ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (60)
  • Wiley-AGU  (46)
  • Annual Reviews
  • PANGAEA
  • 2020-2023  (109)
Collection
Years
Year
  • 1
    Publication Date: 2022-04-01
    Description: Duvalo “volcano” is a site of anomalous geogenic degassing close to Ohrid (North Macedonia) not related to volcanic activity, despite its name. CO2 flux measurements made with the accumulation chamber (321 sites over ∼50,000 m2) showed fluxes up to nearly 60,000 g m−2 d−1, sustaining a total output of ∼67 t d−1. Soil gas samples were taken at 50 cm depth from sites with high CO2 fluxes and analyzed for their chemical and isotope composition. The gas is mainly composed by CO2 (〉90%) with significant concentrations of H2S (up to 0.55%) and CH4 (up to 0.32%). The isotope compositions of He (R/RA 0.10) and of CO2 (δ13C ∼ 0‰) exclude significant mantle contribution, while δ13C-CH4 (∼−35‰) and δ2H-CH4 (∼−170‰) suggest a thermogenic origin for CH4. The area is characterized by intense seismic activity and Duvalo corresponds to an active tectonic structure bordering the Ohrid graben. The production of H2S within the stratigraphic sequence may be explained by thermochemical reduction of sulfate. The uprising H2S is partially oxidized to sulfuric acid that, reacting with carbonate rocks, releases CO2. The tectonic structure of the area favors fluid circulation, sustaining H2S production and oxidation, CO2 production and allowing the escape of the gases to the atmosphere. In the end, Duvalo represents a tectonic-related CO2 degassing area whose gases originate mostly, if not exclusively, in the shallowest part of the crust (〈10 km). This finding highlights that even systems with trivial mantle contribution may sustain intense CO2 degassing (〉1,000 t km−2 d−1).
    Description: Published
    Description: e2021GC010198
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Geogenic degassing ; CO2 fluxes ; 04. Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-02
    Description: Three devastating earthquakes of MW ≥ 5.9 activated a complex system of high-angle normal, antithetic, and sub-horizontal detachment faults during the 2016–2017 central Italy seismic sequence. Waveform cross-correlation based double-difference location of nearly 400,000 aftershocks illuminate complex, fine-scale structures of interacting fault zones. The Mt. Vettore–Mt. Bove (VB) normal fault exhibits wide and complex damage zones, including a system of bookshelf faults that intersects the detachment zone. In the Laga domain, a comparatively narrow, shallow dipping segment of the deep Mt. Gorzano fault progressively ruptures through the detachment zone in four subsequent MW ∼ 5.4 events. Reconstructed fault planes show that the detachment zone is fragmented in four sub-horizontal, partly overlaying shear planes that correlated with the extent of the mainshock ruptures. We find a new, deep reaching seismic barrier that coincides with a bend in the VB fault and may play a role in controlling rupture evolution.
    Description: Published
    Description: e2021GL092918
    Description: 4T. Sismicità dell'Italia
    Description: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-04-29
    Description: Moulin and Benedetti (2018), https://doi.org/10.1029/2018tc00495810.1029/2018tc004958 present a new interpretation of the Neogene-Quaternary tectonic evolution of the Eastern Southern Alps (ESA) in Friuli. After the reinterpretation of literature field data by means of remote sensing analysis (Digital Elevation Model interpretation), they calculated deformation rates of the tectonic structures through age interpretation of geomorphological surfaces of the Veneto-Friuli piedmont plain. The authors linked the result of surface analysis to the thrust and fold architecture of the ESA basing on the Castellarin et al. (2006), https://doi.org/10.1016/j.tecto.2005.10.013 interpretation of TRANSALP project and the Friuli geological map at the scale 1:150,000 (Carulli, 2006). Discussing their new architecture of the ESA, the Authors finally yielded rates of Europe-Adria plates convergence and suggest fragmentation of Adria over the last 1–2 Ma. The present comment is aimed at discussing several critical points concerning: the use of the geomorphological and chronological data; the misinterpretation of the Digital Terrain Model; the reconstruction of the balanced geological cross section. Moreover, the application of a structural model defined in a certain area to another without considering peculiar structural complexities available in the literature results is geologically and methodologically questionable.
    Description: Published
    Description: e2019TC005696
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Comment ; active tectonics ; NE Italy ; Eastern Southern Alps ; Geodynamics ; 04.07. Tectonophysics ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-03
    Description: Tephra fallout hazard assessment is undertaken with probabilistic maps that rely on numerical models. Regarding maps production, the input parameters of the model (including atmospheric conditions), the physical approximations of the numerical simulations, and the probabilities of occurrence of different eruption types in specific time frames are among the most critical sources of uncertainty. We therefore present a tephra fallout hazard assessment study for two active volcanoes (Cotopaxi and Guagua Pichincha) in Ecuador. We utilize PLUME-MoM/HYSPLIT models, and a procedure for uncertainty quantification where: (a) the uncertainty on eruptive source parameters and eruption type occurrence is quantified through expert elicitation; (b) we implement a new procedure for correlations between the different parameters, and (c) we use correction coefficients to take into account the uncertainty of the numerical model. Maps of exceedance probability given a deposit thickness threshold, and thickness maps given a probability of exceedance, are produced (a) for two eruptive scenarios (sub-Plinian and Plinian) and (b) as a combination of these scenarios in case the next eruption will be sub-Plinian or Plinian. These maps are described according to the uncertainty distribution of eruption type occurrence probabilities, considering their 5th percentile, mean, and 95th percentile values. We finally present hazard curves describing exceeding probabilities in 10 sensitive sites within the city of Quito. Additional information includes the areal extent and the population potentially affected by different isolines of tephra accumulation. This work indicates that full uncertainty quantification helps in providing more robust scientific information, improving the hazard assessment reliability.
    Description: Published
    Description: e2021JB022780
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2020.
    Description: Contemporary scientific exploration most often takes place in highly remote and dangerous environments, such as in the deep sea and on other planets. These environments are very hostile to humans, which makes robotic exploration the first and often the only option. However, they also impose restrictive limits on how much communication is possible, creating challenges in implementing remote command and control. We propose an approach to enable more efficient autonomous robot-based scientific exploration of remote environments despite these limits on human-robot communication. We find this requires the robot to have a spatial observation model that can predict where to find various phenomena, a reward model which can measure how relevant these phenomena are to the scientific mission objectives, and an adaptive path planner which can use this information to plan high scientific value paths. We identified and addressed two main gaps: the lack of a general-purpose means for spatial observation modelling, and the challenge in learning a reward model based on images online given the limited bandwidth constraints. Our first key contribution is enabling general-purpose spatial observation modelling through spatio-temporal topic models, which are well suited for unsupervised scientific exploration of novel environments. Our next key contribution is an active learning criterion which enables learning an image-based reward model during an exploration mission by communicating with the science team efficiently. We show that using these together can result in a robotic explorer collecting up to 230% more scientifically relevant observations in a single mission than when using lawnmower trajectories.
    Description: This work was partially supported by the National Science Foundation (NSF) Award #1734400, as well as by the Woods Hole Oceanographic Institution (WHOI). The author would like to thank both organizations for their support.
    Keywords: Robotics ; Autonomous ; Exploration
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
    Description: A detailed understanding of the intensity and three-dimensional spatial distribution of diabatic abyssal turbulence is germane to understanding the abyssal branch of the global overturning circulation. This thesis addresses the issue through 1) an investigation of the dynamics of an abyssal boundary layer and through 2) the construction of a probabilistic finescale parameterization using mixture density networks (MDNs). A boundary layer, formed by the interaction of heaving isopycnals by the tide and viscous/adiabatic boundary conditions, is investigated through direct numerical simulations (DNS) and Floquet analysis. Turbulence is sustained throughout the tidal period in the DNS on extra-critical slopes characterized by small slope Burger numbers, leading to the formation of turbulent stratified Stokes-Ekman layers. Floquet analysis suggests that the boundary layers are unstable to disturbances to the vorticity component aligned with the across-isobath tidal velocity on extra-critical slopes. MDNs, trained on microstructure observations, are used to construct probabilistic finescale parameterization dependent on the finescale vertical kinetic energy (VKE), N2f2, , and both variables. The MDN model predictions are as accurate as conventional parameterizations, but also predict the underlying probability density function of the dissipation rate as a function of the dependent parameters.
    Description: My doctoral studies in the WHOI/MIT Joint Program were funded by the National Science Foundation (OCE-1657870) and the National Science Foundation Graduate Research Fellowship Program.
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2020.
    Description: Developing accurate and computationally efficient models for ocean acoustics is inherently challenging due to several factors including the complex physical processes and the need to provide results on a large range of scales. Furthermore, the ocean itself is an inherently dynamic environment within the multiple scales. Even if we could measure the exact properties at a specific instant, the ocean will continue to change in the smallest temporal scales, ever increasing the uncertainty in the ocean prediction. In this work, we explore ocean acoustic prediction from the basics of the wave equation and its derivation. We then explain the deterministic implementations of the Parabolic Equation, Ray Theory, and Level Sets methods for ocean acoustic computation. We investigate methods for evolving stochastic fields using direct Monte Carlo, Empirical Orthogonal Functions, and adaptive Dynamically Orthogonal (DO) differential equations. As we evaluate the potential of Reduced-Order Models for stochastic ocean acoustics prediction, for the first time, we derive and implement the stochastic DO differential equations for Ray Tracing (DO-Ray), starting from the differential equations of Ray theory. With a stochastic DO-Ray implementation, we can start from non-Gaussian environmental uncertainties and compute the stochastic acoustic ray fields in a reduced order fashion, all while preserving the complex statistics of the ocean environment and the nonlinear relations with stochastic ray tracing. We outline a deterministic Ray-Tracing model, validate our implementation, and perform Monte Carlo stochastic computation as a basis for comparison. We then present the stochastic DO-Ray methodology with detailed derivations. We develop varied algorithms and discuss implementation challenges and solutions, using again direct Monte Carlo for comparison. We apply the stochastic DO-Ray methodology to three idealized cases of stochastic sound-speed profiles (SSPs): constant-gradients, uncertain deep-sound channel, and a varied sonic layer depth. Through this implementation with non-Gaussian examples, we observe the ability to represent the stochastic ray trace field in a reduced order fashion.
    Description: Office of Naval Research Grants N00014-19-1-2664 (Task Force Ocean: DEEP-AI) and N00014-19-1-2693 (INBDA)
    Keywords: Stochastic Processes ; Acoustic Wave Propagation ; Acoustic Rays
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-03-16
    Description: Several methods such as paleoseismic trenching, mapping of offset geomorphic markers, and dating of scarp profiles have been used to determine slip rates of normal faults in the central Apennines. Combining measurements obtained with different methods remains challenging because non-tectonic processes can introduce noise or spurious signals that are elusive to quantify, and these influence slip rate estimates. To this end, we meta-analyzed throw measurements with associated ages collected in the central Apennines with several methods to quantify such erratic fluctuations and method-related variances. We show that throw rates are overdispersed with respect to nominal uncertainties in throw and age; therefore, they are commonly affected by unmodeled noise processes. After comparing throw rate distributions sampling the same faults with different techniques, no clear spatiotemporal patterns appear, but only quasi-random noise. Assuming that field investigators sampled real tectonic features (i.e., fault scarps), we find that such erratic throw rates indicate total uncertainties are two to three times greater than the stated observation uncertainties. In this situation, a simple and robust null hypothesis is appropriate. We propose that most faults should be assumed to have uniform throw rate along their traces, except for possible tapering near unconnected ends. We also propose that models in which throw rates are time-dependent (within the last 25 ka) are not yet justified. Then, relying on the estimated total uncertainties, we determine the most probable long-term fault throw rate for each active fault by combining different throw-rate probability density functions.
    Description: Published
    Description: e2021JB023252
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-03-16
    Description: The Campi Flegrei caldera is considered the most dangerous volcano in Europe and is currently in a new phase of unrest (started in 2000 and still ongoing) that has persisted intermittently for several decades (main crisis occurred from 1950-52, 70-72 and 82-84). Here, by combining the petrological and geochemical data collected in recent decades with numerical simulations, we place new constraints on the source(s) of the current dynamics of the volcano. In particular, we show that the measured (N2-He-CO2) geochemical changes at the fumaroles of Solfatara hydrothermal site are the result of massive (about 3 km3) magma degassing in the deep portion (≥ 200 MPa, 8 km of depth) of the plumbing system. This degassing mechanism would be able to flood the overlying hydrothermal system with hot gas, thus heating and fracturing the upper crust inducing shallow seismicity and deformation. This implies that the deep magma transfer process (≥8 km) has been decoupled from the source of deformation and seismicity, localized in the first kilometers (0-4 km) of caldera-filling rocks. This information on magma transfer depth can have important implications for defining the best monitoring strategies and for forecasting a future eruption. Finally, this study highlights how petrological and geochemical data allow us to explore the dynamics of the deep portion of the plumbing system and thus trace the occurrence of recharge episodes, in a portion of the ductile lower crust where magma transfer occurs in the absence of earthquakes. Plain Language Summary Calderas are volcanic depressions formed as the ground collapses during huge volcanic eruptions. They often exhibit pronounced unrest, with frequent earthquakes, ground uplift, and considerable heat and mass flux that are monitored by volcanologists for eruption forecasting. However, as this activity is due to the complex interactions among magma and hydrothermal system stored beneath the volcano, it is always difficult to predict the evolution of the unrest towards critical conditions until to eruption. The Campi Flegrei caldera is among the most dangerous volcanos in Europe and is currently in a new phase of unrest that has lasted for several decades, whose nature (magmatic or not magmatic) has remained unclear. Here, we combine petrological and geochemical observations collected in recent decades with numerical simulations to place new constraints on the source of the recent dynamics of the volcano. In particular, we show that new deep magma has recharged the shallow reservoir beneath the volcano and flooded the overlying hydrothermal system with hot gas; thereby weakening the upper rocks allowing deformation (ground uplift) and fracturing (seismicity). This information is particularly important in the case of high-risk Campi Flegrei caldera, because it can help to improve defense strategies in case of future eruption.
    Description: Published
    Description: e2021JB023773
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-03-17
    Description: Natural gas microseepage in petroleum-bearing sedimentary basins is an important complement to geophysical methods in oil-gas exploration and a natural source of methane (CH4) for the atmosphere. Microseepage, typically occurring in correspondence with petroleum fields throughout the world, is generally lower in summer, due to temperature-driven methanotrophic consumption, and higher in winter. The global estimates of microseepage methane emission have, however, relatively high uncertainties because of limited amounts of flux data, leading to poor knowledge of the spatial distribution and temporal variability of the gas emission factors. We studied the seasonal variation of microseepage flux to the atmosphere from a petroleum field in China (the Dawanqi oilfield), through methane flux measurements performed in summer 2014, winter 2015, and summer 2019. Winter data refer to frozen soil conditions, with snow cover and ice thickness in the soil exceeding 60 cm. Gas concentration (CH4, CO2, C2+ alkanes) and stable C isotopic composition of CH4 and CO2 in shallow (4 m deep) boreholes confirmed the existence of thermogenic gas seepage. Methane microseepage is higher in summer and lower or nil in winter. This seasonal trend is opposite to what was observed in areas where winter soil is not or poorly frozen. Our data suggest that seasonal microseepage variation may not be univocal worldwide, being strongly dependent on the presence of ice and snow cover in winter. The regional increase of temperature due to climate change, already demonstrated for the Tarim Basin over the last 50 years, could, in the future, reduce winter ice and enhance annual methane emission to the atmosphere.
    Description: Published
    Description: e2021JD034637
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-03-18
    Description: The Val d'Agri basin hosts an oil-field, the largest in onshore Europe, and it is one of the areas of highest seismic hazard in Italy. In an unproductive marginal portion of the reservoir, wastewater is re-injected by a high-rate well. Since the beginning of re-injection in June 2006, a spatio-temporal correlation between microseismicity (ML ≤ 2.0) and wastewater injection has been observed (suggesting induced seismicity). In this study, we perform a slip-tendency analysis on the fault system involved in the induced seismicity through a coupled fluid-flow and geomechanical numerical model simulating the stress partitioning due to the tectonic forces and to the fluid injection. The model results show that the fluid diffusion is strongly dependent on the active stress field and the geological structure in which fluids are injected, which conditioned the occurrence of seismicity that aligned on a small portion of a NE-dipping fault. However, another fault located closer to the injection well and where no seismicity was detected, is the better well-oriented fault with the active stress field and, also, the one more susceptible to the pore pressure increase. These results suggest different types of fault deformation acting in the Val d'Agri oilfield as response to the fluid injection (i.e., a mixed-mode fault slip behavior). Understanding the stress partitioning in tectonically active regions where underground activities such as fluid injection are ongoing is fundamental to give strong constraints for the discrimination between natural and induced seismicity, and finally for a more reliable and robust definition of seismic hazard.
    Description: Published
    Description: 2019JB019185
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 7T. Variazioni delle caratteristiche crostali e "precursori"
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-02-28
    Description: Identifying deformation and pre-failure mechanisms preceding faulting is key for fault mechanics and for interpreting precursors to fault rupture. This study presents the results of a new and robust derivation of first motion polarity focal mechanism solutions (FMS) applied to acoustic emission (AE). FMS are solved using a least squares minimization of the fit between projected polarity measurements and the deviatoric stress field induced by dilatational (T-type), shearing (S-type), and compressional (C-type) sources. 4 × 10 cm cylindrical samples of Alzo Granite (AG, porosity 〈1%) and Darley Dale Sandstone (DDS, porosity ≈14%) underwent conventional triaxial tests in order to investigate the relationships between increasing confining pressure (5, 10, 20, and 40 MPa), deformation and failure mode, and role of microstructural features. Results highlight that S-type events occur in very low numbers with poor spatial correlation to fault structure. Instead, deformation is driven by a complex interplay between compactant (C-type) and dilatant (T-type) regions of deformation. C-type events are the earliest precursor related to crack nucleation and T-type events mark new cracks opening, with the onset of fracture growth characterized by periodic cycles of coalescence. For AG a single sequence is able to lead to dynamic failure, while for DDS several cycles are needed for coalescence to take place due to the competition between dilatant and compactant deforming regions induced by multiple fracture nucleation sites. The occurrence of C- and S-type events is also consistent with a quasi-static premonitory phase, or foreshock, before a critical nucleation length allows the development of a planar localization.Identifying deformation and pre-failure mechanisms preceding faulting is key for fault mechanics and for interpreting precursors to fault rupture. This study presents the results of a new and robust derivation of first motion polarity focal mechanism solutions (FMS) applied to acoustic emission (AE). FMS are solved using a least squares minimization of the fit between projected polarity measurements and the deviatoric stress field induced by dilatational (T-type), shearing (S-type), and compressional (C-type) sources. 4 × 10 cm cylindrical samples of Alzo Granite (AG, porosity 〈1%) and Darley Dale Sandstone (DDS, porosity ≈14%) underwent conventional triaxial tests in order to investigate the relationships between increasing confining pressure (5, 10, 20, and 40 MPa), deformation and failure mode, and role of microstructural features. Results highlight that S-type events occur in very low numbers with poor spatial correlation to fault structure. Instead, deformation is driven by a complex interplay between compactant (C-type) and dilatant (T-type) regions of deformation. C-type events are the earliest precursor related to crack nucleation and T-type events mark new cracks opening, with the onset of fracture growth characterized by periodic cycles of coalescence. For AG a single sequence is able to lead to dynamic failure, while for DDS several cycles are needed for coalescence to take place due to the competition between dilatant and compactant deforming regions induced by multiple fracture nucleation sites. The occurrence of C- and S-type events is also consistent with a quasi-static premonitory phase, or foreshock, before a critical nucleation length allows the development of a planar localization.
