing pH, increasing temperature, and increasing salinity. In contrast, NO photoproduction rates (average: 0.5 +/- 0.2 x 10(-12) mol L-1 s(-1)) in the natural seawater samples from the WTNP did not show any correlations with pH, water temperature, salinity, or dissolved inorganic nitrite concentrations. The flux induced by NO photoproduction in the WTNP (average: 13 x 10(-12) mol M-2 S-1) was significantly larger than the NO air-sea flux density (average: 1.8 x 10(-12) Mol M-2 S-1), indicating a further NO loss process in the surface layer.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2023-02-08
    Description: Variations of the solar spectral irradiance (SSI) with the 11-year sunspot cycle have been shown to have a significant impact on temperatures and the mixing ratios of atmospheric constituents in the stratosphere and mesosphere. Uncertainties in modelling the effects of SSI variations arise from uncertainties in the empirical models reconstructing the prescribed SSI data set as well as from uncertainties in the chemistry-climate model (CCM) formulation. In this study CCM simulations with the ECHAM MESSy Atmospheric Chemistry (EMAC) model and the Community Earth System Model 1 (CESM1) – Whole Atmosphere Chemistry Climate Model (WACCM) have been performed to quantify the uncertainties of the solar responses in chemistry and dynamics that are due to the usage of five different SSI data sets or the two CCMs. We apply a two-way analysis of variance (ANOVA) to separate the influence of the SSI data sets and the CCMs on the variability of the solar response in shortwave heating rates, temperature and ozone. The ANOVA identifies the SSI data set with the strongest influence on the variability of the solar signal in shortwave heating rates in the upper mesosphere and in the upper stratosphere/lower mesosphere. The strongest influence on the variability of the solar signal in ozone and temperature is identified in the upper stratosphere/lower mesosphere. The largest influence of the CCMs on variability of the solar responses can be identified in the upper mesosphere. The solar response in the lower stratosphere also depends on the CCM used, especially in the tropics and northern hemispheric subtropics and mid latitudes, where the model dynamics modulate the solar responses.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2023-02-08
    Description: Coastal areas contribute significantly to the emissions of methane (CH4) from the ocean. In order to decipher its temporal variability in the whole water column, dissolved CH4 was measured on a monthly basis at the Boknis Eck Time-series Station (BE) located in the Eckernförde Bay (SW Baltic Sea) from 2006 to 2017. BE has a water depth of about 28 m and dissolved CH4 was measured at six water depths ranging from 0 to 25 m. In general CH4 concentrations increased with depth, indicating a sedimentary release of CH4. Pronounced enhancement of the CH4 concentrations in the bottom layer (15–25 m) was found during February, May–June and October. CH4 was not correlated with Chlorophyll a or O2 over the measurement period. Unusually high CH4 concentrations (of up to 696 nM) were sporadically observed in the upper layer (0–10 m) (e.g. in November 2013 and December 2014) and were coinciding with Major Baltic Inflow (MBI) events. Surface CH4 concentrations were always supersaturated throughout the monitoring period, indicating that the Eckernförde Bay is an intense but highly variable source of atmospheric CH4. We did not detect significant temporal trends in CH4 concentrations or emissions, despite of ongoing environmental changes such as warming and deoxygenation in the Eckernförde Bay. Overall, the CH4 variability at BE is driven by a complex interplay of various biological and physical processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2023-02-08
    Description: The extracellular concentration of H2O2 in surface aquatic environments is controlled by a balance between photochemical production and the microbial synthesis of catalase and peroxidase enzymes to remove H2O2 from solution. In any kind of incubation experiment, the formation rates and equilibrium concentrations of reactive oxygen species (ROSs) such as H2O2 may be sensitive to both the experiment design, particularly to the regulation of incident light, and the abundance of different microbial groups, as both cellular H2O2 production and catalase–peroxidase enzyme production rates differ between species. Whilst there are extensive measurements of photochemical H2O2 formation rates and the distribution of H2O2 in the marine environment, it is poorly constrained how different microbial groups affect extracellular H2O2 concentrations, how comparable extracellular H2O2 concentrations within large-scale incubation experiments are to those observed in the surface-mixed layer, and to what extent a mismatch with environmentally relevant concentrations of ROS in incubations could influence biological processes differently to what would be observed in nature. Here we show that both experiment design and bacterial abundance consistently exert control on extracellular H2O2 concentrations across a range of incubation experiments in diverse marine environments. During four large-scale (〉1000 L) mesocosm experiments (in Gran Canaria, the Mediterranean, Patagonia and Svalbard) most experimental factors appeared to exert only minor, or no, direct effect on H2O2 concentrations. For example, in three of four experiments where pH was manipulated to 0.4–0.5 below ambient pH, no significant change was evident in extracellular H2O2 concentrations relative to controls. An influence was sometimes inferred from zooplankton density, but not consistently between different incubation experiments, and no change in H2O2 was evident in controlled experiments using different densities of the copepod Calanus finmarchicus grazing on the diatom Skeletonema costatum (〈1 % change in [H2O2] comparing copepod densities from 1 to 10 L−1). Instead, the changes in H2O2 concentration contrasting high- and low-zooplankton incubations appeared to arise from the resulting changes in bacterial activity. The correlation between bacterial abundance and extracellular H2O2 was stronger in some incubations than others (R2 range 0.09 to 0.55), yet high bacterial densities were consistently associated with low H2O2. Nonetheless, the main control on H2O2 concentrations during incubation experiments relative to those in ambient, unenclosed waters was the regulation of incident light. In an open (lidless) mesocosm experiment in Gran Canaria, H2O2 was persistently elevated (2–6-fold) above ambient concentrations; whereas using closed high-density polyethylene mesocosms in Crete, Svalbard and Patagonia H2O2 within incubations was always reduced (median 10 %–90 %) relative to ambient waters.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2023-02-08
    Description: Cold-water corals (CWCs) constitute important deep-water ecosystems that are under increasing environmental pressure due to ocean acidification and global warming. The sensitivity of these deep-water ecosystems to environmental change is demonstrated by abundant paleorecords drilled through CWC mounds that reveal characteristic alterations between rapid formation and dormant or erosive phases. Previous studies have identified several central parameters for driving or inhibiting CWC growth such as food supply, oxygenation, and the carbon saturation state of bottom water, yet there are still large uncertainties about the relative importance of the different environmental parameters. To advance this debate we have performed a multiproxy study on a sediment core retrieved from the 25 m high Bowie Mound, located at 866 m water depth on the continental slope off southeastern Brazil, a structure built up mainly by the CWC Solenosmilia variabilis. Our results indicate a multifactorial control on CWC growth at Bowie Mound during the past ∼ 160 kyr, which reveals distinct formation pulses during northern high-latitude glacial cold events (Heinrich stadials, HSs) largely associated with anomalously strong monsoonal rainfall over the continent. The ensuing enhanced runoff elevated the terrigenous nutrient and organic-matter supply to the continental margin and likely boosted marine productivity. The dispersal of food particles towards the CWC colonies during HSs was facilitated by the highly dynamic hydraulic conditions along the continental slope that prevailed throughout glacial periods. These conditions caused the emplacement of a pronounced nepheloid layer above Bowie Mound, thereby aiding the concentration and along-slope dispersal of organic matter. Our study thus emphasizes the impact of continental climate variability on a highly vulnerable deep-marine ecosystem.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2023-02-08
