ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
  • Fundamental concepts
  • Humans
  • Inorganic Chemistry
  • Magnetism
  • American Geophysical Union  (5)
  • The MIT Press  (1)
  • 2020-2024  (2)
  • 2015-2019  (4)
Collection
Keywords
Language
Years
Year
  • 1
    Publication Date: 2023-03-11
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biasi, J., Tivey, M., & Fluegel, B. Volcano monitoring with magnetic measurements: a simulation of eruptions at axial seamount, Kilauea, Baroarbunga, and Mount Saint Helens. Geophysical Research Letters, 49(17), (2022): e2022GL100006, https://doi.org/10.1029/2022GL100006.
    Description: Monitoring of active volcanic systems is a challenging task due in part to the trade-offs between collection of high-quality data from multiple techniques and the high costs of acquiring such data. Here we show that magnetic data can be used to monitor volcanoes by producing similar data to gravimetric techniques at significantly lower cost. The premise of this technique is that magma and wall rock above the Curie temperature are magnetically “transparent,” but not stationary within the crust. Subsurface movements of magma can affect the crustal magnetic field measured at the surface. We construct highly simplified magnetic models of four volcanic systems: Mount Saint Helens (1980), Axial Seamount (2015–2020), Kīlauea (2018), and Bárðarbunga (2014). In all cases, observed or inferred changes to the magmatic system would have been detectable by modern magnetometers. Magnetic monitoring could become common practice at many volcanoes, particularly in developing nations with high volcanic risk.
    Description: This work was supported by the NSF Grant No 2052963 to J. Biasi and an internal Woods Hole Oceanographic Institution grant to M. Tivey.
    Keywords: Magnetism ; Volcanic hazards ; Hawaii ; Iceland ; Volcanology ; Monitoring
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    The MIT Press | The MIT Press
    Publication Date: 2024-03-27
    Description: The original 1818 text of Mary Shelley's classic novel, with annotations and essays highlighting its scientific, ethical, and cautionary aspects. Mary Shelley's Frankenstein has endured in the popular imagination for two hundred years. Begun as a ghost story by an intellectually and socially precocious eighteen-year-old author during a cold and rainy summer on the shores of Lake Geneva, the dramatic tale of Victor Frankenstein and his stitched-together creature can be read as the ultimate parable of scientific hubris. Victor, “the modern Prometheus,” tried to do what he perhaps should have left to Nature: create life. Although the novel is most often discussed in literary-historical terms—as a seminal example of romanticism or as a groundbreaking early work of science fiction—Mary Shelley was keenly aware of contemporary scientific developments and incorporated them into her story. In our era of synthetic biology, artificial intelligence, robotics, and climate engineering, this edition of Frankenstein will resonate forcefully for readers with a background or interest in science and engineering, and anyone intrigued by the fundamental questions of creativity and responsibility. This edition of Frankenstein pairs the original 1818 version of the manuscript—meticulously line-edited and amended by Charles E. Robinson, one of the world's preeminent authorities on the text—with annotations and essays by leading scholars exploring the social and ethical aspects of scientific creativity raised by this remarkable story. The result is a unique and accessible edition of one of the most thought-provoking and influential novels ever written. Essays by Elizabeth Bear, Cory Doctorow, Heather E. Douglas, Josephine Johnston, Kate MacCord, Jane Maienschein, Anne K. Mellor, Alfred Nordmann
    Keywords: science fiction ; gothic ; horror ; European ; British ; literature ; fiction ; cautionary tale ; STEM ; science ; bioethics ; classic ; bicentennial ; Josephine Johnston ; Cory Doctorow ; Jane Maienschein ; Kate MacCord ; Alfred Nordmann ; Elizabeth Bear ; Anne K. Mellor ; Heather E. Douglas ; Frankenstein ; Creature ; Monster ; Mary Shelley ; Makers ; women in science ; science and anti-science ; values in science ; responsible innovation ; Industrial Revolution ; Mary Wollstonecraft ; William Godwin ; Percy Bysshe Shelley ; Galvanism ; Mount Tambora ; Myths ; Two Cultures ; epistolary novel ; Victor Frankenstein ; Geneva ; Prometheus ; Arctic ; Lord Byron ; John Polidori ; ghost stories ; Revisions ; Electricity ; Lightning ; Vitalism ; Chemistry ; Extinction ; Magnetism ; Moral responsibility ; Legal responsibility ; Social responsibility ; Consequences ; Obligations ; Ethics ; Maker Culture ; DIY ; Technology Adjacent Possible ; Facebook ; Surveillance ; Aristotle ; Fetal development ; Epigenesis ; Embryo ; Person ; Technoscience ; Alchemy ; uncanny valley ; animation ; complexity ; Morality ; Monstrosity ; Christianity ; Otherness ; Gender ; Nature ; Domestic Affections ; Women ; Sexuality ; Technical Sweetness ; Los Alamos ; Trinity Test ; Scientific Responsibility ; Nuclear Weapons ; adjacent possible ; synthetic biology ; robotics ; thema EDItEUR::F Fiction and Related items::FB Fiction: general and literary::FBC Classic fiction: general and literary ; thema EDItEUR::F Fiction and Related items::FL Science fiction::FLC Classic science fiction
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: We present a 3-D P wave velocity model of the crust and shallowest mantle under the Italian region, that includes a revised Moho depth map, obtained by regional seismic travel time tomography. We invert 191,850 Pn and Pg wave arrival times from 6850 earthquakes that occurred within the region from 1988 to 2007, recorded by 264 permanent seismic stations. We adopt a high-resolution linear B-spline model representation, with 0.1􏰂 horizontal and 2 km vertical grid spacing, and an accurate finite-difference forward calculation scheme. Our nonlinear iterative inversion process uses the recent European reference 3-D crustal model EPcrust as a priori information. Our resulting model shows two arcs of relatively low velocity in the crust running along both the Alps and the Apennines, underlying the collision belts between plates. Beneath the Western Alps we detect the presence of the Ivrea body, denoted by a strong high P wave velocity anomaly. We also map the Moho discontinuity resulting from the inversion, imaged as the relatively sharp transition between crust and mantle, where P wave velocity steps up to values larger than 8 km/s. This simple condition yields an image quite in agreement with previous studies that use explicit representations for the discontinuity. We find a complex lithospheric structure characterized by shallower Moho close by the Tyrrhenian Sea, intermediate depth along the Adriatic coast, and deepest Moho under the two mountain belts.