    Description: Published
    Description: e2020JB021059
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2022-02-28
    Description: How major crustal-scale seismogenic faults nucleate and evolve in crystalline basements represents a long-standing, but poorly understood, issue in structural geology and fault mechanics. Here, we address the spatio-temporal evolution of the Bolfin Fault Zone (BFZ), a 〉40-km-long exhumed seismogenic splay fault of the 1000-km-long strike-slip Atacama Fault System. The BFZ has a sinuous fault trace across the Mesozoic magmatic arc of the Coastal Cordillera (Northern Chile) and formed during the oblique subduction of the Aluk plate beneath the South American plate. Seismic faulting occurred at 5-7 km depth and ≤ 300°C in a fluid-rich environment as recorded by extensive propylitic alteration and epidote-chlorite veining. Ancient (125-118 Ma) seismicity is attested by the widespread occurrence of pseudotachylytes. Field geologic surveys indicate nucleation of the BFZ on precursory geometrical anisotropies represented by magmatic foliation of plutons (northern and central segments) and andesitic dyke swarms (southern segment) within the heterogeneous crystalline basement. Seismic faulting exploited the segments of precursory anisotropies that were optimal to favorably oriented with respect to the long-term far-stress field associated with the oblique ancient subduction. The large-scale sinuous geometry of the BFZ resulted from the hard linkage of these anisotropy-pinned segments during fault growth.
    Description: European Research Council Project (NOFEAR) 614705
    Description: Published
    Description: e2021TC006818
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: Atacama Fault System; fault growth; intra‐arc deformation; pseudotachylytes; seismogenic fault; structural inheritance ; Solid Earth
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-12-15
    Description: Mapping lava flows frequently during effusive eruptions provides crucial parameters to better understand their dynamics, in turn improving our ability to model lava flow behavior. New photogrammetric methods have recently been developed, shifting the paradigm of photogrammetry from pure method to a multidisciplinary approach able to reduce the cost of volcanic monitoring and widen the potential spectrum of application. In this work, we demonstrate how multi-view and singleview photogrammetry methods can be used effectively to extract accurate quantitative information from photographs taken during routine surveys over an active lava flow. One intriguing advantage of these methods is that they can re-use images acquired previously to extract new data from past eruptions. In particular, we reconstructed quantitatively the evolution of the lava flow field emplaced during 2004–2005 at Mt. Etna, subdivided in five eruptive phases from the earliest simple lava flows to the final compound lava field about 6 months later. Our results show that, in the first week of eruption, lava field formation was characterized by an increasing lava length that followed a power law growth and by a decreasing front velocity that followed a power law as well. Thereafter, the length increasing became almost constant until the developed lava tube system was able to drain the lava for long distances, with the area inundated by lava that grew linearly in the first 20 days. Finally, we demonstrate the crucial role that the syn-eruptive DEMs acquisition could have to improve our understanding of the emplacement dynamics of complex lava fields.
    Description: Published
    Description: e2020JB020499
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-02-21
    Description: Seismological constraints obtained from receiver function (RF) analysis provide important information about the crust and mantle structure. Here, we explore the utility of the free-surface multiple of the P-wave (PP) and the corresponding conversions in RF analysis. Using earthquake records, we demonstrate the efficacy of PPs-RFs before illustrating how they become especially useful when limited data is available in typical planetary missions. Using a transdimensional hierarchical Bayesian deconvolution approach, we compute robust P-to-S (Ps)- and PPs-RFs with InSight recordings of five marsquakes. Our Ps-RF results verify the direct Ps converted phases reported by previous RF analyses with increased coherence and reveal other phases including the primary multiple reverberating within the uppermost layer of the Martian crust. Unlike the Ps-RFs, our PPs-RFs lack an arrival at 7.2 s lag time. Whereas Ps-RFs on Mars could be equally well fit by a two- or three-layer crust, synthetic modeling shows that the disappearance of the 7.2 s phase requires a three-layer crust, and is highly sensitive to velocity and thickness of intra-crustal layers. We show that a three-layer crust is also preferred by S-to-P (Sp)-RFs. While the deepest interface of the three-layer crust represents the crust-mantle interface beneath the InSight landing site, the other two interfaces at shallower depths could represent a sharp transition between either fractured and unfractured materials or thick basaltic flows and pre-existing crustal materials. PPs-RFs can provide complementary constraints and maximize the extraction of information about crustal structure in data-constrained circumstances such as planetary missions.
    Description: Published
    Description: e2021JE006983
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: InSight; Mars; Martian crust; Receiver function; Seismology; Transdimensional hierarchical Bayesian
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-02-24
    Description: Focal mechanisms of selected earthquakes, recorded in the Mount Pollino region (southern Italy) from 2010 through 2014, are used to infer the pore fluid pressure at hypocenter depths. The 3-D excess pore pressure field provides evidence that the sequence occurs in a fluid-filled volume with values reaching 35 MPa. The mechanisms underlying this swarm-like sequence and the triggering of earthquakes are investigated by computing the cumulative static Coulomb stress change at hypocenter depths and analyzing the pore-pressure diffusion mechanism. The results indicate that static Coulomb stress change was lower than 0.01 MPa, which is the value generally assumed as threshold for the triggering, and seismicity distribution was actually driven by pore-pressure diffusion with relatively low diffusivity value. This latter mechanism could also explain the delayed triggering of the two larger events ML 4.3 and ML 5.0, respectively, that occurred about 150 days apart.
    Description: Published
    Description: e2021GL094552
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-02-25
    Description: A gas blowout during an unauthorised well drilling occurred on 9 June 2020 at the Rome-Ciampino boundary at the periphery of Colli Albani quiescent volcano. This zone hosts a shallow confined gas-pressured aquifer, which recently produced further three gas blowouts. Dangerous atmospheric CO2 and H2S concentrations killed some birds and 12 families were evacuated. The helium isotopic composition indicates that the gas has a magmatic origin. It rises toward the surface along leaky faults, pressurizing the shallow confined aquifer and creating a permanent gas blowout hazard. Colli Albani volcano is characterized by anomalous uplift, release of magmatic gas and episodic seismic crises. Should a volcanic unrest occur, gas hazard would increase in this densely inhabited zone of Rome city, as the input of magmatic gas into the confined aquifer might create overpressure conditions leading to a harmful phreatic explosion, or increase the emission of hazardous gas through newly created fractures.
    Description: Published
    Description: e2020GL089797
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: gas blowouts from drillings ; hazardous CO2 and H2S air concentrations ; anomalous soil CO2 flux ; hazard of a possible phreatic explosion ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-02-25
    Description: Most basaltic explosive eruptions intensify abruptly, allowing little time to document processes at the start of eruption. One opportunity came with the initiation of activity from fissure 8 (F8) during the 2018 eruption on the lower East Rift Zone of Kīlauea, Hawaii. F8 erupted in four episodes. We recorded 28 min of high-definition video during a 51-min period, capturing the onset of the second episode on 5 May. From the videos, we were able to analyze the following in-flight parameters: frequency and duration of explosions; ejecta heights; pyroclast exit velocities; in-flight total mass and estimated mass eruption rates; and the in-flight total grain size distributions. The videos record a transition from initial pulsating outgassing, via spaced, but increasingly rapid, discrete explosions, to quasisustained, unsteady fountaining. This transition accompanied waxing intensity (mass flux) of the F8 eruption. We infer that all activity was driven by a combination of the ascent of a coupled mixture of small bubbles and melt, and the buoyant rise of decoupled gas slugs and/or pockets. The balance between these two types of concurrent flow determined the exact form of the eruptive activity at any point in time, and changes to their relative contributions drove the transition we observed at early F8. Qualitative observations of other Hawaiian fountains at Kīlauea suggest that this physical model may apply more generally. This study demonstrates the value of in-flight parameters derived from high-resolution videos, which offer a rapid and highly timesensitive alternative to measurements based on sampling of deposits posteruption.
    Description: Published
    Description: e2020JB020903
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-12-14
    Description: The 2016–2017 Central Italy earthquake sequence struck the central Apennines between August 2016 and October 2016 with Mw ∈ [5.9; 6.5], plus four earthquakes occurring in January 2017 with Mw ∈ [5.0; 5.5]. We study Global Positioning System time series including near- and far-field domains. We use a variational Bayesian independent component analysis technique to separate the post-seismic deformation from signals caused by variation of the water content in aquifers at hundreds of meters of depth and of the soil moisture. For each independent component, realistic uncertainties and a plausible physical explanation are provided. We focus on the study of afterslip on the main structures surrounding the mainshock, highlighting the role played by faults that were not activated during the co-seismic phase in accommodating the post-seismic deformation. We report aseismic deformation occurring on the Paganica fault, which hosted the Mw 6.1 2009 L'Aquila earthquake, suggesting that static stress transfer and aseismic slip influence the recurrence time of nearby (∼50 km further south of the mainshocks) segments. A ∼2–3 km thick subhorizontal shear-zone, clearly illuminated by seismicity, which bounds at depth the west-dipping normal faults where the mainshocks nucleated, also shows aseismic slip. Since afterslip alone underestimates the displacement in the far-field domain, we consider the possibility that the shear zone marks the brittle-ductile transition, assuming the viscoelastic relaxation of the lower crust as a mechanism contributing to the post-seismic displacement. Our results suggest that multiple deformation processes are active in the first 2 years after the mainshocks.
    Description: Published
    Description: e2021JB022200
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-12-15
    Description: The Moon is not volcanically active at present, therefore, we rely on data from lunar samples, remote sensing, and numerical modeling to understand past lunar volcanism. The role of different volatile species in propelling lunar magma ascent and eruption remains unclear. We adapt a terrestrial magma ascent model for lunar magma ascent, considering different compositions of picritic magmas and various abundances of H 2 , H 2 O, and CO (measured and estimated) for these magmas. We also conduct a sensitivity analysis to investigate the relationship between selected input parameters (pre-eruptive pressure, temperature, conduit radius, and volatile content) and given outputs (exit gas volume fraction, velocity, pressure, and mass eruption rate). We find that, for the model simulations containing H2O and CO, CO was more significant than H2O in driving lunar magma ascent, for the range of volatile contents considered here. For the simulations containing H2 and CO, H2 had a similar or slightly greater control than CO on magma ascent dynamics. Our results showed that initial H2 and CO content has a strong control on exit velocity and pressure, two factors that strongly influence the formation of an eruption plume, pyroclast ejection, and overall deposit morphology. Our results highlight the importance of (a) quantifying and determining the origin of CO, and (b) understanding the abundance of different H-species present within the lunar mantle. Quantifying the role of volatiles in driving lunar volcanism provides an important link between the interior volatile content of the Moon and the formation of volcanic deposits on the lunar surface.
    Description: Published
    Description: e2021JE006939
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-12-15
    Description: 13 pages, 4 figures
    Description: We develop a Lagrangian stochastic model (LSM) of a volcanic plume in which the mean flow is provided by an integral plume model of the eruption column and fluctuations in the vertical velocity are modelled by a suitably constructed stochastic differential equation. The LSM is applied to the two eruptions considered by Costa et al. (2016) for the volcanic-plume intercomparison study. Vertical profiles of the mass concentration computed from the LSM are compared with equivalent results from a large-eddy simulation (LES) for the case of no ambient wind. The LSM captures the order of magnitude of the LES mass concentrations and some aspects of their profiles. In contrast with a standard integral plume model, i.e. without fluctuations, the mass concentration computed from the LSM decays (to zero) towards the top of the plume which is consistent with the LES plumes. In the lower part of the plume, we show that the presence of ash leads to a peak in the mass concentration at the level at which there is a transition from a negatively buoyant jet to a positively buoyant plume. The model can also account for the ambient wind and moisture.
    Description: Published
    Description: e2020JD033699
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Physics - Geophysics; Physics - Geophysics; Physics - Atmospheric and Oceanic Physics; Physics - Fluid Dynamics ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-12-16
    Description: Experiments that systematically explore rock friction under crustal earthquake conditions reveal that faults undergo abrupt dynamic weakening. Processes related to heating and weakening of fault surfaces have been invoked to explain pronounced velocity weakening. Both contact asperity temperature Ta and background temperature T of the slip zone evolve significantly during high-velocity slip due to heat sources (frictional work), heat sinks (e.g., latent heat of decomposition processes), and diffusion. Using carefully calibrated High-Velocity Rotary Friction experiments, we test the compatibility of thermal weakening models: (1) a model of friction based only on T in an extremely simplified, Arrhenius-like thermal dependence; (2) a flash heating model which accounts for the evolution of both V and T; (3) same but including heat sinks in the thermal balance; and (4) same but including the thermal dependence of diffusivity and heat capacity. All models reflect the experimental results but model (1) results in unrealistically low temperatures and model (2) reproduces the restrengthening phase only by modifying the parameters for each experimental condition. The presence of dissipative heat sinks in stage (3) significantly affects T and reflects on the friction, allowing a better joint fit of the initial weakening and final strength recovery across a range of experiments. Temperature is significantly altered by thermal dependence of (4). However, similar results can be obtained by (3) and (4) by adjusting the energy sinks. To compute temperature in this type of problem, we compare the efficiency of three different numerical approximations (finite difference, wavenumber summation, and discrete integral).
    Description: The authors acknowledge the support by ERC CoG No. 6145705 NOFEAR.
    Description: Published
    Description: e2020JB020652
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-12-16
    Description: Tectonic pseudotachylytes are thought to be unique to certain water-deficient seismogenic environments and their presence is considered to be rare in the geological record. Here, we present field and experimental evidence that frictional melting can occur in hydrothermal fluid-rich faults hosted in the continental crust. Pseudotachylytes were found in the 〉40 km-long Bolfín Fault Zone of the Atacama Fault System, within two ca. 1 m-thick (ultra)cataclastic strands hosted in a damage-zone made of chlorite-epidote-rich hydrothermally altered tonalite. This alteration state indicates that hydrothermal fluids were active during the fault development. Pseudotachylytes, characterized by presenting amygdales, cut and are cut by chlorite-, epidote- and calcite-bearing veins. In turn, crosscutting relationship with the hydrothermal veins indicates pseudotachylytes were formed during this period of fluid activity. Rotary shear experiments conducted on bare surfaces of hydrothermally altered rocks at seismic slip velocities (3 m s-1) resulted in the production of vesiculated pseudotachylytes both at dry and water-pressurized conditions, with melt lubrication as the primary mechanism for fault dynamic weakening. The presented evidence challenges the common hypothesis that pseudotachylytes are limited to fluid-deficient environments, and gives insights into the ancient seismic activity of the system. Both field observations and experimental evidence, indicate that pseudotachylytes may easily be produced in hydrothermal environments, and could be a common co-seismic fault product. Consequently, melt lubrication could be considered one of the most efficient seismic dynamic weakening mechanisms in crystalline basement rocks of the continental crust.
    Description: The authors would like to acknowledge the support of ERC CoG No 614705 NOFEAR. R. Gomila has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska- Curie grant agreement No 896346 – FRICTION.
    Description: Published
    Description: e2021GC009743
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: Atacama fault system; fluid‐rich faults; frictional melting; tectonic pseudotachylytes; vesiculation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-12-16
    Description: Theoretical studies predict that during earthquake rupture faults slide at non-constant slip velocity, however it is not clear which source time functions are compatible with the high velocity rheology of earthquake faults. Here we present results from high velocity friction experiments with nonconstant velocity history, employing a well-known seismic source solution compatible with earthquake source kinematics. The evolution of friction in experiments shows a strong dependence on the applied slip history, and parameters relevant to the energetics of faulting scale with the impulsiveness of the applied slip function. When comparing constitutive models of strength against our experimental results we demonstrate that the evolution of fault strength is directly controlled by the temperature evolution on and off the fault. Flash heating predicts weakening behavior at short timescales, but at larger timescales strength is better predicted by a viscous creep rheology. We use a steady-state slip pulse to test the compatibility of our strength measurements at imposed slip rate history with the stress predicted from elastodynamic equilibrium. Whilst some compatibility is observed, the strength evolution indicates that slip acceleration and deceleration might be more rapid than that imposed in our experiments.
    Description: This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no 804685/“RockDEaF”) and under the European Community's Seventh Framework Programme (grant agreement n 614705/“NOFEAR”)
    Description: Published
    Description: e2021JB022149
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-12-16
    Description: Phreatic and hydrothermal eruptions are small energetic explosive events that generally have few to no precursors and represent a considerable hazard in tourist and urban areas. At the Campi Flegrei caldera, these events have occurred at the Solfatara volcano and have likely occurred at the nearby Pisciarelli site, where the most powerful hydrothermal phenomena are located. Here, increased hydrothermal activity has caused relevant morphological changes that has led local authorities to deny access to the site. Stratigraphic, structural, and geophysical investigations have allowed us to reconstruct the volcano-tectonic setting of the area. In particular, we have recognized a fault system and related damage zones that act as the preferred pathway for hydrothermal fluids in the caldera. At the surface, these faults control the migration and/or accumulation of deep-seated gases into the subsoil and the formation of fumaroles and mud pools. We have recognized two main fault systems with different ages that show variable displacements. The electrical anomalies identified by electrical resistivity tomography further highlight the main fault pattern and show the interplay between volcano-tectonic structures and fluid circulation. Host rocks and fault zones may be involved in self-sealing processes and/or rock failure phenomena capable of modifying the fluid pathways and establishing favorable conditions, leading to overpressure and/or rapid decompression of fluids and triggering an explosive event. Furthermore, stratigraphic mapping shows fossil mud pool sediments embedded in an old debris flow located above the modern hydrothermal system. This implies that they were at a higher elevation when they formed. The morphotectonic evolution and intense rock alterations in the area could promote further landslide episodes, producing debris-flow deposits that can cover the active area and possibly trigger hydrothermal/ phreatic events.
    Description: Published
    Description: e2020TC006227
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: fault system ; hydrothermal fluids ; geoelectrical image ; volcanic hazard ; 04.08. Volcanology ; 04.02. Exploration geophysics ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-12-22
    Description: A comprehensive surface displacement monitoring system installed in the recently deglaciated bedrock slopes of the Aletsch Valley shows systematic reversible motions at the annual scale. We explore potential drivers for this deformation signal and demonstrate that the main driver is pore pressure changes of groundwater in fractured granitic mountain slopes. The spatial pattern of these reversible annual deformations shows similar magnitudes and orientations for adjacent monitoring points, leading to the hypothesis that the annually reversible deformation is caused by slope-scale groundwater elevation changes and rock mass properties. Conversely, we show that the ground reaction to infiltration from snowmelt and summer rainstorms can be highly heterogeneous at local scale, and that brittle-ductile fault zones are key features for the groundwater pressure-related rock mass deformations. We also observe irreversible long-term trends (over the 6.5 years data set) of deformation in the Aletsch valley composed of a larger uplift than observed at our reference GNSS station in the Rhone valley, and horizontal displacements of the slopes towards the valley. These observations can be attributed respectively to the elastic bedrock rebound in response to current glacier mass downwasting of the Great Aletsch Glacier and gravitational slope deformations enabled by cyclic groundwater pressure-related rock mass fatigue in the fractured rock slopes.