    Description: Variations in the solar spectral irradiance (SSI) with the 11-year sunspot cycle have been shown to have a significant impact on temperatures and the mixing ratios of atmospheric constituents in the stratosphere and mesosphere. Uncertainties in modelling the effects of SSI variations arise from uncertainties in the empirical models reconstructing the prescribed SSI data set as well as from uncertainties in the chemistry–climate model (CCM) formulation. In this study CCM simulations with the ECHAM/MESSy Atmospheric Chemistry (EMAC) model and the Community Earth System Model 1 (CESM1)–Whole Atmosphere Chemistry Climate Model (WACCM) have been performed to quantify the uncertainties of the solar responses in chemistry and dynamics that are due to the usage of five different SSI data sets or the two CCMs. We apply a two-way analysis of variance (ANOVA) to separate the influence of the SSI data sets and the CCMs on the variability of the solar response in shortwave heating rates, temperature, and ozone. The solar response is derived from climatological differences of time slice simulations prescribing SSI for the solar maximum in 1989 and near the solar minimum in 1994. The SSI values for the solar maximum of each SSI data set are created by adding the SSI differences between November 1994 and November 1989 to a common SSI reference spectrum for near-solar-minimum conditions based on ATLAS-3 (Atmospheric Laboratory of Applications and Science-3). The ANOVA identifies the SSI data set with the strongest influence on the variability of the solar response in shortwave heating rates in the upper mesosphere and in the upper stratosphere–lower mesosphere. The strongest influence on the variability of the solar response in ozone and temperature is identified in the upper stratosphere–lower mesosphere. However, in the region of the largest ozone mixing ratio, in the stratosphere from 50 to 10 hPa, the SSI data sets do not contribute much to the variability of the solar response when the Spectral And Total Irradiance REconstructions-T (SATIRE-T) SSI data set is omitted. The largest influence of the CCMs on variability of the solar responses can be identified in the upper mesosphere. The solar response in the lower stratosphere also depends on the CCM used, especially in the tropics and northern hemispheric subtropics and mid-latitudes, where the model dynamics modulate the solar responses. Apart from the upper mesosphere, there are also regions where the largest fraction of the variability of the solar response is explained by randomness, especially for the solar response in temperature.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2023-02-08
    Description: Cape anchovy Engraulis encrasicolus is an ecologically and economically important pelagic fish species occurring along the coast of South Africa. A recent eastward shift in Cape anchovy distribution indicates that environmental conditions are becoming more favorable for the species on the east coast. This shift is particularly important in the sheltered Algoa Bay region, a nursery area for fish larvae. However, the relatively low productivity of the Agulhas Current Large Marine Ecosystem on the eastern coast of South Africa may result in an anchovy population in poorer nutritional condition and with slower growth rates than the west coast population. Using otolith and nucleic acid analyses, the growth rates of anchovy larvae from the western and southeastern coasts of South Africa were compared. The otolith analysis results indicated that, at any given age, individual growth rates for anchovy larvae were higher on the southeast coast than on the west coast. The RNA:DNA values also indicated that instantaneous growth rates of anchovy larvae were higher in Algoa Bay than on the west coast. At the time of sampling, chlorophyll and zooplankton productivity were higher at sampling sites in Algoa Bay than sites on the west coast, potentially due to favorable oceanographic features in the bay. As such, the results suggest that Algoa Bay is a suitable and potentially favorable nursery area for the early stages of anchovy, highlighting the importance of separate management of the southeast coast region in a changing world.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2023-02-08
    Description: In Kiel, in the north of Germany, marine research is rooted in a lively research community hosted mainly at Kiel University and the GEOMAR Helmholtz Centre. While the ratio of women and men is more or less balanced on all qualification levels with mainly nonpermanent junior positions, women are generally underrepresented in leading research positions. The problem of gender imbalance and inequality has been well-known for a long time. Especially in the last decade, however, manifold efforts were initiated to improve gender equality on a political and institutional level as well as within the research community itself. In our article we focus on the gender equality activities of the two large externally funded marine sciences research alliances: the Cluster of Excellence “The Future Ocean” and the Collaborative Research Centre 754 “Climate–Biogeochemistry Interactions in the Tropical Ocean”. For about a decade they offered both financial provisions and a structural framework to tackle the problem of women's underrepresentation in science and came up with innovative measures. In the following case study, we not only introduce the situation of women in marine sciences in Kiel and the structural arrangement to improve gender equality in general, but we also discuss three specific measures developed within the two collaborative research projects in detail: (i) the mentoring program via:mento_ocean for female postdocs, (ii) hiring policies integrating a gender quota for recruiting postdoctoral researchers and (iii) a code of conduct. Based on these best-practice examples we can show that progress towards gender equality has been made despite some obstacles faced when implementing the measures. This was especially the case for attracting female researchers to work in Kiel marine sciences and bringing the relevance of the topic to the surface of debates within the community. Looking at gender equality activities from a managerial point of view, we conclude from the situation in Kiel, where external funding for both research alliances ended in 2019, that even time-bound activities can initiate change. Initiatives developed by the marine sciences community were taken up by other research groups and inspired new activities at the level of the institutions
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2023-02-08
    Description: The Zero Emissions Commitment (ZEC) is the change in global mean temperature expected to occur following the cessation of net CO2 emissions and as such is a critical parameter for calculating the remaining carbon budget. The Zero Emissions Commitment Model Intercomparison Project (ZECMIP) was established to gain a better understanding of the potential magnitude and sign of ZEC, in addition to the processes that underlie this metric. A total of 18 Earth system models of both full and intermediate complexity participated in ZECMIP. All models conducted an experiment where atmospheric CO2 concentration increases exponentially until 1000 PgC has been emitted. Thereafter emissions are set to zero and models are configured to allow free evolution of atmospheric CO2 concentration. Many models conducted additional second-priority simulations with different cumulative emission totals and an alternative idealized emissions pathway with a gradual transition to zero emissions. The inter-model range of ZEC 50 years after emissions cease for the 1000 PgC experiment is −0.36 to 0.29 ∘C, with a model ensemble mean of −0.07 ∘C, median of −0.05 ∘C, and standard deviation of 0.19 ∘C. Models exhibit a wide variety of behaviours after emissions cease, with some models continuing to warm for decades to millennia and others cooling substantially. Analysis shows that both the carbon uptake by the ocean and the terrestrial biosphere are important for counteracting the warming effect from the reduction in ocean heat uptake in the decades after emissions cease. This warming effect is difficult to constrain due to high uncertainty in the efficacy of ocean heat uptake. Overall, the most likely value of ZEC on multi-decadal timescales is close to zero, consistent with previous model experiments and simple theory.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-02-08
    Description: A mesocosm approach was used to investigate the effects of ocean acidification (OA) on a natural plankton community in coastal waters off Norway by manipulating CO2 partial pressure ( pCO2). Eight enclosures were deployed in the Raunefjord near Bergen. Treatment levels were ambient (~320 µatm) and elevated pCO2 (~2000 µatm), each in 4 replicate enclosures. The experiment lasted for 53 d in May-June 2015. To assess impacts of OA on the plankton community, phytoplankton and protozooplankton biomass and total seston fatty acid content were analyzed. In both treatments, the plankton community was dominated by the dinoflagellate Ceratium longipes. In the elevated pCO2 treatment, however, biomass of this species as well as that of other dinoflagellates was strongly negatively affected. At the end of the experiment, total dinoflagellate biomass was 4-fold higher in the control group than under elevated pCO2 conditions. In a size comparison of C. longipes, cell size in the high pCO2 treatment was significantly larger. The ratio of polyunsaturated fatty acids to saturated fatty acids of seston decreased at high pCO2. In particular, the concentration of docosahexaenoic acid (C 22:6n3c), essential for development and reproduction of metazoans, was less than half at high pCO2 compared to ambient pCO2. Thus, elevated pCO2 led to a deterioration in the quality and quantity of food in a natural plankton community, with potential consequences for the transfer of matter and energy to higher trophic levels
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-02-08
    Description: The last few decades have seen dramatic changes in the hydrography and biogeochemistry of the Mediterranean Sea. The complex bathymetry and highly variable spatial and temporal scales of atmospheric forcing, convective and ventilation processes contribute to generate complex and unsteady circulation patterns and significant variability in biogeochemical systems. Part of the variability of this system can be influenced by anthropogenic contributions. Consequently, it is necessary to document details and to understand trends in place to better relate the observed processes and to possibly predict the consequences of these changes. In this context we report data from an oceanographic cruise in the Mediterranean Sea on the German research vessel Maria S. Merian (MSM72) in March 2018. The main objective of the cruise was to contribute to the understanding of long-term changes and trends in physical and biogeochemical parameters, such as the anthropogenic carbon uptake and to further assess the hydrographical situation after the major climatological shifts in the eastern and western part of the basin, known as the Eastern and Western Mediterranean Transients. During the cruise, multidisciplinary measurements were conducted on a predominantly zonal section throughout the Mediterranean Sea, contributing to the Med-SHIP and GO-SHIP long-term repeat cruise section that is conducted at regular intervals in the Mediterranean Sea to observe changes and impacts on physical and biogeochemical variables.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-02-08