    Description: Published
    Description: 69-88
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: seismic tomography ; body waves ; computational seismology ; Moho topography ; Italy ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: We present high-resolution Vp and Vp/Vs models of the southern Apennines (Italy) computed using local earthquakes recorded from 2006 to 2011 with a graded inversion scheme that progressively resolves the crustal structure, from the large scale of the Apennines belt to the local scale of the normal-fault system. High-Vp bodies defined in the upper and mid crust under the external Apennines are interpreted as extensive mafic intrusions revealing anorogenic magmatism episodes that broadened on the Adriatic domain during Paleogene. Under the mountain belt, a low-Vp region, annular to the Neapolitan volcanic district, indicates the existence of a thermal/fluid anomaly in the mid crust, coinciding with a shallow Moho and diffuse degassing of deeply derived CO2. In the belt axial zone, low Vp/Vs gas-pressurized rock volumes under the Apulian carbonates correlate to high heat flow, strong CO2-dominated gas emissions of mantle origin and shallow carbonate reservoirs with pressurized CO2 gas caps. We hypothesize that the pressurized fluid volumes located at the base of the active fault system influence the rupture process of large normal-faulting earthquakes, like the 1980 Mw6.9 Irpinia event, and that major asperities are confined within the high-Vp Apulian carbonates. This study confirms once more that pre-existing structures of the Pliocene Apulian belt controlled the rupture propagation during the Irpinia earthquake. The main shock broke a 30 km long, NE-dipping seismogenic structure, whereas delayed ruptures (both the 20 s and the 40 s sub-events) developed on antithetic faults, reactivating thrust faults located at the eastern edge of the Apulian belt.
    Description: Published
    Description: 8283–8311
    Description: 1T. Geodinamica e interno della Terra
    Description: 2T. Tettonica attiva
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: JCR Journal
    Description: embargoed_20150609
    Keywords: The velocity structure of the southern Apennines is determined by a multi-scale tomography ; Large Cenozoic mafic intrusions are identified in the Apulian crust ; Pressurized CO2 reservoirs identified under the axial belt can affect crustal seismicity ; 04. Solid Earth::04.02. Exploration geophysics::04.02.99. General or miscellaneous ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks ; 05. General::05.02. Data dissemination::05.02.01. Geochemical data ; 05. General::05.02. Data dissemination::05.02.02. Seismological data
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: In this work we present intrinsic and scattering seismic attenuation 2-D images of Stromboli Volcano. We used 21,953 waveforms from air gun shots fired by an oceanographic vessel and recorded at 33 inland and 10 ocean bottom seismometer seismic stations. Coda wave envelopes of the filtered seismic traces were fitted to the energy transport equation in the diffusion approximation, obtaining a couple of separate Qi and Qs in six frequency bands. Using numerically estimated sensitivity kernels for coda waves, separate images of each quality factor were produced. Results appear stable and robust. They show that scattering attenuation prevails over intrinsic attenuation. The scattering pattern shows a strong concordance with the tectonic lineaments in the area, while an area of high total attenuation coincides with the zone where most of the volcanic activity occurs. Our results provide evidence that the most important attenuation effects in volcanic areas are associated with the presence of geological heterogeneities.
    Description: Published
    Description: 1717–1724
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: JCR Journal
    Description: restricted
    Keywords: Attenuation Tomography ; Seismic scattering ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-06-14
    Description: Rayleigh wave tomography provides images of the shallow mantle shear wave velocity structure beneath the Gulf of California. Low-velocity zones (LVZs) are found on axis between 26 and 50 km depth beneath the Guaymas Basin but mostly off axis under the other rift basins, with the largest feature underlying the Ballenas Transform Fault. We interpret the broadly distributed LVZs as regions of partial melting in a solid mantle matrix. The pathway for melt migration and focusing is more complex than an axis-centered source aligned above a deeper region of mantle melt and likely reflects the magmatic evolution of rift segments. We also consider the existence of solid lower continental crust in the Gulf north of the Guaymas Basin, where the association of the LVZs with asthenospheric upwelling suggests lateral flow assisted by a heat source. These results provide key constraints for numerical models of mantle upwelling and melt focusing in this young oblique rift.
    Description: Published
    Description: 1766–1774
    Description: 1T. Geodinamica e interno della Terra
    Description: JCR Journal
    Description: open
    Keywords: Low velocities in the Gulf upper mantle are interpreted as partial melting ; Partial melting under the Guaymas Basin and off axis of the other rift basins ; Lower crustal flow assisted by heat source in N Gulf near mantle upwelling ; 04. Solid Earth::04.01. Earth Interior::04.01.03. Mantle and Core dynamics ; 04. Solid Earth::04.06. Seismology::04.06.07. Tomography and anisotropy ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...