    Description: Published
    Description: e2021JF006353
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2022-02-11
    Description: Seismic event detection and phase picking are the base of many seismological workflows. In recent years, several publications demonstrated that deep learning approaches significantly outperform classical approaches, achieving human-like performance under certain circumstances. However, as studies differ in the datasets and evaluation tasks, it is unclear how the different approaches compare to each other. Furthermore, there are no systematic studies about model performance in cross-domain scenarios, that is, when applied to data with different characteristics. Here, we address these questions by conducting a large-scale benchmark. We compare six previously published deep learning models on eight data sets covering local to teleseismic distances and on three tasks: event detection, phase identification and onset time picking. Furthermore, we compare the results to a classical Baer-Kradolfer picker. Overall, we observe the best performance for EQTransformer, GPD and PhaseNet, with a small advantage for EQTransformer on teleseismic data. Furthermore, we conduct a cross-domain study, analyzing model performance on data sets they were not trained on. We show that trained models can be transferred between regions with only mild performance degradation, but models trained on regional data do not transfer well to teleseismic data. As deep learning for detection and picking is a rapidly evolving field, we ensured extensibility of our benchmark by building our code on standardized frameworks and making it openly accessible. This allows model developers to easily evaluate new models or performance on new data sets. Furthermore, we make all trained models available through the SeisBench framework, giving end-users an easy way to apply these models.
    Description: This work was supported by the Helmholtz Association Initiative and Networking Fund on the HAICORE@KIT partition. J. Münchmeyer acknowledges the support of the Helmholtz Einstein International Berlin Research School in Data Science (HEIBRiDS). The authors thank the Impuls-und Vernetzungsfonds of the HGF to support the REPORT-DL project under the grant agreement ZT-I-PF-5-53. This work was also partially supported by the project INGV Pianeta Dinamico 2021 Tema 8 SOME (CUP D53J1900017001) funded by Italian Ministry of University and Research “Fondo finalizzato al rilancio degli investimenti delle amministrazioni centrali dello Stato e allo sviluppo del Paese, legge 145/2018.” Open access funding enabled and organized by Projekt DEAL.
    Description: Published
    Description: e2021JB023499
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: seismic phase recognition ; deep learnig ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2022-02-07
    Description: We study the drivers behind the global atmospheric methane (CH4) increase observed after 2006. Candidate emission and sink scenarios are constructed based on proposed hypotheses in the literature. These scenarios are simulated in the TM5 tracer transport model for 1984-2016 to produce three-dimensional fields of CH4 and δ 13C-CH4, which are compared with observations to test the competing hypotheses in the literature in one common model framework. We find that the fossil fuel (FF) CH4 emission trend from the Emissions Database for Global Atmospheric Research 4.3.2 inventory does not agree with observed δ 13C-CH4. Increased FF CH4 emissions are unlikely to be the dominant driver for the post-2006 global CH4 increase despite the possibility for a small FF emission increase. We also find that a significant decrease in the abundance of hydroxyl radicals (OH) cannot explain the post-2006 global CH4 increase since it does not track the observed decrease in global mean δ 13C-CH4. Different CH4 sinks have different fractionation factors for δ 13C-CH4, thus we can investigate the uncertainty introduced by the reaction of CH4 with tropospheric chlorine (Cl), a CH4 sink whose abundance, spatial distribution, and temporal changes remain uncertain. Our results show that including or excluding tropospheric Cl as a 13 Tg/year CH4 sink in our model changes the magnitude of estimated fossil emissions by ∼20%. We also found that by using different wetland emissions based on a static versus a dynamic wetland area map, the partitioning between FF and microbial sources differs by 20 Tg/year, ∼12% of estimated fossil emissions.
    Description: Published
    Description: e2021GB007000
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: atmospheric methane; atmospheric modeling; greenhouse gas; methane budget; source attribution; stable isotope of methane
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2022-02-14
    Description: Active faulting and deep-seated gravitational slope deformation (DGSD) are common geological hazards in mountain belts worldwide. In the Italian central Apennines, kilometer-thick carbonate sedimentary sequences are cut by major active normal faults that shape the landscape, generating intermontane basins. Geomorphological observations suggest that the DGSDs are commonly located in fault footwalls. We selected five mountain slopes affected by DGSD and exposing the footwall of active seismogenic normal faults exhumed from 2 to 0.5 km depth. Field structural analysis of the slopes shows that DGSDs exploit preexisting surfaces formed both at depth and near the ground surface by tectonic faulting and, locally, by gravitational collapse. Furthermore, the exposure of sharp scarps along mountain slopes in the central Apennines can be enhanced either by surface seismic rupturing or gravitational movements (e.g., DGSD) or by a combination of the two. At the microscale, DGSDs accommodate deformation mechanisms similar to those associated with tectonic faulting. The widespread compaction of micro-grains (e.g., clast indentation), observed in the matrix of both normal faults and DGSD slip zones, is consistent with clast fragmentation, fluid-infiltration, and congruent pressuresolution active at low ambient temperatures (〈60°C) and lithostatic pressures (〈80 MPa). Although clast comminution is more intense in the slip zones of normal faults because of the larger displacement accommodated, we are not able to find microstructural markers that allow us to uniquely distinguish faults from DGSDs.
    Description: Published
    Description: e2021TC006698
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Tettonofisica ; Geologia
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-01-03
    Description: The increase of available seismic data prompts the need for automatic processing procedures to fully exploit them. A good example is aftershock sequences recorded by temporary seismic networks, whose thorough analysis is challenging because of the high seismicity rate and station density. Here, we test the performance of two recent Deep Learning algorithms, the Generalized Phase Detection and Earthquake Transformer, for automatic seismic phases identification. We use data from the December 2019 Mugello basin (Northern Apennines, Italy) swarm, recorded on 13 permanent and nine temporary stations, applying these automatic procedures under different network configurations. As a benchmark, we use a catalog of 279 manually repicked earthquakes reported by the Italian National Seismic Network. Due to the ability of deep learning techniques to identify earthquakes under poor signal-to-noise-ratio (SNR) conditions, we obtain: (a) a factor 3 increase in the number of locations with respect to INGV bulletin and (b) a factor 4 increase when stations from the temporary network are added. Comparison between deep learning and manually picked arrival times shows a mean difference of 0.02–0.04 s and a variance in the range 0.02–0.07 s. The improvement in magnitude completeness is ∼0.5 units. The deep learning algorithms were originally trained using data sets from different regions of the world: our results indicate that these can be successfully applied in our case, without any significant modification. Deep learning algorithms are efficient and accurate tools for data reprocessing in order to better understand the space-time evolution of earthquake sequences.
    Description: Published
    Description: e2021JB023405
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-12-14
    Description: We present a full characterization of a 20 cm-thick tephra layer found intercalated in the marine sediments recovered at Site U1524 during International Ocean Discovery Program (IODP) Expedition 374, in the Ross Sea, Antarctica. Tephra bedforms, mineral paragenesis, and major- and trace element composition on individual glass shards were investigated and the tephra age was constrained by 40Ar-39Ar on sanidine crystals. The 40Ar-39Ar data indicate that sanidine grains are variably contaminated by excess Ar, with the best age estimate of 1.282 ± 0.012 Ma, based on both single-grain total fusion analyses and step-heating experiments on multi-grain aliquots. The tephra is characterized by a very homogeneous rhyolitic composition and a peculiar mineral assemblage, dominated by sanidine, quartz, and minor aenigmatite and arfvedsonite-riebeckite amphiboles. The tephra from Site U1524 compositionally matches with a ca. 1.3 Ma, rhyolitic pumice fall deposit on the rim of the Chang Peak volcano summit caldera, in the Marie Byrd Land, located ca. 1,300 km from Site U1524. This contribution offers important volcanological data on the eruptive history of Chang Peak volcano and adds a new tephrochronologic marker for the dating, correlation, and synchronization of marine and continental early Pleistocene records of West Antarctica.
    Description: Published
    Description: e2021GC009739
    Description: 1V. Storia eruttiva
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    Wiley-AGU
    In:  Lei, J., Wang, W., Burns, A. G., Zhang, S.-R., & Dang, T. (2021). Comments on “poststorm thermospheric NO overcooling?” by Mikhailov and Perrone (2020). Journal of Geophysical Research: Space Physics, 126, e2020JA027992. https://doi.org/10.1029/2020JA027992
    Publication Date: 2021-12-24
    Description: Recently, our paper “Poststorm Thermospheric NO Overcooling?” has been published in JGR. Lei with colleagues (2012) who have proposed the “NO overcooling” concept have written Comments on this paper. Below is given our reply. Everywhere MP20 means the reference to the paper by Mikhailov and Perrone (2020). In the beginning to avoid misunderstanding, it is necessary to stress that in MP20 we did not touch on the well-documented process of the thermosphere NO cooling (e.g., Gordiets et al., 1982; Maeda et al., 1989; Mlynczak et al., 2018; Prölss, 2004, 2011; Roble, 1995; Weimer et al., 2011) which mainly takes place in the lower thermosphere. We only explained a decrease of neutral gas density at F2-layer heights during the recovery storm phase. The effect manifests seasonal dependence which is not explained by the “NO overcooling” mechanism
    Description: Published
    Description: e2020JA028096
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-12-23
    Description: The SW Iberian margin is one of the most seismogenic and tsunamigenic areas in W-Europe, where large historical and instrumental destructive events occurred. To evaluate the sensitivity of the tsunami impact on the coast of SW Iberia and NW Morocco to the fault geometry and slip distribution for local earthquakes, we carried out a set of tsunami simulations considering some of the main known active crustal faults in the region: the Gorringe Bank (GBF), Marquês de Pombal (MPF), Horseshoe (HF), North Coral Patch (NCPF) and South Coral Patch (SCPF) thrust faults, and the Lineament South strike-slip fault. We started by considering for all of them relatively simple planar faults featuring with uniform slip distribution; we then used a more complex 3D fault geometry for the faults constrained with a large 2D multichannel seismic dataset (MPF, HF, NCPF, and SCPF); and finally, we used various heterogeneous slip distributions for the HF. Our results show that using more complex 3D fault geometries and slip distributions, the peak wave height at the coastline can double compared to simpler tsunami source scenarios from planar fault geometries. Existing tsunami hazard models in the region use homogeneous slip distributions on planar faults as initial conditions for tsunami simulations and therefore underestimate tsunami hazard. Complex 3D fault geometries and non-uniform slip distribution should be considered in future tsunami hazard updates. The tsunami simulations also support the finding that submarine canyons attenuate the wave height reaching the coastline, while submarine ridges and shallow shelves have the opposite effect.
    Description: Published
    Description: e2021JB022127
    Description: 2T. Deformazione crostale attiva
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: tsunami ; earthquake ; complex fault geometry ; heterogeneous slip distribution ; tsunami numerical modeling ; seismic and tsunami hazard ; 04.04. Geology ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-12-14
    Description: Velocity variations obtained from ambient seismic noise are sensitive to many factors. We aimed to disentangle these processes in a 10-year-long recording of seismic noise from a single station in the Pollino region, in southern Italy. This region is characterized by aquifers and by a relatively short period of high seismic activity that included slow slip events and a urn:x-wiley:15252027:media:ggge22677:ggge22677-math-0001 earthquake that occurred on October 25, 2012. We apply two models that estimate the water level inside an aquifer, which show a good correlation with the measured urn:x-wiley:15252027:media:ggge22677:ggge22677-math-0002, showing that the velocity variations are inversely proportional to the pore pressure inside the aquifer. Our interpretation is further confirmed by geodetic measurements that show that in a direction parallel to the strike angle of the fault rupture, the expansion-contraction displacement of the zone follows the same patterns observed in the models and in the velocity variations, as a result of the pressure generated by the water on its interior. Going one step further, we analyze the nature of the small discrepancies between the measured and modeled velocity variations. These correlate well with the rainfall and with the vertical geodetic measures, which indicates an elastic response of the zone to the loading generated by the rainwater. Comparisons between these variables allow us to clearly identify the period of the seismic activity in the zone, which is represented by the characteristic drop in the seismic velocity in the period from the beginning of 2012 to mid-2013.
    Description: Published
    Description: e2021GC009742
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-12-23
    Description: Abstract The Lisbon Metropolitan Area, Portugal, has been affected by several destructive earthquakes nucleating both along the offshore Africa-Eurasia plate boundary and on onshore inherited intraplate faults. Using a dense GNSS dataset coupled with PSInSAR analysis, we provide new evidence of sinistral simple shear driven by a NNE-SSW first-order tectonic lineament. PSInSAR vertical velocities corroborate qualitatively the GNSS strain-rate field, showing uplift/subsidence where the GNSS data indicate contraction/extension. We propose the presence of a small block to the W of Lisbon moving independently toward the SW with a relative velocity of 0.96 ± 0.20 mm/yr, whose boundaries are part of a complex and as yet poorly constrained strike-slip fault system, possibly rooting at depth into a simpler basement fault. Comparison between geodetic and seismic moment-rates indicates a high seismic coupling. We show that the contribution of intraplate faults to the seismic hazard in the LMA is more important than currently assumed.
    Description: FCT - Fundação para a Ciência e a Tecnologia, Lisbon. Grant Number: EXCL/GEO-FIQ/0411/2012 Agencia Española de Investigacion. Grant Number: RTI2018-093874-B-100 AGEO - Platform for Atlantic Geohazard Risk Management. Grant Number: EAPA_884/2018
    Description: Published
    Description: e2021GL096862
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Deformation ; Intraplate ; PISinSAR ; GNSS ; Portugal ; 04. Solid Earth ; 04.04. Geology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-12-22
    Description: Explosive basaltic eruptions pose significant threats to local communities, regional infrastructures and international airspace. They produce tephra plumes that are often associated with a lava fountain, complicating their dynamics. Consequently, source parameters cannot be easily constrained using traditional formulations. Particularly, mass flow rates (MFRs) derived from height observations frequently differ from field deposit-derived MFRs. Here, we investigate this discrepancy using a novel integral plume model that explicitly accounts for a lava fountain, which is represented as a hot, coarse-grained inner plume co-flowing with a finer-grained outer plume. The new model shows that a plume associated with a lava fountain has higher variability in rise height than a standard plume for the same initial MFR depending on initial conditions. The initial grain-size distribution and the relative size of the lava fountain compared to the surrounding plume are primary controls on the final plume height as they determine the strength of coupling between the two plumes. We apply the new model to the August 29, 2011 paroxysmal eruption of Mount Etna, Italy. The modeled MFR profile indicates that the field-derived MFR does not correspond to that at the vent, but rather the MFR just above the lava fountain top. High fallout from the lava fountain results in much of the erupted solid material not reaching the top of the plume. This material deposits to form the proximal cone rather than dispersing in the atmosphere. With our novel model, discrepancies between the two types of observation-derived MFR can be investigated and understood.
    Description: Published
    Description: e2020JB021360
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-02-11
    Description: Volcanism has played a major role in modifying the Martian surface. The Tharsis volcanic province dominates the western hemisphere of the planet with numerous effusive volcanic constructs and deposits. Here, we present the results of an in-depth study aimed at characterizing and modeling the emplacement conditions of 40 lava flows in the Tharsis volcanic province. These lava flows display a range of lengths (∼15–310 km), widths (∼0.5–29 km), and thicknesses (∼11–91 m). The volumes and flow masses range from ∼1 to 440 km3 and ∼1011 to 1014 kg, respectively. Using three different models, we calculated a range of eruption rates (0.3–3.5 × 104 m3/s), viscosities (104–107 Pa s), yield strengths (800–104 Pa), and emplacement times (8 h–11 years). While the flow lengths and volumes are typically larger than terrestrial lava flows by an order of magnitude, rheologies and eruption rates are similar based on our findings. Emplacement times suggest that eruptions were active for long periods of time, which implies the presence and persistence of open subsurface pathways. Differences in flow morphology and emplacement conditions across localities within Tharsis highlight different pathways and volumes of available material between the central volcanoes and the plains. The scale of the eruptions suggests there could have been eruption-driven local, regional, and perhaps, global impacts on the Martian climate. The relatively recent age of the eruptions implies that Mars has retained the capability of producing significant localized volcanism.
    Description: Published
    Description: e2020JE006791
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Lava flows ; 05.07. Space and Planetary sciences ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2022-02-11
    Description: Knowledge of the global distribution of Earth volcanism is critical in many fields of the Geosciences involving large-scale assessments, such as plate tectonics, global volcanic hazards, and climate change. Recent analysis has revealed that global eruption inter-event times are exponentially distributed, implying that on the global scale volcanic eruptions are Poisson distributed. Here, we employ those findings to calibrate a continuous frequency-volume distribution for subaerial eruptions of any size on Earth from small lava flows to super-eruptions. Obtaining such a continuous global distribution implies considering the existing data and the way they are collected and categorized into databases, as well as extending the available eruption volume data to eruption VEI classes less than 4. The continuous global distribution shows an initial log-normal section up to volumes of about 170 Mm3, followed by a power-law section, tapered on its extreme right-end side, encompassing about five orders of magnitude of eruption volumes. The potential implications are discussed in terms of short-term eruption forecasts of the size of an impending eruption, critical for volcanic emergency management.
    Description: Published
    Description: e2021JB021763
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-12-23
    Description: The tsunami source of the 2021 MW 8.1 Raoul Island earthquake in the Kermadec subduction zone was estimated by inverting the tsunami signals recorded by Deep-ocean Assessment and Reporting of Tsunamis (DART) bottom pressure sensors and coastal tide-gauges. The main asperity aftershock distribution and rapid back-projection analysis. Three earthquakes of M ∼8 or larger which also produced moderate tsunamis happened in the 20th century in the same portion of the subduction zone. This is the first great tsunamigenic event captured by the new New Zealand DART network in the South West Pacific, which proved valuable to estimate a robust image of the tsunami source. We also show a first proof of concept of the capability of this network to reduce the uncertainty associated with tsunami forecasting and to increase the lead time available for evacuation for future alerts.
    Description: Published
    Description: e2021GL094449
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2022-06-17
    Description: The impact of hazardous pyroclastic density currents (PDCs) increases with runout distance, which is strongly influenced by the mass flux. This article shows that the mass flux of a PDC may derive not only from vent discharge during the eruption, but also from partly hot, temporary stores (accumulations) of aerated pyroclastic material perched high on the volcano. The unforeseen PDC at Fuego volcano (Guatemala) on 3 June 2018 happened c.1.5 hr after the eruption climax. It overran the village of San Miguel Los Lotes causing an estimated 400+ fatalities. Analysis of the facies architecture of the deposit combined with video footage shows that a pulsatory block-and-ash flow flowed down the Las Lajas valley and rapidly waxed, the runout briefly increasing to 12.2 km as it filled and then spilled out of river channels, entered a second valley where it devastated the village and became increasingly erosive, prior to waning. Paleomagnetic analysis shows that the PDC contained only 6% very hot (〉590°C) clasts, 39% moderately hot (∼200°C–500°C) clasts, and 51% cool (〈200°C) clasts. This reveals that the block-and-ash flow mostly derived from collapse of loose and partly hot pyroclastic deposits, stored high on the volcano, gradually accumulated during the last 2–3 years. Progressive collapse of unstable deposits supplied the block-and-ash flow, causing a bulk-up process, waxing flow, channel overspill and unexpected runout. The study demonstrates that deposit-derived pyroclastic currents from perched temporary tephra stores pose a particular hazard that is easy to overlook and requires a new, different approach to hazard assessment and monitoring.