    Description: Decreasing concentrations of dissolved oxygen in the ocean are considered one of the main threats to marine ecosystems as they jeopardize the growth of higher organisms. They also alter the marine nitrogen cycle, which is strongly bound to the carbon cycle and climate. While higher organisms in general start to suffer from oxygen concentrations 〈 ∼ 63 µM (hypoxia), the marine nitrogen cycle responds to oxygen concentration below a threshold of about 20 µM (microbial hypoxia), whereas anoxic processes dominate the nitrogen cycle at oxygen concentrations of 〈 ∼ 0.05 µM (functional anoxia). The Arabian Sea and the Bay of Bengal are home to approximately 21 % of the total volume of ocean waters revealing microbial hypoxia. While in the Arabian Sea this oxygen minimum zone (OMZ) is also functionally anoxic, the Bay of Bengal OMZ seems to be on the verge of becoming so. Even though there are a few isolated reports on the occurrence of anoxia prior to 1960, anoxic events have so far not been reported from the open northern Indian Ocean (i.e., other than on shelves) during the last 60 years. Maintenance of functional anoxia in the Arabian Sea OMZ with oxygen concentrations ranging between 〉 0 and ∼ 0.05 µM is highly extraordinary considering that the monsoon reverses the surface ocean circulation twice a year and turns vast areas of the Arabian Sea from an oligotrophic oceanic desert into one of the most productive regions of the oceans within a few weeks. Thus, the comparably low variability of oxygen concentration in the OMZ implies stable balances between the physical oxygen supply and the biological oxygen consumption, which includes negative feedback mechanisms such as reducing oxygen consumption at decreasing oxygen concentrations (e.g., reduced respiration). Lower biological oxygen consumption is also assumed to be responsible for a less intense OMZ in the Bay of Bengal. According to numerical model results, a decreasing physical oxygen supply via the inflow of water masses from the south intensified the Arabian Sea OMZ during the last 6000 years, whereas a reduced oxygen supply via the inflow of Persian Gulf Water from the north intensifies the OMZ today in response to global warming. The first is supported by data derived from the sedimentary records, and the latter concurs with observations of decreasing oxygen concentrations and a spreading of functional anoxia during the last decades in the Arabian Sea. In the Arabian Sea decreasing oxygen concentrations seem to have initiated a regime shift within the pelagic ecosystem structure, and this trend is also seen in benthic ecosystems. Consequences for biogeochemical cycles are as yet unknown, which, in addition to the poor representation of mesoscale features in global Earth system models, reduces the reliability of estimates of the future OMZ development in the northern Indian Ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-02-08
    Description: In the current era of rapid climate change, accurate characterization of climate-relevant gas dynamics-namely production, consumption, and net emissions-is required for all biomes, especially those ecosystems most susceptible to the impact of change. Marine environments include regions that act as net sources or sinks for numerous climateactive trace gases including methane (CH4) and nitrous oxide (N2O). The temporal and spatial distributions of CH4 and N2O are controlled by the interaction of complex biogeochemical and physical processes. To evaluate and quantify how these mechanisms affect marine CH4 and N2O cycling requires a combination of traditional scientific disciplines including oceanography, microbiology, and numerical modeling. Fundamental to these efforts is ensuring that the datasets produced by independent scientists are comparable and interoperable. Equally critical is transparent communication within the research community about the technical improvements required to increase our collective understanding of marine CH4 and N2O. A workshop sponsored by Ocean Carbon and Biogeochemistry (OCB) was organized to enhance dialogue and collaborations pertaining to marine CH4 and N2O. Here, we summarize the outcomes from the workshop to describe the challenges and opportunities for near-future CH4 and N2O research in the marine environment.
    Type: Article , PeerReviewed
    Format: text
    Format: video
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-02-08
    Description: It is widely accepted that orbital variations are responsible for the generation of glacial cycles during the late Pleistocene. However, the relative contributions of the orbital forcing compared to CO2 variations and other feedback mechanisms causing the waxing and waning of ice sheets have not been fully understood. Testing theories of ice ages beyond statistical inferences, requires numerical modeling experiments that capture key features of glacial transitions. Here, we focus on the glacial buildup from Marine Isotope Stage (MIS) 7 to 6 covering the period from 240 to 170 ka (ka: thousand years before present). This transition from interglacial to glacial conditions includes one of the fastest Pleistocene glaciation–deglaciation events, which occurred during MIS 7e–7d–7c (236–218 ka). Using a newly developed three-dimensional coupled atmosphere–ocean–vegetation–ice sheet model (LOVECLIP), we simulate the transient evolution of Northern Hemisphere and Southern Hemisphere ice sheets during the MIS 7–6 period in response to orbital and greenhouse gas forcing. For a range of model parameters, the simulations capture the evolution of global ice volume well within the range of reconstructions. Over the MIS 7–6 period, it is demonstrated that glacial inceptions are more sensitive to orbital variations, whereas terminations from deep glacial conditions need both orbital and greenhouse gas forcings to work in unison. For some parameter values, the coupled model also exhibits a critical North American ice sheet configuration, beyond which a stationary-wave–ice-sheet topography feedback can trigger an unabated and unrealistic ice sheet growth. The strong parameter sensitivity found in this study originates from the fact that delicate mass imbalances, as well as errors, are integrated during a transient simulation for thousands of years. This poses a general challenge for transient coupled climate–ice sheet modeling, with such coupled paleo-simulations providing opportunities to constrain such parameters.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-02-08
    Description: In 2015, we have collected more than 60,000 scavenging amphipod specimens during two expeditions to the Clarion-Clipperton fracture Zone (CCZ), in the Northeast (NE) Pacific and to the DISturbance and re-COLonisation (DisCOL) Experimental Area (DEA), a simulated mining impact disturbance proxy in the Peru basin, Southeast (SE) Pacific. Here, we compare biodiversity patterns of the larger specimens (〉15mm) within and between these two oceanic basins. Nine scavenging amphipod species are shared between these two areas, thus indicating connectivity. We further provide evidence that disturbance proxies seem to negatively affect scavenging amphipod biodiversity, as illustrated by a reduced alpha biodiversity in the DEA (Simpson Index (D)=0.62), when compared to the CCZ (D=0.73) and particularly of the disturbance site in the DEA and the site geographically closest to it. Community compositions of the two basins differs, as evidenced by a Non-Metric Dimensional Scaling (NMDS) analysis of beta biodiversity. The NMDS also shows a further separation of the disturbance site (D1) from its neighbouring, undisturbed reference areas (D2, D3, D4 and D5) in the DEA. A single species, Abyssorchomene gerulicorbis, dominates the DEA with 60% of all individuals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2023-02-08
    Description: The speciation of dissolved iron (DFe) in the ocean is widely assumed to consist almost exclusively of Fe(III)-ligand complexes. Yet in most aqueous environments a poorly defined fraction of DFe also exists as Fe(II), the speciation of which is uncertain. Here we deploy flow injection analysis to measure in situ Fe(II) concentrations during a series of mesocosm/microcosm/multistressor experiments in coastal environments in addition to the decay rate of this Fe(II) when moved into the dark. During five mesocosm/microcosm/multistressor experiments in Svalbard and Patagonia, where dissolved (0.2 µm) Fe and Fe(II) were quantified simultaneously, Fe(II) constituted 24 %–65 % of DFe, suggesting that Fe(II) was a large fraction of the DFe pool. When this Fe(II) was allowed to decay in the dark, the vast majority of measured oxidation rate constants were less than calculated constants derived from ambient temperature, salinity, pH, and dissolved O2. The oxidation rates of Fe(II) spikes added to Atlantic seawater more closely matched calculated rate constants. The difference between observed and theoretical decay rates in Svalbard and Patagonia was most pronounced at Fe(II) concentrations 〈2 nM, suggesting that the effect may have arisen from organic Fe(II) ligands. This apparent enhancement of Fe(II) stability under post-bloom conditions and the existence of such a high fraction of DFe as Fe(II) challenge the assumption that DFe speciation in coastal seawater is dominated by ligand bound-Fe(III) species.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2023-02-08