    Description: Published
    Description: e2021JB023699
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography and Applied Ocean Science and Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
    Description: The redox cycling of oxygen between O2, water, and intermediate redox states including hydrogen peroxide and superoxide, has profound impact on the availability and distribution of dissolved O2, the habitability of the marine biosphere, and cellular metabolic and physiological reactions that utilize O2. The sum total of processes that produce, consume, and exchange atoms with O2 in the atmosphere, oceans, and subsurface leave their isotopic fingerprints on the abundance of the three stable isotopes of O2 in the environment. In this thesis, I explore two aspects of the oxygen cycle in the past and present. First, I investigate the ability of manganese (Mn) oxide minerals to capture and retain the oxygen isotopic signature of dissolved O2 during the oxidation of aqueous Mn(II) to Mn-oxide minerals. I determine that approximately half of the oxygen atoms in Mn(III,IV) oxides are directly incorporated from dissolved oxygen, and use isotope labeling techniques to further constrain how the dissolved oxygen isotope signature may be determined from that of Mn oxides. I perform an in-depth characterization of a ferromanganese crust from the central Pacific and, using triple oxygen isotope measurements, demonstrate that Mn oxides in ferromanganese crusts from around the world retain signatures of dissolved oxygen for at least 30 million years. I next turn to a previously unconsidered aspect of the global oxygen cycle: dark, extracellular superoxide production by marine microbes. I measure extracellular superoxide production rates by some of the ocean’s most abundant organisms. I use these rates along with previous measurements to estimate that extracellular superoxide production yields a net sink of 5-19% of marine dissolved oxygen. Ultimately, the degree to which superoxide production is a sink of oxygen lies in the fate of its primary decay product, hydrogen peroxide. I determine the range of oxidative and reductive decay of hydrogen peroxide across a range of environmental conditions in a meromictic pond, thus validating several assumptions from our global estimate. Altogether, this thesis illuminates a path toward investigating the oxygen cycle on million-year timescales in Earth’s recent past and demonstrates the importance of microbial superoxide production in the biogeochemical cycling of O2.
    Description: This work was funded by the following grants and organizations: NASA Earth and Space Science Fellowship (NNX15AR62H), MIT Praecis Presidential Graduate Fellowship, NASA Exobiology (NNX15AM046), NSF-OCE grant 1355720, WHOI Ocean Ventures Fund, MIT Student Assistance Fund, WHOI Academic Programs Office, and the Stanford Synchrotron Radiation Lightsource. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DEAC02-76SF00515.
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography and Microbial Biogeochemistry at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
    Description: Marine microbes play key roles in global biogeochemistry by mediating chemical transformations and linking nutrient cycles to one another. A major goal in oceanography is to predict the activity of marine microbes across disparate ocean ecosystems. Towards this end, molecular biomarkers are important tools in chemical oceanography because they allow for both the observation and interpretation of microbial behavior. In this thesis, I use molecular biomarkers to develop a holistic, systems biology approach to the study of marine microbes. I begin by identifying unique patterns in the biochemical sensory systems of marine bacteria and suggest that these represent a specific adaptation to the marine environment. Building from this, I focus on the prevalent marine nitrogen fixer Trichodesmium, whose activity affects global nitrogen, carbon, phosphorus, and trace metal cycles. A metaproteomic survey of Trichodesmium populations identified simultaneous iron and phosphate co-stress throughout the tropical and subtropical oceans, demonstrating that this is caused by the biophysical limits of membrane space and nutrient diffusion. Tackling the problem at a smaller scale, I investigated the metaproteomes of individual Trichodesmium colonies captured from a single field site, and identified significant variability related to iron acquisition from mineral particles. Next, I investigated diel proteomes of cultured Trichodesmium erythraeum sp. IMS101 to highlight its physiological complexity and understand how and why nitrogen fixation occurs in the day, despite the incompatibly of the nitrogenase enzyme with oxygen produced in photosynthesis. This thesis develops a fundamental understanding of how Trichodesmium and other organisms affect, and are affected by, their surroundings. It indicates that a reductionist approach in which environmental drivers are considered independently may not capture the full complexity of microbechemistry interactions. Future work can focus on benchmarking and calibration of the protein biomarkers identified here, as well as continued connection of systems biology frameworks to the study of ocean chemistry.
    Description: This work was supported by an MIT Walter A. Rosenblith Presidential Fellowship and a National Science Foundation Graduate Research Program Fellowship under grant number 1122274 [N.Held]. This work was also supported by the WHOI Ocean Ventures fund [N.Held], Gordon and Betty Moore Foundation grant number 3782 [M.Saito], National Science Foundation grant numbers OCE-1657766 [M.Saito], EarthCube-1639714 [M.Saito], OCE-1658030 [M.Saito], and OCE-1260233 [M.Saito], and funding from the UK Natural Environment Research Council (NERC) under grants awarded to C.M. (NE/N001079/1) and M.L. (NE/N001125/1). This thesis was completed during a writing residency at the Turkeyland Cove Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
    Description: The shallow marine ecosystems of coral atolls and the human communities they support are among the most vulnerable to anthropogenic climate change. Sea-level rise threatens to inundate low-lying reef islands, tropical cyclone intensification threatens islands with flooding and erosion, and ocean warming and acidification threaten the health of coral reefs. Unfortunately, the sediment dynamics that shape the morphology of coral reefs and atoll reef islands are poorly understood, hindering predictions of coral atoll responses to climate change forcing. Here, I apply an eclectic set of methods, including numerical modeling, physical lab experiments, and sedimentological analysis, to produce insights into the ways tropical cyclones and waves move sediment on fringing reefs. First, I use a numerical model of hydrodynamics to predict the influence of sea-level rise and wave climate change on sediment transport across a coral atoll fringing reef. I demonstrate that by the end of the century, sea-level rise will reduce sediment transport rates from the fore reef to the beach, but increase transport rates from the reef flat to the beach. Wave climate change will have relatively negligible influence on cross-reef sediment transport. Additionally, I use the weathering of foraminifera tests to produce a sediment proxy of transport duration and direction across atoll reef flats, but demonstrate that the proxy does not clearly identify storm deposits. Second, I execute a series of experiments in an oscillating flow tunnel to constrain the rate at which sediment erodes reef surfaces under waves. I find that the erosion rate increases as a power law of wave orbital velocity, and that amount of sediment has a second-order influence. Finally, I establish grain size in a sediment core retrieved from a blue hole in the Marshall Islands as a proxy for tropical cyclone genesis and, using the results from an ensemble of climate models, demonstrate that enhanced tropical cyclogenesis during the Little Ice Age may have been driven by an anomalously negative Pacific Meridional Mode. This thesis demonstrates the importance of sediment dynamics on the morphology of fringing reefs and atoll reef islands and the sensitivity of those dynamics to centennial climate variability.
    Description: Funding for this project was provided by the Strategic Environmental Research and Development Program (SERDP RC-2336).
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Advances in the miniaturization of microelectronics has greatly contributed to the proliferation of small, low cost autonomous underwater vehicles (AUVs). These affordable vehicles offer organizations a flexible platform that can be adapted to support a multitude of research goals. The small size and low entry cost come with a trade off of simple navigation systems, typically dead reckoning (DR) using a speed determined via propeller counts and heading from a low cost micro-electromechanical system (MEMS) inertial measurement unit (IMU), whose error grows unbounded without the availability of a ground referenced fix source and is compounded by the bias present in the speed measurement due to the change in hydrodynamics from the addition of sensors to the hull form. Additionally, some capabilities such as water current velocity measurement traditionally requires the addition of equipment that is not only expensive, but also whose size and power consumption can adversely affect operating characteristics and deployment times. This thesis expands on previous research using one-way travel time inverted USBL (OWTT-iUSBL) to calculate the local current velocity without the addition of a Doppler velocity log (DVL) or acoustic Doppler current profiler (ADCP). A novel extended Kalman filter (EKF) is proposed that, in addition to calculating the current velocity, estimates and corrects for the bias present in the speed measurement as determined by the main vehicle computer. Using data collected on the Charles River at the Massachusetts Institute of Technology (MIT) Sailing Pavilion, it is shown that current velocities can be reasonably calculated using OWTT-iUSBL data as compared to the values calculated using long baseline (LBL) data.
    Description: Funding for this thesis research was provided the US Navy Civilian Institutions Office through the Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program.
    Keywords: EKF ; low-cost ; AUV
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2022-10-27
    Description: This paper is not subject to U.S. copyright. The definitive version was published in Sherwood, C. R., van Dongeren, A., Doyle, J., Hegermiller, C. A., Hsu, T.-J., Kalra, T. S., Olabarrieta, M., Penko, A. M., Rafati, Y., Roelvink, D., van der Lugt, M., Veeramony, J., & Warner, J. C. Modeling the morphodynamics of coastal responses to extreme events: what shape are we in? Annual Review of Marine Science, 14, (2022): 457–492, https://doi.org/10.1146/annurev-marine-032221-090215.
    Description: This review focuses on recent advances in process-based numerical models of the impact of extreme storms on sandy coasts. Driven by larger-scale models of meteorology and hydrodynamics, these models simulate morphodynamics across the Sallenger storm-impact scale, including swash,collision, overwash, and inundation. Models are becoming both wider (as more processes are added) and deeper (as detailed physics replaces earlier parameterizations). Algorithms for wave-induced flows and sediment transport under shoaling waves are among the recent developments. Community and open-source models have become the norm. Observations of initial conditions (topography, land cover, and sediment characteristics) have become more detailed, and improvements in tropical cyclone and wave models provide forcing (winds, waves, surge, and upland flow) that is better resolved and more accurate, yielding commensurate improvements in model skill. We foresee that future storm-impact models will increasingly resolve individual waves, apply data assimilation, and be used in ensemble modeling modes to predict uncertainties.
    Description: All authors except D.R. were partially supported by the IFMSIP project, funded by US Office of Naval Research grant PE 0601153N under contracts N00014-17-1-2459 (Deltares), N00014-18-1-2785 (University of Delaware), N0001419WX00733 (US Naval Research Laboratory, Monterey), N0001418WX01447 (US Naval Research Laboratory, Stennis Space Center), and N0001418IP00016 (US Geological Survey). C.R.S., C.A.H., T.S.K., and J.C.W. were supported by the US Geological Survey Coastal/Marine Hazards and Resources Program. A.v.D. and M.v.d.L. were supported by the Deltares Strategic Research project Quantifying Flood Hazards and Impacts. M.O. acknowledges support from National Science Foundation project OCE-1554892.
    Keywords: Coastal morphodynamics ; Extreme storms ; Coastal modeling ; Sandy coasts ; Waves ; Sediment transport
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-26
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: This thesis explores the volatile content of the mantle, subducted oceanic crust, and arc magmas as well as the structure of slow spreading ocean crust and the heterogeneity of Earth’s upper mantle. In Chapter 2, I directly explore the halogen (F and Cl) content of mantle minerals in situ, then use these measurements to assess the halogen content of the upper mantle. In Chapter 3, I investigate the volatile content of Raspas eclogites (SW Ecuador), a proxy for deeply subducted oceanic crust, to evaluate volatile transfer from crustal generation at divergent plate boundaries (e.g., mid-ocean ridges) to recycling of ocean crust at subduction zones. In Chapter 4, I use the H2O content of nominally anhydrous minerals in plutonic arc cumulates to elucidate the H2O content of the melts from which the rocks crystallized. In this way, I assert that primitive arc magmas may contain 4–10 wt.% H2O and through fractional crystallization up to ~20 wt.% H2O, making them far more hydrous than traditional methods (i.e., olivine-hosted melt inclusions) surmise. In Chapter 5, I show that mantle peridotite exposed along the 16ºN region of the Mid-Atlantic Ridge originated in an arc setting and has been remixed into subridge mantle, indicating that the sub-ridge mantle is more heterogeneous and depleted than inferences made from mid-ocean ridge basalts suggest. Chapter 6 surveys the life cycle of oceanic core complexes through zircon geochronology and posits an updated framework for understanding the termination of oceanic core complexes, and more broadly oceanic detachment faults. Together, this contribution highlights the chemical heterogeneity of the mantle, and quantifies the full extent of volatiles hosted by mantle and crustal reservoirs.
    Description: The Stanley Watson Fellowship (WHOI) provided financial support during my first year of graduate school. The Academic Programs Office Ocean Venture Fund (WHOI) provided seed funding which initiated Chapters 3 and 4, and ultimately led to two funded NSF proposals. These resources are vital to JP students, and I am incredibly grateful for them. Primary support was provided by the National Science Foundation grants to Veronique Le Roux (EAR P&G #1524311, #1839128, #1855302) and Henry Dick (MG&G #1637130, #1657983).
    Keywords: Geochemistry of the crust and mantle ; Volatile elements ; Tectonics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-19
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: This thesis presents an Autonomous Underwater Glider (AUG) architecture that is intended for basin-scale unattended survey of Arctic sea-ice. The distinguishing challenge for AUG operations in the Arctic environment is the presence of year-round sea-ice cover which prevents vehicle surfacing for localization updates and shore-side communication. Due to the high cost of operating support vessels in the Arctic, the proposed AUG architecture minimizes external infrastructure requirements to brief and infrequent satellite updates on the order of once per day. This is possible by employing onboard acoustic sensing for sea-ice observation and navigation, along with intelligent management of onboard resources. To enable unattended survey of Arctic sea-ice with an AUG, this thesis proposes a hierarchical acoustics-based sea-ice characterization scheme to perform science data collection and assess environment risk, a multi-factor terrain-aided navigation method that leverages bathymetric features and active ocean current sensing to limit localization error, and a set of energy-optimal propulsive and hotel policies that react to evolving environmental conditions to improve AUG endurance. These methods are evaluated with respect to laboratory experiments and preliminary field data, and future Arctic sea-ice survey mission concepts are discussed.
    Description: Support for this research was provided through the National Science Foundation Navigating the New Arctic Grant #1839063 and the NASA PSTAR Grant #NNX16AL08G. Additionally, this research was supported by the Walter A. Rosenblith Presidential Fellowship.
    Keywords: Autonomous Underwater Glider (AUG) ; Sea-ice ; Energy efficient
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-19
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Oceanography/Applied Ocean Science and Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Underwater Vehicles generally have control fins located only near their aft end, for making controllable changes in directions. This design allows for stability of control; but, the turns are typically large in comparison to the vehicle’s body length. Some bony fish, such as tuna, however, have deployable fins located towards the front of their body, in addition to their other fins. Their deployable fins allow them to modulate their hydrodynamic behavior in response to their environment. Tunas keep these fins retracted during steady cruising, and then deploy them during rapid maneuvers. However, the details of these hydrodynamic effects are not well understood. To investigate this phenomena, using a REMUS 100 as a model, a pair of vertical fins was added at different hull positions, to investigate the effects of fin location on the horizontal plane hydrodynamics, through: stability parameters, nonlinear simulation, and towing tank experiments. Depending on the added fin location, the vehicle stability changed, thereby affecting the maneuverability. As fins were placed forward on the vehicle, maneuverability increased, with effects tapering off at 0.2 BL ahead of the vehicle's center of buoyancy. This investigation explored how rigid underwater vehicles could benefit from added fins, without drastically changing the design of current vehicles.
    Keywords: Maneuverability ; UUVs ; Bioinspiration
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-19
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanographic Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Sea ice thickness has long been an under-measured quantity, even in the satellite era. The snow surface elevation, which is far easier to measure, cannot be directly converted into sea ice thickness estimates without knowledge or assumption of what proportion of the snow surface consists of snow and ice. We do not fully understand how snow is distributed upon sea ice, in particular around areas with surface deformation. Here, we show that deep learning methods can be used to directly predict snow depth, as well as sea ice thickness, from measurements of surface topography obtained from laser altimetry. We also show that snow surfaces can be texturally distinguished, and that texturally-similar segments have similar snow depths. This can be used to predict snow depth at both local (sub-kilometer) and satellite (25 km) scales with much lower error and bias, and with greater ability to distinguish inter-annual and regional variability than current methods using linear regressions. We find that sea ice thickness can be estimated to ∼20% error at the kilometer scale. The success of deep learning methods to predict snow depth and sea ice thickness suggests that such methods may be also applied to temporally/spatially larger datasets like ICESat-2.
    Description: This research was funded by National Aeronautics and Space Administration grant numbers NNX15AC69G and 80NSSC20K0972, the US National Science Foundation grant numbers ANT-1341513, ANT-1341606, ANT-1142075 and ANT-1341717, and the WHOI Academic Programs Office.
    Keywords: Sea ice ; Antarctic ; Snow depth
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Oceanic fronts at the mesoscale and submesoscale are associated with enhanced vertical motion, which strengthens their role in global biogeochemical cycling as hotspots of primary production and subduction of carbon from the surface to the interior. Using process study models, theory, and field observations of biogeochemical tracers, this thesis improves understanding of submesoscale vertical tracer fluxes and their influence on carbon cycling. Unlike buoyancy, vertical transport of biogeochemical tracers can occur both due to the movement of isopycnals and due to motion along sloping isopycnals. We decompose the vertical velocity below the mixed layer into two components in a Lagrangian frame: vertical velocity along sloping isopycnal surfaces and the adiabatic vertical velocity of isopycnal surfaces and demonstrate that vertical motion along isopycnal surfaces is particularly important at submesoscales (1-10 km). The vertical flux of nutrient, and consequently the new production of phytoplankton depends not just on the vertical velocity but on the relative time scales of vertical transport and nutrient uptake. Vertical nutrient flux is maximum when the biological timescale of phytoplankton growth matches the vertical velocity frequency. Export of organic matter from the surface and the interior requires water parcels to cross the mixed layer base. Using Lagrangian analysis, we study the dynamics of this process and demonstrate that geostrophic and ageostrophic frontogenesis drive subduction along density surfaces across the mixed layer base. Along-front variability is an important factor in subduction. Both the physical and biological modeling studies described above are used to interpret observations from three research cruises in the Western Mediterranean. We sample intrusions of high chlorophyll and particulate organic carbon below the euphotic zone that are advected downward by 100 meters on timescales of days to weeks. We characterize the community composition in these subsurface intrusions at a lateral resolution of 1–10 km. We observe systematic changes in community composition due to the changing light environment and differential decay of the phytoplankton communities in low-light environments, along with mixing. We conclude that advective fluxes could make a contribution to carbon export in subtropical gyres that is equal to the sinking flux.
    Description: The work in this dissertation was funded by a NDSEG fellowship, Martin Fellowship, Grassle fellowship, Montrym grant, WHOI Academic Programs Office, and Office of Naval Research CALYPSO DRI grant N00014-16-1-3130.
    Keywords: Vertical velocity ; Submesoscale dynamics ; Biophysical interactions
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Operations in the Arctic Ocean are increasingly important due to the changing environment and the resulting global implications. These changes range from the availability of new global trade routes, accessibility of newly available resources in the area, and national security interests of the United States in the region. It’s necessary to build a greater understanding of the undersea environment and how it’s changing since these environmental changes have a direct impact on adjusting future operations in the region and looming global changes as less Arctic ice is present. The recent presence of the Beaufort Lens is changing the acoustic propagation paths throughout the Arctic region. Here a network of buoys were employed to communicate with an Autonomous Undersea Vehicle (AUV) while it operated under the ice throughout the Beaufort Lens with the goal of achieving near GPS quality navigation. The acoustic communications paths were compared using a vertical array throughout the Beaufort Lens. This beam forming was compared to the prediction from BELLHOP. As well, since acoustic communications are affected by multi-path, attenuation and interference from other sources it was interesting to note that bottom bounce was sometimes a reliable acoustic path.
    Keywords: Arctic ; Beaufort Lens ; Acoustic communications
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Chromium (Cr) isotopes have shown great potential as a paleo-redox proxy to trace the redox conditions of ancient oceans and atmosphere. However, its cycling in modern environments is poorly constrained. In my thesis, I attempt to fill in the gap of our understanding of chromium cycling in the modern ocean, with a focus on the redox processes in global oxygen deficient zones (ODZs). Firstly, we developed a method to analyze Cr isotopes of different Cr redox species. Tests on processing conditions demonstrated its robustness in obtaining accurate Cr isotope data. It is applicable to both frozen and fresh samples. This method allows us to investigate the redox cycling of Cr that is hard to unravel by existing total Cr methods. Secondly, in the Eastern Tropical North Pacific (ETNP), Eastern Tropical South Pacific (ETSP) and Arabian Sea ODZs, their total dissolved Cr profiles show preferential reduction of isotopically light Cr(VI) to Cr(III), which is scavenged and exported to deeper oceans. Applying our new method to ETNP and ETSP ODZ seawater samples, we observed Cr(VI) reduction in both ODZs with a similar fractionation factor. This indicates similar mechanisms may be controlling Cr(VI) reduction in the two ODZs. Cr(III) maximum coincides with Fe(II) and secondary nitrite maximums in the upper core of both ODZs. Shipboard incubations with spiked Fe(II) showed fast Cr(VI) reduction occurring in the ETNP ODZ. But neither Fe(II) nor microbes were reducing Cr(VI) directly. Thirdly, we calculated the isotope effects of Cr scavenging in the ETNP and ETSP ODZs. Thetwo ODZs show a similar isotope partitioning during Cr scavenging. And spatial variability is observed in the ETNP ODZ. Our calculated scavenged Cr isotope ratio is lighter than that of the total dissolved Cr from the same depth. It is also comparable to that of reducing or anoxic sediments, which implies that Cr isotopes can be used as an archive for local redox conditions.
    Description: This research was supported by an anonymous MIT Fellowship, Praceis Presidential Fellowship, Frederick A. Middleton Fellowship, the US National Science Foundation (NSF Award No. OCE-1459287, OCE-1736996, OCE-1924050 and DEB-1542240) and the Center for Microbial Oceanography: Research and Education (C-MORE, NSF-OIA Award No. EF-0424599).
    Keywords: Chromium isotopes ; Oxygen deficient zones ; Redox cycling
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2022.
    Description: Detection, classification, localization, and tracking (DCLT) of unmanned underwater vehicles (UUVs) in the presence of shipping traffic is a critical task for passive acoustic harbor security systems. In general, vessels can be tracked by their unique acoustic signature due to machinery vibration and cavitation noise. However, cavitation noise of UUVs is considerably quieter than ships and boats, making detection significantly more challenging. In this thesis, I demonstrated that it is possible to passively track a UUV from its highfrequency motor noise using a stationary array in shallow-water experiments with passing boats. First, causes of high frequency tones were determined through direct measurements of two UUVs at a range of speeds. From this analysis, common and dominant features of noise were established: strong tones at the motor’s pulse-width modulated frequency and its harmonics. From the unique acoustic signature of the motor, I derived a high-precision, remote sensing method for estimating propeller rotation rate. In shallow-water UUV field experiments, I demonstrated that detecting a UUV from motor noise, in comparison to broadband noise from the vehicle, reduces false alarms from 45% to 8.4% for 90% true detections. Beamforming on the motor noise, in comparison to broadband noise, improved the bearing accuracy by a factor of 3.2×. Because the signal is also high-frequency, the Doppler effect on motor noise is observable and I demonstrate that range rate can be measured. Furthermore, measuring motor noise was a superior method to the “detection of envelope modulation on noise” algorithm for estimating the propeller rotation rate. Extrapolating multiple measurements from the motor signature is significant because Bearing-Doppler-RPM measurements outperform traditional bearing-Doppler target motion analysis. In the unscented Kalman filter implementation, the tracking solution accuracy for bearing, bearing rate, range, and range rate improved by a factor 2.2×, 15.8×, 3.1×, and 6.2× respectively. These findings are significant for improving UUV localization and tracking, and for informing the next-generation of quiet UUV propulsion systems.
    Keywords: Autonomy ; Passive sonar ; Tracking
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2022.
    Description: Radioactive isotopes act as nuclear clocks that are utilized to trace and measure rates of chemical, biological, physical, and geological oceanographic processes. This thesis seeks to utilize both artificial (e.g., released from anthropogenic sources) and natural radioisotopes as tracers within the Pacific Ocean basin. Artificial radioisotopes released as a result of the 2011 Fukushima Daiichi nuclear power plants accident have the potential to negatively impact human and environmental health. This study evaluates 137Cs, 90Sr, and 129I concentrations in seawater off the coast of Japan, reconciles the sources of contaminated waters, and assesses the application of 137Cs/90Sr, 129I/137Cs, and 129I/90Sr as oceanic tracers. The analysis of activity ratios suggests a variety of sources, including ongoing sporadic and independent releases of radiocontaminants. Though decreasing, concentrations remain elevated compared to preaccident levels. Future planned releases of stored water from the reactor site may affect the surrounding environment; and thus, continued efforts to understand the distribution and fate of these radionuclides are warranted. Naturally-occurring radioisotopes (e.g., the 238U-234Th series used in this thesis) can give insight into surface export and remineralization of particulate organic carbon (POC) and trace metals (TMs). POC and TMs play a vital role in regulating the biological carbon pump (BCP), which in turn helps to moderate atmospheric CO2 levels by transporting carbon to the deep ocean, where it can be sequestered on timescales of centuries to millennia. Through this thesis we utilize the 238U:234Th disequilibrium method throughout the GEOTRACES GP15 Pacific Meridional Transect in order o provide basin-scale estimates of POC export and remineralization. There is only limited, recent use of this method to constrain TM fluxes, and as such this study also seeks to further develop this method for use in understanding TM cycling through comparative flux studies in the North Pacific.
    Description: Funding sources for this thesis include the Gordon and Betty Moore Foundation, the Deerbrook Charitable Trust, NSF OCE award no. 1356630 and no. 1735445, and the NSF GRFP.
    Keywords: Radioactive tracers ; Carbon cycling ; Trace metal cycling
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2020.
    Description: Highly productive marine microbial communities in the coastal Southern Ocean sustain the broader Antarctic ecosystem and play a key role in Earth’s climate via the biological pump. Regional phytoplankton growth is primarily limited by iron and co-limited by cobalamin (vitamin B12), a trace cobalt-containing organometallic compound only synthesized by some bacteria and archaea. These micronutrients impact primary production and the microbial ecology of the two keystone phytoplankton types: diatoms and Phaeocystis antarctica. This thesis investigates microbe-driven cobalamin cycling in Antarctic seas across multiple spatiotemporal scales. I conducted laboratory culture experiments with complementary proteomics and transcriptomics to investigate the B12-ecophysiology of P. antarctica strain CCMP 1871 morphotypes under iron-B12 co-limitation. We observed colony formation under higher iron treatments, and a facultative use of B12-dependent (MetH) and B12-independent (MetE) methionine synthase isoforms in response to vitamin availability, demonstrating that this strain is not B12-auxotrophic. Through comparative ’omics, we identified a putative MetE protein in P. antarctica abundant under low B12, which is also found in other marine microbes. Across Antarctic seas, community-scale cobalt and B12 uptake rates were measured by 57Co radiotracer incubation experiments and integrated with hydrographic and phytoplankton pigment data. I observed significant correlations between uptake fluxes and environmental variables, providing evidence for predominantly diatom-driven uptake of these micronutrients in warmer, fresher surface waters with notable regional differences. To date, this work is the most comprehensive attempt to elucidate the processes governing the co-cycling of cobalt and B12 in any marine system. At the ecosystem-scale, I developed and tested a hypothesis of micronutrient-driven community dynamics through a trait-based model with cross-feeding interactions. The model demonstrates how the observed seasonal succession of springtime P. antarctica from solitary to colonial cells, bacterioplankton, and summertime diatoms may be explained by the microbial cycling of iron, dissolved organic carbon, and B12. Overall, this dissertation provides new information about the micronutrient-driven ecology of Antarctic marine microbes and adds to our understanding of the interconnections between organismal life cycle, trace metals, and trace organics in marine environments.
    Description: My training as a scientist during my time in the MIT–WHOI Joint Program (2014-2020) and the work presented in this dissertation were financially supported by the Academic Programs Office (APO) at the Woods Hole Oceanographic Institution (WHOI) and various funding agencies. My first semester was supported by the WHOI Von Damm Fellowship (2014). Subsequent years and endeavors were supported by awards from the Gordon and Betty Moore Foundation to Professor Michael Follows (Award 3778, M.J.F.) and Simons Collaboration on Computational Biogeochemical Modeling of Marine Ecosystems (Award 549931, M.J.F.); National Science Foundation (NSF) grant to Dr. Stephanie Dutkiewicz (Grant number 1434007, S.D.), and NSF Office of Polar Program (OPP) grant to Dr. Makoto Saito (M.S.) for the CICLOPS research expedition (OPP-1643684, OPP-1643845, and OPP-1644073).
    Keywords: Antarctica ; Cobalamin ; Microbes
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Little is known about how Atlantic hurricane activity changes on long timescales. This thesis uses proxy development and proxy-model integration to constrain the spatiotemporal variability in hurricane activity in the Bahama Archipelago over the past millennium. I present annually-resolved archives of storm activity derived from sediment cores from blue holes on three islands in the Bahama Archipelago: South Andros, Long Island, and Middle Caicos. Dramatic differences between these records suggest localized controls on the hurricane patterns observed by each island. Thus, compiling these records together more accurately captures regional variations in hurricane strikes. Integrating our new Bahama Archipelago compilation with compiled paleohurricane records from the U.S. coastline indicates shifting patterns of hurricane activity over the past millennium between the Gulf Coast and the Bahama Archipelago/New England. Finally, I address whether variability in hurricane strikes observed in Bahamian paleohurricane records is related to climate or random variability using hurricane model output. The signal observed in any individual record of paleohurricane activity from the Bahama Archipelago is driven more by random variability in hurricane tracks than by climate. This thesis lays the groundwork for creating high-resolution paleohurricane records from blue holes and using hurricane models to inform our interpretations of these records.
    Description: This work was funded by the National Science Foundation Graduate Research Fellowship (to E.J.W.), National Science Foundation grant OCE-1356708 (to J.P.D. and P.J.vH.) and the Dalio Explore Foundation.
    Keywords: Paleohurricanes ; Carbonate sediment ; Blue holes
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Speleothems, or sedimentary rocks formed in caves, act as valuable archives of past climate change due to their suitability for U-series dating and high-resolution proxy analysis. These records can provide insights into water availability and controls on hydrology prior to the instrumental record. In this thesis, I present three records from newly-analyzed Mexican stalagmites using stable isotope (oxygen and carbon) and trace element to calcium (Mg/Ca and Sr/Ca) ratios as proxies for changing hydroclimate. Chapter 2 presents a precisely dated, mid-Holocene record of high rainfall and limited precipitation variability in the Yucatan Peninsula, Mexico. Chapters 3 and 4 present novel climate records from northeastern Mexico, an understudied region of North America. Both records come from cave sites within the Mexican arid zone, which is simultaneously experiencing increased water scarcity and a rapidly growing population. In Chapter 3, I examine a speleothem from the first millennium of the Common Era, which showed that there is a precipitation dipole between northern and southern Mexico. Chapter 4 highlights, for the first time at decadal resolution, the northeast Mexican response to the 8.2 ka event and the Younger Dryas. These chapters show that the San Luis Potosí region is vulnerable to droughts under multiple climate mean states, and is subject to drying as Atlantic Meridional Overturning Circulation weakens due to anthropogenic climate change. The climate records detailed in this thesis improve our understanding of controls on Mexican hydroclimate and can serve as benchmarks for climate models.
    Description: This work was funded by US National Science Foundation (NSF) grants AGS-1702848 (M. Medina-Elizalde), AGS–1502877 (S. Burns), AGS-1804512 and AGS-1806090 (K. Johnson and D. McGee). I was also supported by the NSF Graduate Research Fellowship and the MIT School of Science Dean’s Fellowship. Fieldwork and analysis were funded by the WHOI Ocean Ventures Fund, the MIT EAPS Student Research Fund, and the MIT International Science and Technology Initiatives (MISTI) Mexico program. Initial work for this project was also supported by UC MEXUS-CONACYT Collaborative Grant from the University of California Institute for Mexico and the United States (UC MEXUS CN-16-120). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation.
    Keywords: Stalagmite ; Drought ; Holocene
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2022.
    Description: Marine diatoms are abundant photoautotrophic algae that contribute significantly to photosynthetic carbon fixation and export throughout the oceans. Zinc is an important micronutrient in algal metabolism, with scarce dissolved concentrations in the upper euphotic zone reflecting high biological demand. In this thesis, I investigated the response of marine diatoms to Zn scarcity to characterize metabolic mechanisms used to combat Zn stress. I began by assaying the ability to metabolically substitute cobalt (Co) in place of Zn in four diatom species and found that enhanced abilities to use Co are likely an adaptation to high surface dCo:dZn ratios in the native environment. I next demonstrated that Zn/Co metabolic substitution in diatoms is not universal using culture studies of Chaetoceros neogracile RS19, which has an absolute Zn requirement. Using global proteomic analysis, I then identified and characterized diatom ZCRP-A and ZCRP-B, a putative Zn-chaperone and membrane-tethered Zn acquisition protein, respectively, as two proteins involved in the low-Zn response. I demonstrated that these proteins are widespread in marine phytoplankton and can be deployed as protein biomarkers of Zn stress in the field. I furthermore documented both the detection of ZCRPs in the Southern Ocean and the existence of Zn/Fe co-limitation within the natural phytoplankton population in Terra Nova Bay, demonstrating that Zn co-limitation can indeed occur in the field, even in high macronutrient waters. Lastly, I explored the relative demand of Zn and cadmium (Cd) within the Southern Ocean community using stable 67Zn and 110Cd tracers, documenting a high demand for both metals during the austral 2017-2018 summer season and investigating the cycling of these elements within this important region. Overall, this dissertation provides new information regarding Zn acquisition and homeostasis mechanisms within marine algae and demonstrates that Zn co-limitation in the field is not only possible, but detectable via protein biomarkers.
    Description: I am very fortunate to have been financially supported over the course of my PhD by awards granted to the Saito Lab, specifically by National Institutes of Health (NIH) grant R01GM135709, Gordon and Betty Moore Foundation grant 3782, and National Science Foundation (NSF) grants OCE-1657766, OCE-1658030, OCE-1736599, OCE-1850719, and OCE-1924554.
    Keywords: Zinc ; Diatoms ; Proteomic
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2021.
    Description: The existence of a marine phosphorus (P) redox cycle was recently confirmed when phosphonates, organophosphorus compounds with P in the (III) oxidation state, were found in high molecular weight dissolved organic matter. Although some features of the P redox cycle have come to light since the discovery of phosphonates, many aspects of phosphonate production, cycling and fate remain unknown. To address these gaps in our understanding, we studied phosphonate cycling in the Eastern Mediterranean Sea, a chronically P-limited basin, using 33P and enzymatic assays. We showed that phosphonate production was low but consumption was high, suggesting that phosphonate production and consumption may be spatially or temporally decoupled. We also explored phosphonate production in the model marine cyanobacterium Prochlorococcus SB. Using 31P NMR, we found Prochlorococcus SB allocates ~50% of its cellular P to phosphonates. Allocation of P to phosphonates was conserved under P-limitation, and further investigation revealed phosphonates were associated with proteins. The discovery of phosphonoproteins in Prochlorococcus SB opens new perspectives on the biochemical function of phosphonates and their role in P-cycling. Finally, we developed a new P-targeted method to characterize marine organophosphorus compounds using liquid chromatography coupled to electrospray ionization and inductively coupled plasma mass spectrometry.
    Description: This work was supported by the Simons Foundation under grant numbers POP49476 and 721227 [D. Repeta], the Gordon and Betty Moore Foundation under the grant number 6000 [D. Repeta] and the National Science Foundation OCE under the grant number 1634080 [D. Repeta].
    Keywords: Phosphorus ; Phosphonate ; Biogeochemical cycling
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geophysics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: This thesis focuses on interpreting geophysical and geochemical observables in terms of the thermomechanical state of the lithosphere. In Chapter 1, I correlate lower crustal rheology with seismic wave speed. Compositional variation is required to explain half of the total variability in predicted lower crustal stress, implying that constraining regional lithology is important for lower crustal geodynamics. In Chapter 2, I utilize thermobarometry, diffusion models, and thermodynamic modelling to constrain the ultra-high formation conditions and cooling rates of the Gore Mountain Garnet Amphibolite in order to understand the rheology of the lower crust during orogenic collapse. In Chapter 3, I interpret geophysical data along a 74 Myr transect in the Atlantic to the temporal variability and relationship of crustal thickness and normal faults. In Chapter 4, I constrain the error present in the forward-calculation of seismic wave speed from ultramafic bulk composition. I also present a database and toolbox to interpret seismic wave speeds in terms of temperature and composition. Finally, in Chapter 5 I apply the methodology from Chapter 4 to interpret a new seismic tomographic model in terms of temperature, density, and composition in order to show that the shallow lithospheric roots are density unstable.
    Description: Funding for this research was provided by an MIT Presidential Fellowship, MIT Student Research Funds, the National Science Foundation Division of Earth Sciences (EAR) and Ocean Sciences (OCE) grants EAR-16-24109, EAR-17-22932, EAR-17-22935, OCE-14-58201, and SCEC Awards 16106 and 17202., SCEC, Geological Society of America Graduate Student Research Fellowship, WHOI Ocean Venture Fund, and the WHOI Academic Programs Office.