    Description: A strong oxygen-deficient layer is located in the upper layers of the tropical Pacific Ocean and deeper in the North Pacific. Processes related to climate change (upper-ocean warming, reduced ventilation) are expected to change ocean oxygen and nutrient inventories. In most ocean basins, a decrease in oxygen (“deoxygenation”) and an increase in nutrients have been observed in subsurface layers. Deoxygenation trends are not linear and there could be multiple influences on oxygen and nutrient trends and variability. Here oxygen and nutrient time series since 1950 in the Pacific Ocean were investigated at 50 to 300 m depth, as this layer provides critical pelagic habitat for biological communities. In addition to trends related to ocean warming the oxygen and nutrient trends show a strong influence of the Pacific Decadal Oscillation (PDO) in the tropical and the eastern Pacific, and the North Pacific Gyre Oscillation (NPGO) in particular in the North Pacific. In the Oyashio Region the PDO, the NPGO, the North Pacific Index (NPI) and an 18.6-year nodal tidal cycle overlay the long-term trend. In most eastern Pacific regions oxygen increases and nutrients decrease in the 50 to 300 m layer during the negative PDO phase, with opposite trends during the positive PDO phase. The PDO index encapsulates the major mode of sea surface temperature variability in the Pacific, and oxygen and nutrients trends throughout the basin can be described in the context of the PDO phases. El Niño and La Niña years often influence the oxygen and nutrient distribution during the event in the eastern tropical Pacific but do not have a multi-year influence on the trends.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2023-02-08
    Description: Deciphering the dynamics of dissolved oxygen in the mid-depth ocean during the last deglaciation is essential to understand the influence of climate change on modern oxygen minimum zones (OMZs). Many paleo-proxy records from the Eastern Pacific Ocean indicate an extension of oxygen depleted conditions during the deglaciation but the degree of deoxygenation has not been quantified to date. The Peruvian OMZ, one of the largest OMZs in the world, is a key area to monitor such changes in near-bottom water oxygenation in relation to changing climatic conditions. Here, we analysed the potential to use the composition of foraminiferal assemblages from the Peruvian OMZ as a quantitative redox-proxy. A multiple regression analysis was applied to a joint dataset of living (rose Bengal stained, fossilizable calcareous species) benthic foraminiferal distributions from the Peruvian continental margin. Bottom-water oxygen concentrations ([O2]BW) during sampling were used as dependant variable. The correlation was significant (R2 = 0.82; p 〈 0.05) indicating that the foraminiferal assemblages are rather governed by oxygen availability than by the deposition of particulate organic matter (R2 = 0.53; p = 0.31). We applied the regression formula to four sediment cores from the northern part of the Peruvian OMZ between 3° S and 8° S and 600 m to 1250 m water depths; thereby recording oxygenation changes at the lower boundary of the Peruvian OMZ. Each core displayed a similar trend of decreasing oxygen levels since the Last Glacial Maximum (LGM). The overall [O2]BW change from the Last Glacial Maximum and the Holocene was constrained to 30 μmol/kg at the lower boundary of the OMZ, whereas at shallower depths [O2]BW was relatively stable along the deglaciation. The deoxygenation trend was time-transgressive. It commenced at the southern core, and gradually spread to deeper waters and to the northernmost core location. This pattern indicates a gradual expansion of the OMZ during the last deglaciation, as a result of increasing surface productivity in the Eastern Equatorial Pacific and decreasing advective oxygen supply to intermediate waters off Peru.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2023-02-08
    Description: Oxygen minimum zones (OMZs) show distinct biogeochemical processes that relate to microorganisms being able to thrive under low or even absent oxygen. Microbial degradation of organic matter is expected to be reduced in OMZs, although quantitative evidence is low. Here, we present heterotrophic bacterial production (3H leucine incorporation), extracellular enzyme rates (leucine aminopeptidase/β-glucosidase) and bacterial cell abundance for various in situ oxygen concentrations in the water column, including the upper and lower oxycline, of the eastern tropical South Pacific off Peru. Bacterial heterotrophic activity in the suboxic core of the OMZ (at in situ ≤ 5 µmol O2 kg−1) ranged from 0.3 to 281 µmol C m−3 d−1 and was not significantly lower than in waters of 5–60 µmol O2 kg−1. Moreover, bacterial abundance in the OMZ and leucine aminopeptidase activity were significantly higher in suboxic waters compared to waters of 5–60 µmol O2 kg−1, suggesting no impairment of bacterial organic-matter degradation in the core of the OMZ. Nevertheless, high cell-specific bacterial production was observed in samples from oxyclines, and cell-specific extracellular enzyme rates were especially high at the lower oxycline, corroborating earlier findings of highly active and distinct micro-aerobic bacterial communities. To assess the impact of bacterial degradation of dissolved organic matter (DOM) for oxygen loss in the Peruvian OMZ, we compared diapycnal fluxes of oxygen and dissolved organic carbon (DOC) and their microbial uptake within the upper 60 m of the water column. Our data indicate low bacterial growth efficiencies of 1 %–21 % at the upper oxycline, resulting in a high bacterial oxygen demand that can explain up to 33 % of the observed average oxygen loss over depth. Our study therewith shows that microbial degradation of DOM has a considerable share in sustaining the OMZ off Peru.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2023-02-08
    Description: Small steam-driven volcanic explosions are common at volcanoes worldwide but are rarely documented or monitored; therefore, these events still put residents and tourists at risk every year. Steam-driven explosions also occur frequently (once every 2–5 years on average) at Lascar volcano, Chile, where they are often spontaneous and lack any identifiable precursor activity. Here, for the first time at Lascar, we describe the processes culminating in such a sudden volcanic explosion that occurred on October 30, 2015, which was thoroughly monitored by cameras, a seismic network, and gas (SO2 and CO2) and temperature sensors. Prior to the eruption, we retrospectively identified unrest manifesting as a gradual increase in the number of long-period (LP) seismic events in 2014, indicating an augmented level of activity at the volcano. Additionally, SO2 flux and thermal anomalies were detected before the eruption. Then, our weather station reported a precipitation event, followed by changes in the brightness of the permanent volcanic plume and (10 days later) by the sudden volcanic explosion. The multidisciplinary data exhibited short-term variations associated with the explosion, including (1) an abrupt eruption onset that was seismically identified in the 1–10 Hz frequency band, (2) the detection of a 1.7 km high white-grey eruption column in camera images, and (3) a pronounced spike in sulfur dioxide (SO2) emission rates reaching 55 kg sec−1 during the main pulse of the eruption as measured by a mini-DOAS scanner. Continuous CO2 gas and temperature measurements conducted at a fumarole on the southern rim of the Lascar crater revealed a pronounced change in the trend of the relationship between the carbon dioxide (CO2) mixing ratio and the gas outlet temperature; we believe that this change was associated with the prior precipitation event. An increased thermal anomaly inside the active crater observed through Sentinel-2 images and drone overflights performed after the steam-driven explosion revealed the presence of a fracture ~ 50 metres in diameter truncating the dome and located deep inside the active crater, which coincides well with the location of the thermal anomaly. Altogether, these observations lead us to infer that a lava dome was present and subjected to cooling and inhibited degassing. We conjecture that a precipitation event led to the short-term build-up of pressure inside the shallow dome that eventually triggered a vent-clearing phreatic explosion. This study shows the chronology of events culminating in a steam-driven explosion but also demonstrates that phreatic explosions are difficult to forecast, even if the volcano is thoroughly monitored; these findings also emphasize why ascending to the summits of Lascar and similar volcanoes is hazardous, particularly after considerable rainfall.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2023-02-08
    Description: The intraseasonal evolution of physical and biogeochemical properties during a coastal trapped wave event off central Peru is analysed using data from an extensive shipboard observational programme conducted between April and June 2017, and remote sensing data. The poleward velocities in the Peru–Chile Undercurrent were highly variable and strongly intensified to above 0.5 m s−1 between the middle and end of May. This intensification was likely caused by a first-baroclinic-mode downwelling coastal trapped wave, excited by a westerly wind anomaly at the Equator and originating at about 95∘ W. Local winds along the South American coast did not impact the wave. Although there is general agreement between the observed cross-shore-depth velocity structure of the coastal trapped wave and the velocity structure of first vertical mode solution of a linear wave model, there are differences in the details of the two flow distributions. The enhanced poleward flow increased water mass advection from the equatorial current system to the study site. The resulting shorter alongshore transit times between the Equator and the coast off central Peru led to a strong increase in nitrate concentrations, less anoxic water, likely less fixed nitrogen loss to N2 and a decrease of the nitrogen deficit compared to the situation before the poleward flow intensification. This study highlights the role of changes in the alongshore advection due to coastal trapped waves for the nutrient budget and the cumulative strength of N cycling in the Peruvian oxygen minimum zone. Enhanced availability of nitrate may impact a range of pelagic and benthic elemental cycles, as it represents a major electron acceptor for organic carbon degradation during denitrification and is involved in sulfide oxidation in sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-02-08
    Description: Carbonyl sulfide (OCS) and carbon disulfide (CS2) are volatile sulfur gases that are naturally formed in seawater and exchanged with the atmosphere. OCS is the most abundant sulfur gas in the atmosphere, and CS2 is its most important precursor. They have gained interest due to their direct (OCS) or indirect (CS2 via oxidation to OCS) contribution to the stratospheric sulfate aerosol layer. Furthermore, OCS serves as a proxy to constrain terrestrial CO2 uptake by vegetation. Oceanic emissions of both gases contribute a major part to their atmospheric concentration. Here we present a database of previously published and unpublished, mainly ship-borne measurements in seawater and the marine boundary layer for both gases, available at https://doi.pangaea.de/10.1594/PANGAEA.905430 (Lennartz et al., 2019). The database contains original measurements as well as data digitalized from figures in publications from 42 measurement campaigns, i.e. cruises or time series stations, ranging from 1982 to 2019. OCS data cover all ocean basins except for the Arctic Ocean, as well as all months of the year, while the CS2 dataset shows large gaps in spatial and temporal coverage. Concentrations are consistent across different sampling and analysis techniques for OCS. The database is intended to support the identification of global spatial and temporal patterns and to facilitate the evaluation of model simulations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2023-02-08
    Description: Tephra layers produced by volcanic eruptions are widely used for correlation and dating of various deposits and landforms, for synchronization of disparate paleoenvironmental archives, and for reconstruction of magma origin. Here we present our original database TephraKam, which includes chemical compositions of volcanic glass in tephra and welded tuffs from the Kamchatka volcanic arc. The database contains 7049 major element analyses obtained by electron microprobe and 738 trace element analyses obtained by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) on 487 samples collected in proximity of their volcanic sources in all volcanic zones in Kamchatka. The samples characterize about 300 explosive eruptions, which occurred in Kamchatka from the Pliocene until historic times. Precise or estimated ages for all samples are based on published 39Ar/40Ar dates of rocks and 14C dates of host sediments, statistical age modelling and geologic relationships with dated units. All data in TephraKam is supported by information about source volcanoes and analytical details. Using the data, we present an overview of geochemical variations of Kamchatka volcanic glasses and discuss application of this data for precise identification of tephra layers, their source volcanoes, temporal and spatial geochemical variations of pyroclastic rocks in Kamchatka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2023-02-08
    Description: High-resolution optical and hydroacoustic seafloor data acquired in 2015 enabled the reconstruction of disturbance tracks of a past Benthic Impact Experiment that was conducted in 1989 in the Peru Basin in the course of former German environmental impact studies associated with manganese nodule mining. Based on this information, the disturbance level of the experiment regarding the plough impact and distribution and re-deposition of sediment from the evolving sediment plume was assessed qualitatively. Through this, the evolution over the 26 years of a number of the total 78 disturbance tracks could be analyzed which highlights the considerable difference between natural sedimentation in the deep-sea and sedimentation of a resettled sediment plume. Such plumes are seen as one of the most concerning impact associated with potential Mn-nodule mining. Problems in data processing became eminent while dealing with old data from the late 80s, at a time when GPS was just invented and underwater navigation was in an infant stage. However, even today the uncertainties of underwater navigation and the use of a variety of acoustical and optical sensors at different resolutions require detailed post-processing in terms of absolute geographic positioning to improve the overall accuracy of the data. In this study, a ship-based bathymetric map of the survey area was used as absolute geographic reference and a workflow was applied successfully resulting in the most accurate geo-referenced dataset of the DISCOL Experimental Area to date. The new field data were acquired with sensors attached to GEOMARs AUV Abyss and the 0.5 × 1° EM122 multibeam system of RV SONNE during cruise SO242 -1 while the old data first needed to be found and compiled before they could be digitized and properly georeferenced for the presented joined analyses.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2023-02-08
    Description: Oxygen-deficient zones (ODZs) are major sites of net natural nitrous oxide (N2O) production and emissions. In order to understand changes in the magnitude of N2O production in response to global change, knowledge on the individual contributions of the major microbial pathways (nitrification and denitrification) to N2O production and their regulation is needed. In the ODZ in the coastal area off Peru, the sensitivity of N2O production to oxygen and organic matter was investigated using 15N tracer experiments in combination with quantitative PCR (qPCR) and microarray analysis of total and active functional genes targeting archaeal amoA and nirS as marker genes for nitrification and denitrification, respectively. Denitrification was responsible for the highest N2O production with a mean of 8.7 nmol L−1 d−1 but up to 118±27.8 nmol L−1 d−1 just below the oxic–anoxic interface. The highest N2O production from ammonium oxidation (AO) of 0.16±0.003 nmol L−1 d−1 occurred in the upper oxycline at O2 concentrations of 10–30 µmol L−1 which coincided with the highest archaeal amoA transcripts/genes. Hybrid N2O formation (i.e., N2O with one N atom from NH+4 and the other from other substrates such as NO−2) was the dominant species, comprising 70 %–85 % of total produced N2O from NH+4, regardless of the ammonium oxidation rate or O2 concentrations. Oxygen responses of N2O production varied with substrate, but production and yields were generally highest below 10 µmol L−1 O2. Particulate organic matter additions increased N2O production by denitrification up to 5-fold, suggesting increased N2O production during times of high particulate organic matter export. High N2O yields of 2.1 % from AO were measured, but the overall contribution by AO to N2O production was still an order of magnitude lower than that of denitrification. Hence, these findings show that denitrification is the most important N2O production process in low-oxygen conditions fueled by organic carbon supply, which implies a positive feedback of the total oceanic N2O sources in response to increasing oceanic deoxygenation.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2023-02-08
    Description: Seamounts represent ideal systems to study the influence and interdependency of environmental gradients at a single geographic location. These topographic features represent a prominent habitat for various forms of life, including microbiota and macrobiota, spanning benthic as well as pelagic organisms. While it is known that seamounts are globally abundant structures, it still remains unclear how and to which extent the complexity of the sea floor is intertwined with the local oceanographic mosaic, biogeochemistry, and microbiology of a seamount ecosystem. Along these lines, the present study aimed to explore whether and to what extent seamounts can have an imprint on the microbial community composition of seawater and of sessile benthic invertebrates, sponges. For our high-resolution sampling approach of microbial diversity (16S rRNA gene amplicon sequencing) along with measurements of inorganic nutrients and other biogeochemical parameters, we focused on the Schulz Bank seamount ecosystem, a sponge ground ecosystem which is located on the Arctic Mid-Ocean Ridge. Seawater samples were collected at two sampling depths (mid-water, MW, and near-bed water, BW) from a total of 19 sampling sites. With a clustering approach we defined microbial microhabitats within the pelagic realm at Schulz Bank, which were mapped onto the seamount's topography and related to various environmental parameters (such as suspended particulate matter, SPM; dissolved inorganic carbon, DIC; silicate, SiO−4; phosphate, PO3−4; ammonia, NH+4; nitrate, NO2−3; nitrite, NO−2; depth; and dissolved oxygen, O2). The results of our study reveal a “seamount effect” (sensu