    Keywords: Lithosphere ; Seismic wave speed ; Rheology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: Observations of hydrographic and dynamical properties on the Middle Atlantic Bight shelf document strong variability at time scales spanning events that last a few days to century long trends. This thesis studies individual processes which impact shelf temperature and velocity structure, and quantifies the mean velocity conditions at the shelf break. Chapter 2 uses model output to study the dynamics that lead to the breakdown of summertime thermal stratification, and how the processes which reduce stratification vary from year to year. In summer, the atmosphere heats the surface of the ocean, leading to strong thermal stratification with warm water overlying cool water. During fall, strong storm events with downwelling-favorable winds are found to be the primary process by which stratification is reduced. The timing of these events and the associated destratification varies from year to year. In Chapter 3, the velocity structure of the New Jersey shelf break is examine, with a focus on the Shelfbreak Jet. Using 25 years of velocity measurements, mean velocity sections of the Shelfbreak Jet are created in both Eulerian and stream coordinate frameworks. The jet exhibits strong seasonal variability, with maximum velocities observed in spring and minimum velocities in summer. Evidence is found that Warm Core Rings, originating from the Gulf Stream and passing through the Slope Sea adjacent to the New Jersey shelf, tend to shift the Shelfbreak Jet onshore of its mean position or entirely shutdown the Shelfbreak Jet’s flow. At interannual timescales, variability in the Shelfbreak Jet velocity is correlated with the temperature on the New Jersey Shelf, with temperature lagging by about 2 months. Chapter 4 focuses on the impact of Warm Core Rings on the velocity and temperature structure on the New Jersey shelf. Warm Core Rings that have higher azimuthal velocities and whose cores approach closer to the shelf are found to exert greater influence on the shelf’s along-shelf velocities, with the fastest and closest rings reversing the direction of flow at the shelf break. Warm Core Rings are also observed to exert long-lasting impacts on the shelf temperature, with faster rings cooling the shelf and slower rings warming the shelf. Seasonal changes in thermal stratification strongly affect how rings alter the shelf temperature. Rings in summer tend to cool the shelf, and rings throughout the rest of the year generally warm the shelf.
    Description: This research was funded under WHOI Academic Programs Endowed Funds, NSF #OCE-1634094, and NSF #OCE-1924041.
    Keywords: Temperature variability ; Velocity variability ; Middle Atlantic Bight
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Small pelagic fishes, also termed forage fishes, represent a critical link between secondary production and myriad top predators in marine ecosystems, including the Northeast US shelf. In this dissertation, I analyze the drivers of forage fish distribution throughout the Northeast US shelf and the drivers of the abundance of the ecologically important northern sand lance. Chapter 2 examines the basic ecology of northern sand lance and uses these insights to identify mechanistic drivers of their abundance. I then explore different scenarios of these drivers to project sand lance abundance through the end of the 21st century, which appears precarious for adult sand lance unless current trajectories change. Chapter 3 analyzes the environmental drivers of the distribution of the six dominant, offshore forage fish species (northern sand lance, Atlantic herring, alewife, blueback herring, Atlantic mackerel, and Atlantic butterfish) on the Northeast US shelf to elucidate the role of environmental covariates in shelf occupancy by these taxa. The results of this chapter indicate shelf occupancy of butterfish and Atlantic mackerel are increasing through time while occupancy of sand lance is decreasing with time. The occurrence of most of these species is also moving deeper and northward with time. Chapter 4 assesses the source-sink dynamics of three sand lance hotspots through Lagrangian particle tracking models simulating larval sand lance transport. Connectivity varies among these hotspots with Georges Bank and Stellwagen Bank having notable retention while the Great South Channel relies on larvae from other hotspots. Retention on Stellwagen Bank and Georges Bank are linked to strong wind events during the larval period of sand lance. Collectively, this dissertation improves our understanding of the dynamics driving variability in the Northeast US shelf forage fish complex, particularly for northern sand lance.
    Description: The research within this dissertation was funded by a National Science Foundation Graduate Research Fellowship (awarded to JJS), Woods Hole Sea Grant (NA18OAR4170104, Project No. R/O-57), the Bureau of Ocean Energy Management (IA agreement M17PG0019), and the National Marine Sanctuary Foundation.
    Keywords: Forage fish ; Northwest Atlantic ; Fisheries oceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: An emerging paradigm posits that the abyssal overturning circulation is driven by bottom-enhanced mixing, which results in vigorous upwelling in the bottom boundary layer (BBL) along the sloping seafloor and downwelling in the stratified mixing layer (SML) above; their residual is the overturning circulation. This boundary-controlled circulation fundamentally alters abyssal tracer distributions, with implications for global climate. Chapter 1 describes how a basin-scale overturning circulation arises from the coupling between the ocean interior and mixing-driven boundary layers over rough topography, such as the sloping flanks of mid-ocean ridges. BBL upwelling is well predicted by boundary layer theory, whereas the compensation by SML downwelling is weakened by the upward increase of the basin-wide stratification, which supports a finite net overturning. These simulated watermass transformations are comparable to best-estimate diagnostics but are sustained by a crude parameterization of boundary layer restratification processes. In Chapter 2, I run a realistic simulation of a fracture zone canyon in the Brazil Basin to decipher the non-linear dynamics of abyssal mixing layers and their interactions with rough topography. Using a hierarchy of progressively idealized simulations, I identify three physical processes that set the stratification of abyssal mixing layers (in addition to the weak buoyancy-driven cross-slope circulation): submesoscale baroclinic eddies on the ridge flanks, enhanced up-canyon flow due to inhibition of the cross-canyon thermal wind, and homogenization of canyon troughs below the level of blocking sills. Combined, these processes maintain a sufficiently large near-boundary stratification for mixing to drive globally significant BBL upwelling. In Chapter 3, simulated Tracer Release Experiments illustrate how passive tracers are mixed, stirred, and advected in abyssal mixing layers. Exact diagnostics reveal that while a tracer’s diapycnal motion is directly proportional to the mean divergence of mixing rates, its diapycnal spreading depends on both the mean mixing rate and an additional non-linear stretching term. These simulations suggest that the theorized boundary-layer control on the abyssal circulation is falsifiable: downwelling in the SML has already been confirmed by the Brazil Basin Tracer Release Experiment, while an upcoming experiment in the Rockall Trough will confirm or deny the existence of upwelling in the BBL.
    Description: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. 174530. I also acknowledge funding support from National Science Foundation Awards OCE-1536515 and OCE-1736109. This work was partially supported by MIT’s Rosenblith Presidential Fellowship.
    Keywords: Abyss ; Circulation ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Sound is utilized by marine animal taxa for many ecologically important functions, and these taxa are vulnerable to adverse effects of anthropogenic noise on hearing and behavior. However, little is known about marine invertebrates’ responses to anthropogenic noise, and the ambient environmental sounds (“soundscapes”) they detect and respond to. Most acoustic studies report sound pressure (detected by mammals and some fish), but few report particle motion, the back-and-forth vibratory component of sound detected by marine invertebrates. I investigated invertebrate use of and response to sounds in two facets: 1) behavioral responses of longfin squid, Doryteuthis pealeii to anthropogenic noise, and 2) particle motion of coral reef soundscapes in the U.S. Virgin Islands. In laboratory-based experiments I exposed D. pealeii to construction noise originally recorded from an offshore wind farm. I found significant increases in squids’ alarm responses and in failed prey capture attempts during noise. Conversely, noise exposure had no significant effects on reproductive behaviors of groups of D. pealeii, indicating high motivation of these squid to reproduce during this stressor. Collectively, these experiments revealed the importance of considering behavioral context in studies and regulatory decisions regarding invertebrates’ susceptibility to anthropogenic noise impacts. In studying coral reef soundscapes, I reported particle motion trends over several months for coral reefs varying in habitat quality, including coral cover and fish abundance. I found acoustic properties over which particle motion closely scaled with pressure, and others over which it did not. I compared soundscape data with particle motion hearing thresholds, and found that invertebrates may only detect high amplitude and low frequency transient sound cues on reefs, such as those produced by fishes. My research bring new insights on natural and anthropogenic sound cues detectable by marine invertebrates, and how and when invertebrates will be vulnerable to anthropogenic noise pollution.
    Description: My graduate work was funded in part by the US Department of Interior, Bureau of Ocean Energy Management Environmental Studies Program through Interagency Agreement Number M17PG00029 with the U.S. Department of Commerce, National Oceanic and Atmospheric Administration (funding to Aran Mooney and Jenni Stanley). My work was also supported by the NSF Biological Oceanography award OCE-1536782 (funding to Aran Mooney). I received tuition and stipend support from the National Science Foundation Graduate Research Fellowship Program [Grant No. 2388357]. The Academic Program Office at the Woods Hole Oceanographic Institution provided tuition and stipend support as well as travel support. The MIT Student Assistance Fund, the Aquatic Noise 2019 Organizing Committee, and the Acoustical Society of America also provided travel support.
    Keywords: Cephalopod ; Renewable energy ; Ecoacoustics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: A novel performance metric to improve underwater digital acoustic communication, called Multipath Penalty (MPP), is proposed as an alternative to traditional signal-to-noise ratio (SNR) methods in the context of the Arctic Beaufort Sea. MPP and SNR are compared alongside a third performance metric, Minimum Achievable Error (MAE), which replicates the operation of a channel estimate-based decision feedback equalizer in an acoustic modem. The three metrics are then tested in a hardware-in-the-loop Virtual Ocean simulator for an autonomous undersea vehicle (AUV) communicating with a collaborator. Using field data of modem statistics obtained duringICEX20 and expanded data supplied by the simulator, calibration of the three metrics to modem packet success is evaluated, resulting in a proposed recalibration for MAE. The AUV’s ability to communicate when adaptively choosing its depth is analyzed above and below the Beaufort Lens, and settings for MPP’s engineering variables are obtained. The results show MPP generally improves reception and demodulation of acoustic transmissions over SNR by approximately 5% within an operational range of 8 km, while achieving similar results to the more robust metric MAE. MPP is an improved utility for underwater digital acoustic communication in both marine autonomy and as a tactical decision aid.
    Description: This work would not be possible without the extraordinary support of the United States Navy, which provided funding for this research, my degree, and my livelihood as an active duty submarine officer.
    Keywords: Multi-path Penalty ; Acoustics ; Metric
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: There are many significant challenges for unmanned autonomous platforms at sea including predicting the likely scenarios for the ocean environment, quantifying regional uncertainties, and updating forecasts of the evolving dynamics using their observations. Due to the operational constraints such as onboard power, memory, bandwidth, and space limitations, efficient adaptive reduced order models (ROMs) are needed for onboard predictions. In the first part, several reduced order modeling schemes for regional ocean forecasting onboard autonomous platforms at sea are described, investigated, and evaluated. We find that Dynamic Mode Decomposition (DMD), a data-driven dimensionality reduction algorithm, can be used for accurate predictions for short periods in ocean environments. We evaluate DMD methods for ocean PE simulations by comparing and testing several schemes including domain splitting, adjusting training size, and utilizing 3D inputs. Three new approaches that combine uncertainty with DMD are also investigated and found to produce practical and accurate results, especially if we employ either an ensemble of DMD forecasts or the DMD of an ensemble of forecasts. We also demonstrate some results from projecting / compressing high-fidelity forecasts using schemes such as POD projection and K-SVD for sparse representation due to showing promise for distributing forecasts efficiently to remote vehicles. In the second part, we combine DMD methods with the GMM-DO filter to produce DMD forecasts with Bayesian data assimilation that can quickly and efficiently be computed onboard an autonomous platform. We compare the accuracy of our results to traditional DMD forecasts and DMD with Ensemble Kalman Filter (EnKF) forecast results and show that in Root Mean Square Error (RMSE) sense as well as error field sense, that the DMD with GMM-DO errors are smaller and the errors grow slower in time than the other mentioned schemes. We also showcase the DMD of the ensemble method with GMM-DO. We conclude that due to its accurate and computationally efficient results, it could be readily applied onboard autonomous platforms. Overall, our contributions developed and integrated stochastic DMD forecasts and efficient Bayesian GMM-DO updates of the DMD state and parameters, learning from the limited gappy observation data sets.
    Description: I wish to thank the U.S. Navy’s Civilian Institution Program along with the MITWHOI Joint Program for providing the funding and resources that made this research and continuing my education possible.
    Keywords: Data assimilation ; Reduced order models ; Stochastic prediction
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: The Beaufort Gyre region of the Arctic Ocean is strongly stratified at the base of the wintertime mixed layer, which impedes the vertical transport of heat, energy, and other tracers. Ice-Tethered Profiler observations during 2004-2018 were used to characterize and investigate the seasonal and interannual variability of the strength, depth, density, and thickness of this highly stratified layer at the base of the mixed layer. This includes investigating the remnant stratification maximum, which formed when the summer mixed layer shoaled. Seasonally, the stratification maximum was never in a steady state. It was largest in October (4.8 × 10−3 rad2/sec2) and decreased during all winter months (to 2.3 × 10−3rad2/sec2 in June), indicating that surface forcing and interior vertical mixing were never in equilibrium during the year. Interannually, the period from 2011-2018 had a higher stratification maximum than then the period from 2005-2010 regardless of the season. The remnant stratification maximum was consistently weaker than the winter stratification maximum from which it formed. The initial evolution of the remnant stratification maximum is used to estimate an effective vertical diffusivity of order 10−6m2/s. No significant geographic variability was found, in part due to high temporal and small scale variability of the stratification maximum layer. Implications for heat transport through to the sea ice cover are discussed.
    Keywords: Beaufort Gyre ; Stratification ; Remnant layer
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2022.
    Description: Protists are taxonomically and metabolically diverse drivers of energy and nutrient flow in the marine environment, with recent research suggesting significant roles in global carbon cycling throughout the water column. Top-down controls on planktonic protists include grazing and parasitism, processes that both contribute to nutrient transfer and biogeochemical cycling in the global ocean. Recent global surveys of eukaryotic small subunit ribosomal RNA molecular signatures have highlighted the fact that parasites belonging to the marine alveolate order Syndiniales are both abundant and ubiquitous in coastal and open ocean environments, suggesting a major role for this taxon in marine food webs. Two coastal sites, Saanich Inlet (Vancouver Island, BC) and Salt Pond (Falmouth, MA, USA) were selected as model ecosystems to examine the impacts of Syndinian parasitism on protist communities. Data presented in this thesis combines high-resolution sampling, water chemistry (including nutrients) analyses, molecular marker gene analyses, fluorescence in situ hybridization, and modeling to address key knowledge gaps regarding syndinian ecology. Information is presented on previously undescribed putative host taxa, the prevalence of syndinian parasites and infections on different hosts in coastal waters, and a framework for modeling host-parasite interactions based on field observations.
    Description: Research was supported by the WHOI Ocean Venture Fund, the National Science Foundation Biological Oceanography OCE-1851012, and the National Science Foundation Graduate Research Fellowship under Grant No. 1745302.
    Keywords: Syndiniales ; Parasitism ; Protist
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2022.
    Description: The ventilation of intermediate waters in the Labrador Sea has important implications for the strength of the Atlantic Meridional Overturning Circulation. Boundary current-interior interactions regulate the exchange of properties between the slope and the basin, which in turn regulates the magnitude of interior convection and the export of ventilated waters from the subpolar gyre. This thesis characterizes theWest Greenland Boundary Current System near Cape Farewell across a range of spatio-temporal scales. The boundary current system is composed of three velocity cores: (1) the West Greenland Coastal Current (WGCC), transporting Greenland and Arctic meltwaters on the shelf; (2) the West Greenland Current (WGC), which advects warm, saline Atlantic-origin water at depth, meltwaters at the surface, and newly-ventilated Labrador Sea Water (LSW); and (3) the Deep Western Boundary Current, which carries dense overflow waters ventilated in the Nordic Seas. The seasonal presence of the LSW and Atlantic-origin water are dictated by air-sea buoyancy forcing, while the seasonality of the WGCC is governed by remote wind forcing and the propagation of coastally trapped waves from East Greenland. Using mooring data and hydrographic surveys, we demonstrate mid-depth intensified cyclones generated at Denmark Strait are found offshore of the WGC and enhance the overflow water transport at synoptic timescales. Using mooring, hydrographic, and satellite data, we demonstrate that the WGC undergoes extensive meandering due to baroclinic instability that is enhanced in winter due to LSW formation adjacent to the current. This leads to the production of small-scale, anticyclonic eddies that can account for the entirety of wintertime heat loss within the Labrador Sea. The meanders are shown to trigger the formation of Irminger Rings downstream. Using mooring, hydrographic, atmospheric, and Lagrangian data, and a mixing model, we find that strong atmospheric storms known as forward tip jets cause upwelling at the shelfbreak that triggers offshore export of freshwater. This freshwater flux can explain the observed lack of ventilation in the eastern Labrador Sea. Together, this thesis documents previously unobserved interannual, seasonal, and synoptic-scale variability and dynamics within the West Greenland boundary current system that must be accounted for in future modeling.
    Description: The work in this dissertation was funded by the National Science Foundation grants OCE-1259618 and OCE-1756361.
    Keywords: Boundary current dynamics ; Labrador sea water formation ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Arctic marine and lacustrine systems are experiencing rapid warming due to climate change. These changes are especially important at the interface between sediments and surface waters because they are hotspots for biogeochemical transformations such as redox reactions, nutrient consumption and regeneration, organic matter leaching and degradation, and mineral weathering. Radium isotopes (223Ra, 224Ra, 226Ra, 228Ra) and radon-222, naturally occurring radioactive isotopes produced in sediments, are well-suited as tracers of nutrients, trace metals, and organic matter cycling processes at the sediment-water interface. In this thesis, I have applied radon-222 and the quartet of radium isotopes to study fundamental processes in subarctic lakes and on the Arctic continental shelf. First, radon-222 is used to quantify groundwater discharge into a shallow, tundra lake on the Yukon-Kuskokwim Delta in Alaska in summer of 2017. Radon-derived groundwater fluxes were then paired with methane (CH4) measurements to determine delivery rates of methane into the lake via groundwater. Groundwater CH4 fluxes significantly exceeded diffusive air-water fluxes from the lake to the atmosphere, suggesting that groundwater is an important source of CH4 to Arctic lakes and may drive observed CH4 emissions. Higher CH4 emissions were observed compared to those reported previously in high latitude lakes, like due to higher CH4 concentrations in groundwater. These findings indicate that deltaic lakes across warmer permafrost regions may act as important hotspots for methane release across Arctic landscapes. Then, the quartet of radium isotopes is used to study the impacts of storms and sea ice formation as drivers of sediment-water interaction on the Alaskan Beaufort shelf. The timeseries presented in this study is among the first to document the combined physical and chemical signals of winter water formation in the Beaufort Sea, made possible by repeat occupations of the central Beaufort shelf. Radium measurements are combined with inorganic nitrogen and hydrographic measurements to elucidate the episodic behavior of winter water formation and its ability to drive exchange with bottom sediments during freeze-up.
    Description: Financial support for Chapter 2 was funded by National Science Foundation awards OCE-1458305 to M.A.C., 1561437 to S.M.N, J.D.S., and R.M.H and 1624927 to S.M.N., P.J.M. and R.M.H. The work completed for Chapter 3 was funded by the Montrym Fund at the Massachusetts Institute of Technology, the Academic Programs Office at Woods Hole Oceanographic Institution, and the NSF Arctic GEOTRACES (OCE-1458305), Pacific GEOTRACES (OCE-1736277), and Arctic Observing Network programs (OPP-1733564).
    Keywords: Arctic ; Sediment ; Radionuclides
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Robotic swarms are increasingly complex above the waterline due to reliable communication links. However, the limited propagation of similar signals in the ocean has impacted advances in undersea robotics. Underwater vehicles often rely on acoustics for navigation solutions; however, this presents challenges for robotic swarms. Many localization methods rely on precision time synchronization or two-way communication to estimate ranges. The cost of Chip-scale Atomic Clocks (CSACs) and acoustic modems is limiting for large-scale swarms due to the cost-per-vehicle and communications structure. We propose a single vehicle with reliable navigation as a "leader" for a scalable swarm of lower-cost vehicles that receive signals via a single hydrophone. This thesis outlines range estimation methods for sources with known signal content, including frequency and power at its origin. Transmission loss is calculated based on sound absorption in seawater and geometric spreading loss to estimate range through the Signal Absorption-Based Range Estimator (SABRE). SABRE's objective is to address techniques that support low-cost undersea swarming. This thesis's contributions include a novel method for range estimation onboard underwater vehicles that supports relative navigation through Doppler-shift methods for target bearing. This thesis develops the theory, algorithms, and analytical tools for real-world data range estimation.
    Keywords: Absorption ; Single-hydrophone ; Swarm
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: This thesis examines the transition of a vessel from the open ocean, where collisions are rare, to a high risk and heavy traffic area such as a Traffic Separation Scheme (TSS). Previous autonomy approaches generally view path planning and collision avoidance as two separate functions, i.e. a vessel will follow the planned path until conditions are met for collision avoidance algorithms to take over. Here an intermediate phase is proposed with the goal of adjusting the time of arrival to a high vessel density area so that the risk of collision is reduced. A general algorithm that calculates maximum future traffic density for all choices in the speed domain is proposed and implemented as a MOOS-IvP behavior. This behavior gives the vessel awareness of future collision risks and aids the collision avoidance process. This new approach improves the safety of the vessel by reducing the number of risky encounters that will likely require the vessel to maneuver for safety.
    Keywords: Collision avoidance ; MOOS-IvP ; COLREGs
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: The early life stages of marine fishes play a critical role in population dynamics, largely due to their high abundance, high mortality, and ease of transport in ocean currents. This dissertation demonstrates the value of combining larval data, collected in the field and the laboratory, with model simulations. In Chapter 2, analyses of field observations of ontogenetic vertical distributions of coral reef fish revealed a diversity of behaviors both between and within families. In Caribbean-wide particle-tracking simulations of representative behaviors, surface-dwelling larvae were generally transported longer distances with greater population connectivity amongst habitat patches, while the evenly-distributed vertical behavior and downward ontogenetic vertical migration were similar to one another and led to greater retention near natal sites. However, hydrodynamics and habitat vailability created some local patterns that contradicted the overall expectation. Chapter 3 presents evidence of tuna spawning inside a large no-take marine protected area, the Phoenix Islands Protected Area (PIPA). Despite variation in temperature and chlorophyll, the larval tuna distributions were similar amongst years, with skipjack (Katsuwonus pelamis) and Thunnus spp. tunas observed in all three years. Backtracking simulations indicated that spawning occurred inside PIPA in all 3 study years, demonstrating that PIPA is protecting viable tuna spawning habitat. In Chapter 4, several lines of larval evidence support the classification of the Slope Sea as a major spawning ground for Atlantic bluefin tuna with conditions suitable for larval growth. The abundance of bluefin tuna larvae observed in the Slope Sea aligns with typical observations on the other two spawning grounds. Age and growth analyses of bluefin tuna larvae collected in the Slope Sea and the Gulf of Mexico in 2016 did not show a growth rate difference between regions, but did suggest that Slope Sea larvae are larger at the onset of exogenous feeding. Collected larvae were backtracked to locations north of Cape Hatteras and forward tracked to show that they would have been retained within the Slope Sea until the onset of swimming. As a whole, this thesis presents valuable contributions to the study of larval fishes and the attendant implications for marine resource management.
    Description: National Science Foundation Graduate Research Fellowship Program (to C.M.H.), the Woods Hole Oceanographic Institution Ocean Life Institute (Grant 22569.01 to J. Llopiz and C.M.H.), the Adelaide and Charles Link Foundation, the Phoenix Islands Protected Area Trust, the J. Seward Johnson Endowment in support of the Woods Hole Oceanographic Institution's Marine Policy Center, and the WHOI Academic Programs Office.
    Keywords: Marine protected area ; Trait-based ; Biophysical model
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: Subduction zones host the greatest earthquakes on earth and pose great threat to human society. The largest slip in megathrust earthquakes often occurs in the 10–50 km depth range, yet seismic imaging of the material properties in this region has proven difficult. This thesis focuses on developing methods to utilize high frequency (2–12 Hz) seismic waves scattered from the megathrust plate interface to constrain its fine-scale velocity structures and to investigate the relationship between velocity structures and megathrust slip behaviors. Chapter 2 investigates the locking condition of the subducted Gorda plate by simulating afterslip that would be expected as a result of the stress changes from offshore strike-slip earthquakes. Chapter 3 develops array analysis methods to identify P-to-S and S-to-P seismic converted phases that convert at the subducted Gorda plate interface from local earthquakes and uses them to constrain the geometry and material properties of the plate boundary fault of the subducted Gorda plate between 5–20 km depth. Chapters 4 and 5 use a dense nodal array and numerical modeling methods to study the seismic guided waves that propagate along the thin low velocity layer at the boundary of the subducted Gorda plate. Taken together, our results indicate that material properties of the subduction plateboundary fault is highly heterogeneous and the plate-boundary fault is potentially contained in a low velocity layer with significant porosity and fluid content at seismogenic depths.
    Description: Funding for this research was provided by National Science Foundation Division of Earth Sciences (EAR) award #1520690 and the WHOI Academic Programs Office.
    Keywords: Subduction zone ; Scattered seismic waves ; Plate boundary
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: Anthropogenic emissions of greenhouse gases are driving rapid changes in ocean conditions. Shallow-water coral reefs are experiencing the brunt of these changes, including intensifying marine heatwaves (MHWs) and rapid ocean acidification (OA). Consequently, coral reefs are in broad-scale decline, threatening the livelihoods of hundreds of millions of people. Ensuring survival of coral reefs in the 21st century will thus require a new management approach that incorporates robust understanding of reef-scale climate change, the mechanisms by which these changes impact corals, and their potential for adaptation. In this thesis, I extract information from within coral skeletons to 1) Quantify the climate changes occurring on coral reefs and the effects on coral growth, 2) Identify differences in the sensitivity of coral reefs to these changes, and 3) Evaluate the adaptation potential of the keystone reef-building coral, Porites. First, I develop a mechanistic Porites growth model and reveal the physicochemical link between OA and skeletal formation. I show that the thickening (densification) of coral skeletal framework is most vulnerable to OA and that, under 21st century climate model projections, OA will reduce Porites skeletal density globally, with greatest impact in the Coral Triangle. Second, I develop an improved metric of thermal stress, and use a skeletal bleaching proxy to quantify coral responses to intensifying heatwaves in the central equatorial Pacific (CEP) since 1982. My work reveals a long history of bleaching in the CEP, and reef-specific differences in thermal tolerance linked to past heatwave exposure implying that, over time, reef communities have adapted to tolerate their unique thermal regimes. Third, I refine the Sr-U paleo-thermometer to enable monthly-resolved sea surface temperatures (SST) generation using laser ablation ICPMS. I show that laser Sr-U accurately captures CEP SST, including the frequency and amplitude of MHWs. Finally, I apply laser Sr-U to reconstruct the past 100 years of SST at Jarvis Island in the CEP, and evaluate my proxy record of bleaching severity in this context. I determine that Porites coral populations on Jarvis Island have not yet adapted to the pace of anthropogenic climate change.
    Description: This research was supported by US National Science Foundation Awards OCE-1220529, ANT-1246387, OCE-1737311, CE-1601365, OCE-1805618, OCE-1537338, OCE-2016133, and from the Woods Hole Oceanographic Institution through the Ocean Life Institute, the Ocean Ventures Fund, the Grassle Fellowship Fund, and the MIT-WHOI Academic Programs Office. Additional funding was provided by the Taiwan MOST Grant 104-2628-M-001-007-MY3, the Robertson Foundation, the Leverhulme Trust in UK, the Atlantic Donor Advised Fund, The Prince Albert 2 of Monaco Foundation, the Akiko Shiraki Dynner Fund, the New England Aquarium, the Martin Family Society Fellowship for Sustainability, the Gates Millenium Scholarship, the Arthur Vining Davis Foundation, the NOAA Coral Reef Conservation Program, and from the Woods Hole Oceanographic Institution through Investment in Science Fund, the Early Career Award, and the Access to the Sea Award.
    Keywords: Coral reef ; Climate ; Proxy
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Mechanical and Oceanographic Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: The satellite ocean color remote sensing paradigm developed by government space agencies enables the assessment of ocean color products on global scales at kilometer resolutions. A similar paradigm has not yet been developed for regional scales at sub-meter resolutions, but it is essential for specific ocean color applications (e.g., mapping algal biomass in the marginal ice zone). While many aspects of the satellite ocean color remote sensing paradigm are applicable to sub-meter scales, steps within the paradigm must be adapted to the optical character of the ocean at these scales and the opto-electronics of the available sensing instruments. This dissertation adapts the three steps of the satellite ocean color remote sensing paradigm that benefit the most from reassessment at sub-meter scales, namely the correction for surface-reflected light, the design and selection of the opto-electronics and the post-processing of over-sampled regions. First, I identify which surface-reflected light removal algorithm and view angle combination are optimal at sub-meter scales, using data collected during a field deployment to the Martha’s Vineyard Coastal Observatory. I find that of the three most widely used glint correction algorithms, a spectral optimization based approach applied to measurements with a 40∘ view angle best recovers the remotesensing reflectance and chlorophyll concentration despite centimeter scale variability in the surface-reflected light. Second, I develop a simulation framework to assess the impact of higher optical and electronics noise on ocean color product retrieval from unique ocean color scenarios. I demonstrate the framework’s power as a design tool by identifying hardware limitations, and developing potential solutions, for estimating algal biomass from high dynamic range sensing in the marginal ice zone. Third, I investigate a spectral super-resolution technique for application to spatially over-sampled oceanic regions. I determine that this technique more accurately represents spectral frequencies beyond the Nyquist and that it can be trained to be invariant to noise sources characteristic of ocean color remote sensing on images with similar statistics as the training dataset. Overall, the developed and critically assessed sub-meter ocean color remote sensing paradigm enables researchers to collect high fidelity sub-meter data from imaging spectrometers in unique ocean color scenarios.
    Description: Ryan O’Shea was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. This research was funded by Woods Hole Oceanographic Institution’s Edwin W. Hiam Ocean Science and Technology Award Fund, its Ocean Venture Funds, its Academic Programs Office, and the National Aeronautics and Space Administration via grant number CCE NNX17AI72G to Dr. Samuel Laney. The raw data for Figures 3-3 and 3-4 were provided through Australian Antarctic Science grants 2678 and 4390.
    Keywords: Ocean color ; Hyperspectral ; Remote sensing
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2021.
    Description: Estimating turbulence in the marine-atmospheric boundary layer is critical to many industrial, commercial and scientific fields, but of particular importance to the wind energy industry. Contributing to both the efficiency of energy extraction and the life-cycle cost of the turbine itself, turbulence in the atmospheric boundary layer is estimated within the wind energy industry as Turbulence Intensity (TI) and more recently by Turbulent Kinetic Energy (TKE). Traditional in-situ methods to measure turbulence are extremely difficult to deploy in the marine environment, resulting in a recent movement to and dependence on remote sensing methods. One type of remote sensing instrument, Doppler lidars, have shown to reliably estimate the wind speed and atmospheric turbulence while being cost effective and easily deployable, and hence are being increasingly utilized as a standard for wind energy assessments. In this thesis, the ability of lidars to measure turbulence up to a height of 200 m above mean sea level in the marine-atmospheric boundary layer was tested using a 7-month data set spanning winter to early summer. Lidar-based TI and TKE were estimated by three methods using observations from a highly validated lidar system and compared under both convective and stable atmospheric stability conditions. Convective periods were found to have higher turbulence at all the heights compared to stable conditions, while mean wind speed and shear were higher during stable conditions. The study period was characterized by generally low turbulent conditions with high turbulence events occurring at timescales of a few days. Mean vertical profiles of TKE were non-uniformly distributed in height during low turbulent conditions. During highly turbulent events, TKE increased more strongly with height. The definition of TI– following the industry or meteorology conventions – had no real effect on the results, and differences between cup or sonic anemometers and lidar TI values were small except at low wind speeds. All the three lidar-based TKE methods tested corresponded closely to independent estimates, and differences between the methods were small relative to the temporal variability of TKE observed at the offshore site.
    Keywords: Turbulence ; Wind engery ; Lidar
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2021.
    Description: The apparent global increase in harmful algal blooms (HABs) includes Pseudo-nitzschia blooms in the Gulf of Maine, where shellfishery closures can cost millions of dollars. Temperatures in the gulf are warming, which can affect the severity of some HABs. Yet Pseudo-nitzschia in the region are understudied. Pseudo-nitzschia bloom dynamics, P. australis introduction, and potential future changes thereof were investigated in the Gulf of Maine. Data from ship surveys and moorings were used, as well as hydrodynamic, climate, and Lagrangian particle tracking models. Pseudonitzschia bloom toxicity was driven primarily by species composition, not environmental factors. P. australis was introduced to the region in 2016 via a coastal current from the Scotian Shelf. Climate change might intensify Pseudo-nitzschia blooms, shift bloom timing 1–2 weeks earlier in the spring or 4–6 weeks later in the fall, or lengthen the growing season by 3 weeks. It might also affect species composition and connectivity within the gulf. This work has implications for the monitoring of current and future blooms in the Gulf of Maine and for our understanding of HAB introduction to the region. It can also be used to develop predictive models for Pseudo-nitzschia, which could be applied to other HABs.
    Description: This research was funded by the National Science Foundation (Grants OCE-1314642 and OCE-1840381), the National Institute of Environmental Health Sciences (Grants 1P01ES021923-01 and P01 ES028938-01), the Woods Hole Center for Oceans and Human Health, WHOI Academic Programs Funds, the Vannevar Bush Faculty Fellowship, and the National Oceanic and Atmospheric Administration’s HAB Event Response Program (2012 and 2016).
    Keywords: Harmful algal blooms ; Modeling ; Gulf of Maine
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2021.
    Description: The Arctic Ocean is a vital component of Earth’s climate system experiencing dramatic environmental changes. The changes are reflected in its underwater ambient soundscape as its origin and propagation are primarily dependent on properties of the ice cover and water column. The first component of this work examines the effect on ambient noise characteristics due to changes to the Beaufort Sea sound speed profile (SSP) and ice cover. Specifically, the emergence of a warm water intrusion near 70 m depth has altered the historical Arctic SSP while the ice cover has become thinner and younger due to the rise in average global temperature. Hypothesized shifts to the ambient soundscape and surface noise generation due to these changes are verified by comparing the measured noise data during two experiments to modeled results. These changes include a broadside notch in noise vertical directionality as well as a shift from uniform surface noise generation to discrete generation at specific ranges. Motivated by our data analyses, the second component presents several tools to facilitate ambient noise characterization and generation monitoring. One is a convolutional neural network (CNN) approach to noise range estimation. Its robustness to SSP and bottom depth mismatch is compared with conventional matched field processing. We further explore how the CNN approach achieves its performance by examining its intermediate outputs. Another tool is a frequency domain, transient event detection algorithm that leverages image processing and hierarchical clustering to identify and categorize noise transients in data spectrograms. The spectral content retained by this method enables insight into the generation mechanism of the detected events by the ice cover. Lastly, we present the deployment of a seismo-acoustic system to localize transient events. Two forward approaches that utilize time-difference-ofarrival are described and compared with a more conventional, inverse technique. The examination of this system’s performance prompts recommendations for future deployments. With our ambient noise analysis and algorithm development, we hope these contributions provide a stronger foundation for continued study of the Arctic ambient soundscape as the region continues to grow in significance.
    Description: Office of Naval Research (ONR) via the University of California - San Diego (UCSD) under award number N00014-16-1-2129. Defense Advanced Research Projects Agency (DARPA) via Applied Physical Sciences Corp. (APS) under award number HR0011-18-C-0008. Office of Naval Research (ONR) under award number N00014-17-1-2474. Office of Naval Research (ONR) under award number N00014-19-1-2741. National Science Foundation (NSF) under grant number 2389237.
    Keywords: Ambient noise ; Arctic change ; Noise analysis
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanographic Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2021.
    Description: Nearly 1.5 million people inhabit barrier islands along the U.S. Atlantic and Gulf Coasts and coastal groundwater dynamics influence the availability of freshwater, ecosystem health, pollutant transport, and flooding in these densely populated communities. However, groundwater dynamics, including the aquifer head distribution and subsurface salinity structure, in coastal aquifers are affected by multiple environmental forcings, such as waves, tides, storm surges, and precipitation that act on a variety of spatial and temporal scales, making coastal groundwater dynamics complex and difficult to predict. Here, measurements of groundwater heads, salinities, and temperatures collected for 3 years across a 550-m-wide barrier island are used in conjunction with observations of ocean tides, surge, waves, sound level, and rainfall to characterize the dynamics of the surface aquifer. Infiltration from surge, tides, and waves during storms caused up to 2 m increases in the groundwater level under the dune. The head gradients owing to these storm-induced groundwater bulges suggest flows become inland directed on the ocean-side of the island during storms. An upper saline plume (20-30 PSU) was observed above fresher (10 PSU) water up to 30 m inland of the dune face, which was the maximum wave runup location. Differences in inland propagation between tidal- and storm-induced groundwater head fluctuations are explained using analytical theories for intermediate depth aquifers. Additionally, a separate analytical water-table evolution model driven with estimated ocean shoreline water levels (based on the 36-hr-averaged offshore tide, surge, and wave height) and measured precipitation is validated by citizen-science flood reports and predicts the maximum water-table height within 0.1 m of the observed levels across the barrier island.
    Description: Funding for this research was provided by the U.S. Coastal Research Program, the National Science Foundation, a National Science Foundation Graduate Research Fellowship, the Woods Hole Oceanographic ISP program, and National Security Science & Engineering and Vannevar Bush Faculty Fellowships.
    Keywords: Groundwater ; Storms ; Coastal aquifer
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Autonomous underwater vehicles (AUVs) are an increasingly capable robotic platform, with embedded acoustic sensing to facilitate navigation, communication, and collaboration. The global positioning system (GPS), ubiquitous for air- and terrestrial-based drones, cannot position a submerged AUV. Current methods for acoustic underwater navigation employ a deterministic sound speed to convert recorded travel time into range. In acoustically complex propagation environments, however, accurate navigation is predicated on how the sound speed structure affects propagation. The Arctic’s Beaufort Gyre provides an excellent case study for this relationship via the Beaufort Lens, a recently observed influx of warm Pacific water that forms a widespread yet variable sound speed lens throughout the gyre. At short ranges, the lens intensifies multipath propagation and creates a dramatic shadow zone, deteriorating acoustic communication and navigation performance. The Arctic also poses the additional operational challenge of an ice-covered, GPSdenied environment. This dissertation demonstrates a framework for a physics-based, model-aided, real-time conversion of recorded travel time into range—the first of its kind—which was essential to the successful AUV deployment and recovery in the Beaufort Sea, in March 2020. There are three nominal steps. First, we investigate the spatio-temporal variability of the Beaufort Lens. Second, we design a human-in-the-loop graphical decision-making framework to encode desired sound speed profile information into a lightweight, digital acoustic message for onboard navigation and communication. Lastly, we embed a stochastic, ray-based prediction of the group velocity as a function of extrapolated source and receiver locations. This framework is further validated by transmissions among GPS-aided modem buoys and improved upon to rival GPS accuracy and surpass GPS precision. The Arctic is one of the most sensitive regions to climate change, and as warmer surface temperatures and shrinking sea ice extent continue to deviate from historical conditions, the region will become more accessible and navigable. Underwater robotic platforms to monitor these environmental changes, along with the inevitable rise in human traffic related to trade, fishing, tourism, and military activity, are paramount to coupling national security with international climate security.