stricto) on the microbial mid-water pelagic community at least 200 m above the sea floor. Further, we observed a strong spatial heterogeneity in the pelagic microbial landscape across the seamount, with planktonic microbial communities reflecting oscillatory and circulatory water movements, as well as processes of bentho-pelagic coupling. Depth, NO2−3, SiO−4, and O2 concentrations differed significantly between the determined pelagic microbial clusters close to the sea floor (BW), suggesting that these parameters were presumably linked to changes in microbial community structures. Secondly, we assessed the associated microbial community compositions of three sponge species along a depth gradient of the seamount. While sponge-associated microbial communities were found to be mainly species-specific, we also detected significant intra-specific differences between individuals, depending on the pelagic near-bed cluster they originated from. The variable microbial phyla (i.e. phyla which showed significant differences across varying depth, NO2−3, SiO−4, O2 concentrations, and different from local seawater communities) were distinct for every sponge species when considering average abundances per species. Variable microbial phyla included representatives of both those taxa traditionally counted for the variable community fraction and taxa counted traditionally for the core community fraction. Microbial co-occurrence patterns for the three examined sponge species Geodia hentscheli, Lissodendoryx complicata, and Schaudinnia rosea were distinct from each other. Over all, this study shows that topographic structures such as the Schulz Bank seamount can have an imprint (seamount effect sensu lato) on both the microbial community composition of seawater and sessile benthic invertebrates such as sponges by an interplay between the geology, physical oceanography, biogeochemistry, and microbiology of seamounts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2023-02-08
    Description: The largest and commercially appealing mineral deposits can be found in the abyssal seafloor of the Clarion-Clipperton Zone (CCZ), a polymetallic nodule province, in the NE Pacific Ocean, where experimental mining is due to take place. In anticipation of deep-sea mining impacts, it has become essential to rapidly and accurately assess biodiversity. For this reason, ophiuroid material collected during seven scientific cruises from five exploration license areas within CCZ, one area protected from mining (APEI3, Area of Particular Environmental Interest) in the periphery of CCZ and the DIS-turbance and re-COLonisation (DISCOL) Experimental Area (DEA), in the SE Pacific Ocean, was examined. Specimens were genetically analysed using a fragment of the mitochondrial cytochrome c oxidase subunit I (COI). Maximum Likelihood and Neighbour Joining trees were constructed, while four tree-based and distance-based methods of species delineation (ABGD, BINs, GMYC, mPTP) were employed to propose Secondary Species Hypotheses (SSHs) within the ophiuroids collected. The species delimitations analyses concordant results revealed the presence of 43 deep-sea brittle stars SSHs, revealing an unexpectedly high diversity and showing that the most conspicuous invertebrates in abyssal plains have been so far considerably under-estimated. The number of SSHs found in each area varied from 5 (IFREMER area) to 24 (BGR area), while 13 SSHs were represented by singletons. None of the SSHs was found to be present in all 7 areas, while the majority of species (44.2 %) had a single-area presence (19 SSHs). The most common species were Ophioleucidae sp. (Species 29), Amphioplus daleus (Species 2) and Ophiosphalma glabrum (Species 3), present in all areas except APEI3. The biodiversity patterns could be mainly attributed to POC fluxes that could explain the highest species numbers found in BGR (German contractor area) and UKSRL (UK contractor area) areas. The five exploration contract areas belong to a mesotrophic province, while in contrary the APEI3 is located in an oligotrophic province which could explain the lowest diversity as well as very low similarity with the other six study areas. Based on these results the representativeness and the appropriateness of APEI3 to meet its purpose of preserving the biodiversity of the CCZ fauna are questioned. Finally, this study provides the foundation for biogeographic and functional analyses that will provide insight into the drivers of species diversity and its role in ecosystem function.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2023-02-08
    Description: Dissolved Fe (DFe) samples from the GEOVIDE voyage (GEOTRACES GA01, May–June 2014) in the North Atlantic Ocean were analyzed using a seaFAST-pico™ coupled to an Element XR sector field inductively coupled plasma mass spectrometer (SF-ICP-MS) and provided interesting insights into the Fe sources in this area. Overall, DFe concentrations ranged from 0.09±0.01 to 7.8±0.5 nmol L−1. Elevated DFe concentrations were observed above the Iberian, Greenland, and Newfoundland margins likely due to riverine inputs from the Tagus River, meteoric water inputs, and sedimentary inputs. Deep winter convection occurring the previous winter provided iron-to-nitrate ratios sufficient to sustain phytoplankton growth and lead to relatively elevated DFe concentrations within subsurface waters of the Irminger Sea. Increasing DFe concentrations along the flow path of the Labrador Sea Water were attributed to sedimentary inputs from the Newfoundland Margin. Bottom waters from the Irminger Sea displayed high DFe concentrations likely due to the dissolution of Fe-rich particles in the Denmark Strait Overflow Water and the Polar Intermediate Water. Finally, the nepheloid layers located in the different basins and at the Iberian Margin were found to act as either a source or a sink of DFe depending on the nature of particles, with organic particles likely releasing DFe and Mn particle scavenging DFe.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2023-02-08
    Description: In the abyssal equatorial Pacific Ocean, most of the seafloor of the Clarion-Clipperton Fracture Zone (CCFZ), a 6 million km2 polymetallic nodule province, has been preempted for future mining. In light of the large environmental footprint that mining would leave and given the diversity and the vulnerability of the abyssal fauna, the International Seabed Authority has implemented a regional management plan that includes the creation of nine Areas of Particular Environmental Interest (APEIs) located at the periphery of the CCFZ. The scientific principles for the design of the APEIs were based on the best – albeit very limited – knowledge of the area. The fauna and habitats in the APEIs are unknown, as are species' ranges and the extent of biodiversity across the CCFZ. As part of the Joint Programming Initiative Healthy and Productive Seas and Oceans (JPI Oceans) pilot action “Ecological aspects of deep-sea mining”, the SO239 cruise provided data to improve species inventories, determine species ranges, identify the drivers of beta diversity patterns and assess the representativeness of an APEI. Four exploration contract areas and an APEI (APEI no. 3) were sampled along a gradient of sea surface primary productivity that spanned a distance of 1440 km in the eastern CCFZ. Between three and eight quantitative box cores (0.25 m2; 0–10 cm) were sampled in each study area, resulting in a large collection of polychaetes that were morphologically and molecularly (cytochrome c oxidase subunit I and 16S genes) analyzed. A total of 275 polychaete morphospecies were identified. Only one morphospecies was shared among all five study areas and 49 % were singletons. The patterns in community structure and composition were mainly attributed to variations in organic carbon fluxes to the seafloor at the regional scale and nodule density at the local scale, thus supporting the main assumptions underlying the design of the APEIs. However, the APEI no. 3, which is located in an oligotrophic province and separated from the CCFZ by the Clarion Fracture Zone, showed the lowest densities, lowest diversity, and a very low and distant independent similarity in community composition compared to the contract areas, thus questioning the representativeness and the appropriateness of APEI no. 3 to meet its purpose of diversity preservation. Among the four exploration contracts, which belong to a mesotrophic province, the distance decay of similarity provided a species turnover of 0.04 species km−1, an average species range of 25 km and an extrapolated richness of up to 240 000 polychaete species in the CCFZ. By contrast, nonparametric estimators of diversity predict a regional richness of up to 498 species. Both estimates are biased by the high frequency of singletons in the dataset, which likely result from under-sampling and merely reflect our level of uncertainty. The assessment of potential risks and scales of biodiversity loss due to nodule mining thus requires an appropriate inventory of species richness in the CCFZ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2023-02-08
    Description: Climate change in Siberia is currently receiving a lot of attention because large permafrost-covered areas could provide a strong positive feedback to global warming through the release of carbon that has been sequestered there on glacial–interglacial timescales. Geological evidence and climate model experiments show that the Siberian region also played an exceptional role during glacial periods. The region that is currently known for its harsh cold climate did not experience major glaciations during the last ice age, including its severest stages around the Last Glacial Maximum (LGM). On the contrary, it is thought that glacial summer temperatures were comparable to the present day. However, evidence of glaciation has been found for several older glacial periods. We combine LGM experiments from the second and third phases of the Paleoclimate Modelling Intercomparison Project (PMIP2 and PMIP3) with sensitivity experiments using the Community Earth System Model (CESM). Together, these climate model experiments reveal that the intermodel spread in LGM summer temperatures in Siberia is much larger than in any other region of the globe and suggest that temperatures in Siberia are highly susceptible to changes in the imposed glacial boundary conditions, the included feedbacks and processes, and to the model physics of the different components of the climate model. We find that changes in the circumpolar atmospheric stationary wave pattern and associated northward heat transport drive strong local snow and vegetation feedbacks and that this combination explains the susceptibility of LGM summer temperatures in Siberia. This suggests that a small difference between two glacial periods in terms of climate, ice buildup or their respective evolution towards maximum glacial conditions can lead to strongly divergent summer temperatures in Siberia, allowing for the buildup of an ice sheet during some glacial periods, while during others, above-freezing summer temperatures preclude a multi-year snowpack from forming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-02-08
    Description: In this paper we introduce a Bayesian framework, which is explicit about prior assumptions, for using model ensembles and observations together to constrain future climate change. The emergent constraint approach has seen broad application in recent years, including studies constraining the equilibrium climate sensitivity (ECS) using the Last Glacial Maximum (LGM) and the mid-Pliocene Warm Period (mPWP). Most of these studies were based on ordinary least squares (OLS) fits between a variable of the climate state, such as tropical temperature, and climate sensitivity. Using our Bayesian method, and considering the LGM and mPWP separately, we obtain values of ECS of 2.7 K (0.6–5.2, 5th–95th percentiles) using the PMIP2, PMIP3, and PMIP4 datasets for the LGM and 2.3 K (0.5–4.4) with the PlioMIP1 and PlioMIP2 datasets for the mPWP. Restricting the ensembles to include only the most recent version of each model, we obtain 2.7 K (0.7–5.2) using the LGM and 2.3 K (0.4–4.5) using the mPWP. An advantage of the Bayesian framework is that it is possible to combine the two periods assuming they are independent, whereby we obtain a tighter constraint of 2.5 K (0.8–4.0) using the restricted ensemble. We have explored the sensitivity to our assumptions in the method, including considering structural uncertainty, and in the choice of models, and this leads to 95 % probability of climate sensitivity mostly below 5 K and only exceeding 6 K in a single and most uncertain case assuming a large structural uncertainty. The approach is compared with other approaches based on OLS, a Kalman filter method, and an alternative Bayesian method. An interesting implication of this work is that OLS-based emergent constraints on ECS generate tighter uncertainty estimates, in particular at the lower end, an artefact due to a flatter regression line in the case of lack of correlation. Although some fundamental challenges related to the use of emergent constraints remain, this paper provides a step towards a better foundation for their potential use in future probabilistic estimations of climate sensitivity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2023-02-08
    Description: Rivers are a major source of nutrients, carbon and alkalinity to the global ocean. In this study, we firstly estimate pre-industrial riverine loads of nutrients, carbon and alkalinity based on a hierarchy of weathering and terrestrial organic matter export models, while identifying regional hotspots of the riverine exports. Secondly, we implement the riverine loads into a global ocean biogeochemical model to describe their implications for oceanic nutrient concentrations, net primary production (NPP) and air–sea CO2 fluxes globally, as well as in an analysis of coastal regions. Thirdly, we quantitatively assess the terrestrial origins and the long-term fate of riverine carbon in the ocean. We quantify annual bioavailable pre-industrial riverine loads of 3.7 Tg P, 27 Tg N, 158 Tg Si and 603 Tg C delivered to the ocean globally. We thereby identify the tropical Atlantic catchments (20 % of global C), Arctic rivers (9 % of global C) and Southeast Asian rivers (15 % of global C) as dominant suppliers of carbon for the ocean. The riverine exports lead to a simulated net global oceanic CO2 source of 231 Tg C yr−1 to the atmosphere, which is mainly caused by inorganic carbon (source of 183 Tg C yr−1) and by organic carbon (source of 128 Tg C yr−1) riverine loads. Additionally, a sink of 80 Tg C yr−1 is caused by the enhancement of the biological carbon uptake from dissolved inorganic nutrient inputs from rivers and the resulting alkalinity production. While large outgassing fluxes are simulated mostly in proximity to major river mouths, substantial outgassing fluxes can be found further offshore, most prominently in the tropical Atlantic. Furthermore, we find evidence for the interhemispheric transfer of carbon in the model; we detect a larger relative outgassing flux (49 % of global riverine-induced outgassing) in the Southern Hemisphere in comparison to the hemisphere's relative riverine inputs (33 % of global C inputs), as well as an outgassing flux of 17 Tg C yr−1 in the Southern Ocean. The addition of riverine loads in the model leads to a strong NPP increase in the tropical west Atlantic, Bay of Bengal and the East China Sea (+166 %, +377 % and +71 %, respectively). On the light-limited Arctic shelves, the NPP is not strongly sensitive to riverine loads, but the CO2 flux is strongly altered regionally due to substantial dissolved inorganic and organic carbon supplies to the region. While our study confirms that the ocean circulation remains the main driver for biogeochemical distributions in the open ocean, it reveals the necessity to consider riverine inputs for the representation of heterogeneous features in the coastal ocean and to represent riverine-induced pre-industrial carbon outgassing in the ocean. It also underlines the need to consider long-term CO2 sources from volcanic and shale oxidation fluxes in order to close the framework's atmospheric carbon budget.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2023-02-08
    Description: Southern hemisphere lower stratospheric ozone depletion has been shown to lead to a poleward shift of the tropospheric jet stream during austral summer, influencing surface atmosphere and ocean conditions, such as surface temperatures and sea ice extent. The characteristics of stratospheric and tropospheric responses to ozone depletion, however, differ largely among climate models depending on the representation of ozone in the models. The most accurate way to represent ozone in a model is to calculate it interactively. However, due to computational costs, in particular for long-term coupled ocean-atmosphere model integrations, the more common way is to prescribe ozone from observations or calculated model fields. Here, we investigate the difference between an interactive and a specified chemistry version of the same atmospheric model in a fully-coupled setup using a 9-member chemistry-climate model ensemble. In the specified chemistry version of the model the ozone fields are prescribed using the output from the interactive chemistry model version. In contrast to earlier studies, we use daily-resolved ozone fields in the specified chemistry simulations to achieve a better comparability between the ozone forcing with and without interactive chemistry. We find that although the short-wave heating rate trend in response to ozone depletion is the same in the different chemistry settings, the interactive chemistry ensemble shows a stronger trend in polar cap stratospheric temperatures (by about 0.7 K per decade) and circumpolar stratospheric zonal mean zonal winds (by about 1.6 m/s per decade) as compared to the specified chemistry ensemble. This difference between interactive and specified chemistry in the stratospheric response to ozone depletion also affects the tropospheric response, namely the poleward shift of the tropospheric jet stream. We attribute part of these differences to the missing representation of feedbacks between chemistry and dynamics in the specified chemistry ensemble, which affect the dynamical heating rates, and part of it to the lack of spatial asymmetries in the prescribed ozone fields. This effect is investigated using a sensitivity ensemble that was forced by a three-dimensional instead of a two–dimensional ozone field. This study emphasizes the value of interactive chemistry for the representation of the southern hemisphere tropospheric jet response to ozone depletion and infers that for periods with strong ozone variability (trends) the details of the ozone forcing can be crucial for representing southern hemispheric climate variability.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2023-02-08
    Description: Morphological changes in coccoliths, tiny calcite platelets covering the outer surface of coccolithophores, can be induced by physiological responses to environmental changes. Coccoliths recovered from sedimentary successions may therefore provide information on paleo-environmental conditions prevailing at the time when the coccolithophores were alive. To calibrate the biomineralization responses of ancient coccolithophore to environmental changes, studies often compared the biological responses of living coccolithophore species with paleo-data from calcareous nannofossils. However, there is uncertainty whether the morphological responses of living coccolithophores are representative of those of the fossilized ancestors. To investigate this, we exposed four living coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica, Coccolithus pelagicus subsp. braarudii, and Pleurochrysis carterae) that have been evolutionarily distinct for hundreds of thousands to millions of years, to a range of environmental conditions (i.e., changing light intensity, Mg∕Ca ratio, nutrient availability, temperature, and carbonate chemistry) and evaluated their responses in coccolith morphology (i.e., size, length, width, malformation). The motivation for this study was to test if there is a consistent morphological response of the four species to changes in any of the tested abiotic environmental factors. If this was the case, then this could suggest that coccolith morphology can serve as a paleo-proxy for that specific factor because this response is conserved across species that have been evolutionary distinct over geological timescales. However, we found that the four species responded differently to changing light intensity, Mg∕Ca ratio, nutrient availability, and temperature in terms of coccolith morphology. The lack of a common response reveals the difficulties in using coccolith morphology as a paleo-proxy for these environmental drivers. However, a common response was observed under changing seawater carbonate chemistry (i.e., rising CO2), which consistently induced malformations. This commonality provides some confidence that malformations found in the sedimentary record could be indicative of adverse carbonate chemistry conditions.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2023-02-08
    Description: An optimized method is presented to determine dissolved free (DFCHO) and dissolved combined carbohydrates (DCCHO) in saline matrices, such as oceanic seawater, Arctic ice core samples or brine using a combination of a desalination with electro-dialysis (ED) and high-performance anion exchange chromatography coupled to pulsed amperometric detection (HPAEC-PAD). Free neutral sugars, such as glucose and galactose, were found with 95 %–98 % recovery rates. Free amino sugars and free uronic acids were strongly depleted during ED at pH=8, but an adjustment of the pH could result in higher recoveries (58 %–59 % for amino sugars at pH=11; 45 %–49 % for uronic acids at pH=1.5). The applicability of this method for the analysis of DCCHO was evaluated with standard solutions and seawater samples compared with another established desalination method using membrane dialysis. DFCHO in field samples from different regions on Earth ranged between 11 and 118 nM and DCCHO between 260 and 1410 nM. This novel method has the potential to contribute to a better understanding of biogeochemical processes in the oceans and sea–air transfer processes of organic matter into the atmosphere in future studies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2023-02-08
    Description: The Labrador Sea is important for the modern global thermohaline circulation system through the formation of intermediate Labrador Sea Water (LSW) that has been hypothesized to stabilize the modern mode of North Atlantic deep-water circulation. The rate of LSW formation is controlled by the amount of winter heat loss to the atmosphere, the expanse of freshwater in the convection region and the inflow of saline waters from the Atlantic. The Labrador Sea, today, receives freshwater through the East and West Greenland currents (EGC, WGC) and the Labrador Current (LC). Several studies have suggested the WGC to be the main supplier of freshwater to the Labrador Sea, but the role of the southward flowing LC in Labrador Sea convection is still debated. At the same time, many paleoceanographic reconstructions from the Labrador Shelf focussed on late deglacial to early Holocene meltwater run-off from the Laurentide Ice Sheet (LIS), whereas little information exists about LC variability since the final melting of the LIS about 7000 years ago. In order to enable better assessment of the role of the LC in deep-water formation and its importance for Holocene climate variability in Atlantic Canada, this study presents high-resolution middle to late Holocene records of sea surface and bottom water temperatures, freshening, and sea ice cover on the Labrador Shelf during the last 6000 years. Our records reveal that the LC underwent three major oceanographic phases from the mid- to late Holocene. From 6.2 to 5.6 ka, the LC experienced a cold episode that was followed by warmer conditions between 5.6 and 2.1 ka, possibly associated with the late Holocene thermal maximum. While surface waters on the Labrador Shelf cooled gradually after 3 ka in response to the neoglaciation, Labrador Shelf subsurface or bottom waters show a shift to warmer temperatures after 2.1 ka. Although such an inverse stratification by cooling of surface and warming of subsurface waters on the Labrador Shelf would suggest a diminished convection during the last 2 millennia compared to the mid-Holocene, it remains difficult to assess whether hydrographic conditions in the LC have had a significant impact on Labrador Sea deep-water formation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2023-02-08
    Description: Nowadays various methods and sensors are available for 3D reconstruction tasks; however, it is still necessary to integrate advantages of different technologies for optimizing the quality 3D models. Computed tomography (CT) is an imaging technique which takes a large number of radiographic measurements from different angles, in order to generate slices of the object, however, without colour information. The aim of this study is to put forward a framework to extract colour information from photogrammetric images for corresponding Computed Tomography (CT) surface data with high precision. The 3D models of the same object from CT and photogrammetry methods are generated respectively, and a transformation matrix is determined to align the extracted CT surface to the photogrammetric point cloud through a coarse-to-fine registration process. The estimated pose information of images to the photogrammetric point clouds, which can be obtained from the standard image alignment procedure, also applies to the aligned CT surface data. For each camera pose, a depth image of CT data is calculated by projecting all the CT points to the image plane. The depth image is in principle should agree with the corresponding photogrammetric image. The points, which cannot be seen from the pose, but are also projected on the depth image, are excluded from the colouring process. This is realized by comparing the range values of neighbouring pixels and finding the corresponding 3D points with larger range values. The same procedure is implemented for all the image poses to obtain the coloured CT surface. Thus, by using photogrammetric images, we achieve a coloured CT dataset with high precision, which combines the advantages from both methods. Rather than simply stitching different data, we deep-dive into the photogrammetric 3D reconstruction process and optimize the CT data with colour information. This process can also provide an initial route and more options for other data fusion processes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2023-02-08
    Description: The coastal ocean is strongly affected by ocean acidification because of its shallow water depths, low volume, and the closeness to terrestrial dynamics. Earlier observations of dissolved inorganic carbon (DIC) and total alkalinity (TA) in the southern part of the North Sea, a northwest European shelf sea, revealed lower acidification effects than expected. It has been assumed that anaerobic degradation and subsequent TA release in the adjacent back-barrier tidal areas (Wadden Sea) in summertime is responsible for this phenomenon. In this study the exchange rates of TA and DIC between the Wadden Sea tidal basins and the North Sea and the consequences for the carbonate system in the German Bight are estimated using a 3D ecosystem model. The aim of this study is to differentiate the various sources contributing to observed high summer TA in the southern North Sea. Measured TA and DIC in the Wadden Sea are considered as model boundary conditions. This procedure acknowledges the dynamic behaviour of the Wadden Sea as an area of effective production and decomposition of organic material. According to the modelling results, 39 Gmol TA yr−1 were exported from the Wadden Sea into the North Sea, which is less than a previous estimate but within a comparable range. The interannual variabilities in TA and DIC, mainly driven by hydrodynamic conditions, were examined for the years 2001–2009. Dynamics in the carbonate system are found to be related to specific weather conditions. The results suggest that the Wadden Sea is an important driver for the carbonate system in the southern North Sea. On average 41 % of TA inventory changes in the German Bight were caused by riverine input, 37 % by net transport from adjacent North Sea sectors, 16 % by Wadden Sea export, and 6 % were caused by internal net production of TA. The dominant role of river input for the TA inventory disappears when focusing on TA concentration changes due to the corresponding freshwater fluxes diluting the marine TA concentrations. The ratio of exported TA versus DIC reflects the dominant underlying biogeochemical processes in the Wadden Sea. Whereas aerobic degradation of organic matter played a key role in the North Frisian Wadden Sea during all seasons of the year, anaerobic degradation of organic matter dominated in the East Frisian Wadden Sea. Despite the scarcity of high-resolution field data, it is shown that anaerobic degradation in the Wadden Sea is one of the main contributors of elevated summer TA values in the southern North Sea.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...