    Description: Office of Naval Research (N00014-14-1-0214) — GOATS’14 Adaptive and Collaborative Exploitation of 3-Dimensional Environmental Acoustics in Distributed Undersea Networks Draper Laboratory Incorporated (SC001-0000001039) — Positioning System for Deep Ocean Navigation (POSYDON) Office of Naval Research (N00014-16-1-2129) — MURI: The Information Content of Ocean Noise: Theory and Experiment Office of Naval Research (N00014-17-1-2474) — Environmentally Adaptive Acoustic Communication and Navigation in the New Arctic Office of Naval Research (N00014-19-1-2716) — TFO: Assessing Realism and Uncertainties in Navy Decision Aids Department of Defense, Office of Naval Research — National Defense, Science, and Engineering Graduate Fellowship
    Keywords: Beaufort Lens ; GPS-denied underwater navigation ; Marine robotics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Aeronautics and Astronautics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2021.
    Description: Global temperature rise and increased atmospheric carbon dioxide (CO2) levels have affected the health of the world’s ocean and water ecosystems, impacting the balances of natural carbon cycling and causing ocean acidification. Additionally, as global temperatures rise, thawing permafrost has stimulated increased release of methane (CH4), a gas with a shorter lifetime in the atmosphere but with even more heat trapping ability than CO2. In situ analysis of dissolved gas content in surface waters is currently performed with large, expensive instruments, such as spectrometers, which are coupled with gas equilibration systems, which extract dissolved gas from water and feed it to the sensor. Accurate, low cost, and portable sensors are needed to measure the dissolved CH4 and CO2 concentration in water systems to quantify their release and understand their relationship to the global carbon budget. At the same time, while greenhouse gases are well established threats to water ecosystems, the ubiquity and potential consequences of microplastics in aqueous environments are just beginning to be recognized by the environmental research community. Microplastics (MPs) are small particles of polymer debris, commonly defined as being between 1 μm and 1000 μm. Despite the pervasiveness of MPs, our ability to characterize MPs in the environment is limited by the lack of technologies for rapidly and accurately identifying and quantifying MPs. This thesis is concerned with the engineering challenges prompted by the need for high quality and quantity environmental data to better study and the impact, cycling, and prevalence of these pollutants in aqueous environments. Three distinct investigations are presented here. First, the design of the Low-Cost Gas Extraction and Measurement System (LC-GEMS) for dissolved CO2 is presented. At just under $600 dollar to build, the LC-GEMS is an ultra-portable, toolbox-sized instrument for dissolved gas sensing in near-surface waters. The LCGEMS was characterized in the lab and demonstrated linear relationships with dissolved CO2 as well as temperature. Lab calibrations and subsequent field testing in the Little Sippewissett Marsh, in Falmouth, Massachusetts showed that the LCGEMS captures both diurnal and minute-time scale trends in dissolved CO2. Second, this thesis presents the novel design of three simple and low-cost planar nanophotonic and plasmonic structures as optical transducers for measuring dissolved CH4. Through simulations, the sensitivity of the structures are evaluated and found to exhibit superior performance in the reflectance intensity readout mode to that of the standard surface-plasmon-polariton-mode Spreeta sensor. A practical, small, and low-cost implementation of this chip with a simple intensity-based measurement scheme is proposed. This design is novel in the space of dissolved gas monitoring because it shows potential to measure directly in the water phase while being robust and low-cost to implement. Finally, this thesis presents a literature review and perspective to motivate the development of field-deployable microplastic sensing techniques. A framework for field-deployable microplastic sensing is presented and seeks to inform the MP community of the potential in both traditional MP analysis techniques and unconventional methods for creating rapid and automated MP sensors. The field-deployabilty framework addresses a full scope of practical/technological trade-offs to be considered for portable MP detection.
    Keywords: Dissolved gas ; Microplastics ; Instrumentation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: As the western boundary current of the North Atlantic, the Gulf Stream is a well established area of interest for the United States Navy, predominately due to its proximity to the continental shelf and the associated challenges of acoustic propagation across large property gradients. Autonomous underwater gliders conduct routine, high-resolution surveys along the U.S. East Coast, including within the Gulf Stream. These observations are assimilated into the operational Navy Coastal Ocean Model (NCOM). An investigation of the forecast-to-nowcast changes in the model for 2017 demonstrates the impact of the observations on the model. The magnitude of model change as a function of distance from nearest new observation reveals relatively large impact of glider observations within a radius of 𝒪(100) km. Glider observations are associated with larger local impact than Argo data, likely due to glider sampling focusing on large spatial gradients. Due to the advective nature of the Gulf Stream system, the impact of glider observations in the model is anisotropic with larger impacts extending downstream from observation locations. Forecast-to-nowcast changes in modeled temperature, salinity, and density result in improved agreement between observed and modeled ocean structure within the upper 200 m over the 24 hours between successive model runs.
    Description: This research was funded via the United States Navy’s Civilian Institution Program with the Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program (MIT/WHOI JP). Glider observations and analyses have been generously supported by the National Science Foundation (OCE-0220769, OCE-1558521, OCE-1633911, OCE-1923362), NOAA’s Global Ocean Monitoring and Observing Program (NA14OAR4320158, NA19OAR4320074), the Office of Naval Research (N000141713040), Eastman Chemical Corporation, WHOI’s Oceans and Climate Change Institute, and the W. Van Alan Clark, Jr. Chair for Excellence in Oceanography at WHOI (awarded to Breck Owens).
    Keywords: Model ; Glider ; Gulf Stream
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: This thesis analyzes data from two types of unique drifter experiments in order to characterize two aspects of ocean flows that are often difficult to study. First, vertical velocities and their associated transport processes are often challenging to observe in the real ocean since vertical velocities are typically orders of magnitude smaller than horizontal velocities in mesoscale and submesoscale flows. Second, Lagrangian coherent structures (LCS) are features which categorize ocean flows into regimes of distinct behavior. These structures are also difficult to quantify in the real ocean, since sets of gridded trajectories from real ocean data (rather than model fields) are rarely available. The first experiment uses drifters drogued at multiple depths in the Alboran Sea to observe and characterize the ocean’s vertical structure, particularly near a strong front where vertical velocities are expected to be much stronger than other regions of the Ocean. The second experiment uses a roughly gridded pattern of surface drifters in the Gulf of Mexico to study LCSs as quantified by methods from dynamical systems such as finitetime Lyapunov exponents (FTLEs), trajectory arc-length, correlation dimension, dilation, Lagrangian-averaged vorticity deviation (LAVD), and spectral clustering. This thesis includes the first attempt to apply these dynamical systems techniques to real drifters for LCS detection. Overall, these experiments and the methods used in this paper are shown to be promising new techniques for quantifying both the vertical structure of ocean flows and Lagrangian Coherent Structures of flows using real drifter data. Future work may involve modified versions of the experiments, with denser sets of ocean drifters in the horizontal and/or vertical directions.
    Description: My Masters studies in the MIT/WHOI Joint Program were funded by the US Navy Civilian Institution Office.
    Keywords: Lagrangian coherent structures ; Finite-time Lyapunov exponents ; Vertical transport
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: Phytoplankton are communities of diverse groups of prokaryotic and eukaryotic single-celled organisms responsible for nearly 50% of global primary production. The relative abundance of individual groups changes dynamically in response to environmental perturbations. Recent studies suggest that such changes are primarily driven by the distinct physiological responses employed by each group towards a particular perturbation. Although knowledge of some of these responses has come to light in recent years, many aspects of their metabolisms remain unknown. We attempt to address this gap by studying the metabolism of several phytoplankton groups using metabolomics. Firstly, we developed a method to enhance the analysis of untargeted metabolomics data. Secondly, we constructed two conceptual models describing how metabolism of the raphidophyte Heterosigma akashiwo responds to phosphorus and nitrogen stress. These conceptual models revealed several new stress response mechanisms not previously reported in other phytoplankton. Finally, we compared the metabolic changes of several distinct phytoplankton groups to uncover possible adaptation and acclimations that distinguish them. This analysis revealed several pathways and metabolites that represent the studied groups. The contributions of these pathways and metabolites towards physiology may support the ecological fitness of these organisms.
    Description: None of this work would have been possible without a variety of funding sources. I was supported for three years by a National Science Foundation Graduate Research Fellowship and one year with a GEM fellowship. The research was carried out with grants from the MIT Microbiome Center (Award ID #6936800, EBK), the Simons Foundation (Award ID #509034, EBK), the Gordon and Betty Moore Foundation (Award ID #3304 EBK), the National Science Foundation (Award ID #OCE-0619608 to EBK and OCE-1057447 to EBK and MCKS) and the WHOI Ocean Ventures Fund.
    Keywords: Phytoplankton ; Metabolism ; Metbolomics
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2022.
    Description: Diving operations are inherently complex due to navigation and communication limitations. Until recently, fixed-beacon acoustic localization techniques have served as the primary means of improving diver navigation. However, modern artificial intelligence and acoustic modem technologies have enabled accurate relative navigation methods between a diver and an autonomous vehicle. Human-robot collaboration takes advantage of each member’s strengths to create the most effective team. This concept proves especially advantageous within the ocean domain, where humans are naturally deficient navigators. Yet humans serve as the team’s creative spirit, offering the critical thinking and flexibility needed to succeed in an unpredictable and dynamic environment. Recent underwater human-robot cooperative navigation systems typically rely on autonomous surface vehicles (ASVs), specially designed underwater vehicles, or stereo cameras. This thesis proposes a diver navigation method exhibiting significantly improved accuracy over dead reckoning without relying on a surface presence, cameras, or fixed acoustic beacons. Specifically, we develop and evaluate the communication architecture and autonomous behaviors required to guide a diver to a target location using subsurface humanautonomous underwater vehicle (AUV) teaming with no requirement for ocean current data or exact diver speeds. By depending on acoustic communication and commercial AUV navigation capabilities, our method has increased accessibility, applicability, and robustness over former techniques. We utilize the Woods Hole Oceanographic Institution (WHOI) Micromodem 2’s twoway-travel-time (TWTT) capability to enable range-only single-beacon navigation between two kayaks serving as proxies for the diver and Remote Environmental Monitoring Units (REMUS) 100 AUV. During processing, a nonlinear least-squares (NLS) method, called incremental smoothing and mapping 2 (iSAM2), utilizes odometry and range measurements to provide real-time diver position estimates given unknown ocean currents. Field experiments demonstrate an average online endpoint error of 4.53 meters after transits four hundred meters long. Additionally, simulations test our method’s performance in more challenging situations than those experienced in the field. Overall, this research progresses the interoperability of divers and AUVs.
    Description: The United States Navy funded my graduate education. The Office of Naval Research also partially supported this work under grant N00014-18-1-2832.
    Keywords: Human-autonomy teaming ; Autonomous underwater vehicle ; Diver navigation
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2022.
    Description: Marine microbes require copper (Cu) for a variety of key enzymes and can therefore experience limitation when concentrations are low. However, when Cu concentrations are too high, it becomes toxic causing decreased cell growth and even cell death. Laboratory culture experiments have shown that a diverse array of microbes produce organic ligands that complex Cu (CuL) and buffer the free ion concentration, which is the most bioavailable fraction. In this way, the microbes impose a control on the speciation of Cu, decreasing the toxic effects of Cu and making seawater conditions favorable for growth. Studies have shown that CuL complexes produced in laboratory cultures have similar complexation strengths to those found in seawater samples, which suggests a biological source of CuLs in seawater where dissolved Cu is almost entirely bound by organic ligands. However, information about individual CuL complexes is lacking which limits our understanding of the sources, sinks, and cycling of dissolved Cu. In order to fill this gap in knowledge, molecular level information about CuL complexes produced in culture and found in seawater must be obtained. To investigate this, liquid chromatography (LC) was coupled to two mass spectrometers (MS), an inductively coupled plasma (ICP) MS and an electrospray ionization (ESI) MS. By using data supplied by both techniques, the molecular charateristics of CuLs were determined laboratory cultures of the marine diatom Phaeodactylum tricornutum and the cyanobacterium Synechococcus, as well as investigating the distribution of CuLs in natural seawater samples along a line from 56°N to 20°S, along 152°W through the north and central Pacific Ocean. The CuLs identified in laboratory cultures had molecular formulae and fragmentation patterns characteristic of linear tetrapyrroles, a group of organic compounds commonly found in biological systems. This identification was further supported by absorbance and nuclear magnetic resonance spectroscopy. The distribution of CuLs in the Pacific Ocean showed a highly dynamic and complex mixture of ligands, closely tied to biological cycles.
    Description: Funding for this work was provided by the National Science Foundation Graduate Research Fellowship Program (NSF award 1122374) for providing three years of funding. Thank you to the National Science Foundation Chemical Oceanography Program (NSF award OCE-1736280 and OCE-2045223) and the Simons Collaboration on Ocean Processes and Ecology (award P49476). A portion of this work was performed at the National High Magnetic Field Laboratory in Tallahassee, Florida, which is supported through NSF DMR 11-57490, and the State of Florida.
    Keywords: Organic ligands ; Copper ; LC-MS
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2022.
    Description: Removal of particulate organic carbon (POC) from sunlit surface waters into the deep ocean represents a climatically important sink of atmospheric carbon dioxide (CO2), linking the biogeochemical cycling of POC to CO2-driven climate change. As POC is not well preserved in the sediment record, other proxies, including the chemistry of barium (Ba) in the ocean and through the sedimentary record, offer an avenue to investigate oceanic carbon export through Earth’s history. This thesis seeks to constrain the controls on the formation, cycling, and isotopic signature of the main particulate phase of marine barium, the mineral barite (BaSO4) through its inception in the water column, during deposition, and ultimately into the rock record. To that end, I characterize the depth, spatial region, and general controls on particulate Ba formation in the South Pacific Ocean through shipboard experimentation and find that particulate Ba forms mainly in the surface of the Polar Frontal Zone in the presence of large particles and microbial activity. Next, I characterize the effect of ion exchange on BaSO4, a process previously unstudied under marine conditions, in a laboratory setting. Ion exchange occurs rapidly between dissolved Ba and BaSO4 and imparts a characteristic net offset between the Ba isotope composition of the dissolved and solid phase, which arises through a combination of Ba isotope fractionation during both precipitation and dissolution. Finally, I investigate the role of ion exchange in marine settings using co-located pore fluids and sedimented BaSO4. Modeling constrained by data from natural samples produce results that are consistent with the laboratory study, suggesting that this mode of isotopic fractionation impacts Ba isotopes in the environment and must be accounted for when applying Ba based climate proxies.
    Description: Funding for this work was provided by the National Science Foundation (OCE-2023456 & OCE-1827401), the Woods Hole Oceanographic Institution Ocean Ventures Fund, a National Science Foundation Graduate Research Fellowship (2017250048), and Woods Hole Oceanographic Institution.
    Keywords: Barium isotopes ; Geochemistry ; Paleoceanography
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2021.
    Description: The Gulf Stream, the western boundary current of the subtropical North Atlantic, plays a key role in the Earth’s climate system with its poleward volume and heat transports being major components of the upper limb of the Atlantic Meridional Overturning Circulation. Extensive observations collected using Spray autonomous underwater gliders from 2004 through 2020 fill a 1500-km-long gap in longer-term sustained subsurface measurements of the Gulf Stream. The gliders provide concurrent, high-resolution measurements of Gulf Stream hydrography and velocity over more than 15 degrees of latitude between Florida and New England. These observations are used to characterize the along-stream evolution of Gulf Stream volume transport; its long-known poleward increase is shown to result primarily from entrainment of subthermocline waters. Antarctic Intermediate Water, which makes up the deepest waters within the Gulf Stream in the Florida Strait, is eroded through both vertical mixing and lateral stirring as it flows downstream. Satellite-based observations of sea surface height coincident with the glider observations are used to evaluate the efficacy of inferring Gulf Stream transport from remotely sensed measurements. The detailed analyses of Gulf Stream transport and water property evolution herein provide targets for regional and global circulation models to replicate.
    Description: We gratefully acknowledge funding from the National Science Foundation (OCE-0220769, OCE-1633911, OCE-1923362, OCE-1558521), NOAA’s Global Ocean Monitoring and Observing Program (NA14OAR4320158, NA19OAR4320074), the Office of Naval Research (N000141713040), WHOI’s Oceans and Climate Change Institute, Eastman Chemical Company, and the W. Van Alan Clark, Jr. Chair for Excellence in Oceanography at WHOI (awarded to Breck Owens).
    Keywords: Gulf Stream ; Autonomous underwater gliders ; Volume transport
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2022.
    Description: Coastal ecosystems provide key services that benefit human wellbeing yet are undergoing rapid degradation due to natural and anthropogenic pressures. This thesis seeks to understand how disturbances impact salt marsh and estuarine ecosystem functioning in order to refine their role in coastal ecosystem service delivery and predict future resilience. Salt marsh survival relative to sealevel rise increasingly relies on the accumulation and preservation of soil organic carbon (SOC). Firstly, I characterized SOC development and turnover in a New England salt marsh and found that salt marsh soils typically store marsh grass-derived compounds that are reworked over centuries-to-millennia. Next, I assessed how two common marsh disturbances – natural ponding and anthropogenic mosquito ditching – affect salt marsh carbon cycling and storage. Salt marsh ponds deepen through soil erosion and decomposition of long-buried marsh peat. Further, the SOC lost during pond development is not fully recouped once drained ponds are revegetated and virtually indistinguishable from the surrounding marsh. Mosquito ditches, which were installed in ~ 90% of New England salt marshes during the Great Depression, did not significantly alter marsh carbon storage. In Buzzards Bay, Massachusetts, a US National Estuary, we tested relationships among measures of estuarine water quality, recreational activity, and local socioeconomic conditions to understand how the benefits of cultural ecosystem services are affected by shifts in water quality associated with global change and anthropogenic activity. Over a 24-year period, water quality degradation coinciding with increases in Chlorophyll a is associated with declines in fishery abundance and cultural ecosystem service values ($0.08 – 0.67 million USD). In combination, incorporation of both anthropogenic and natural disturbances to coastal ecosystem functioning and service delivery can produce improved estimates of ecosystem service valuation for effective resource decision-making under future climate scenarios.
    Description: Funding for this work was provided by John D. and Catherine T. MacArthur Foundation (Grant no. 14-106159-000-CFP), National Science Foundation (OCE1233678), National Oceanic and Atmospheric Administration, National Oceanic and Atmospheric Administration – National Estuaries Research Reserve Collaborative (NA14OAR4170104 and NA- 14NOS4190145), Woods Hole Sea Grant (NA14OAR4170104), MIT Sea Grant (subaward number 5710004045), Ocean Ventures Fund, the Marine Policy Center Johnson Endowment, and Woods Hole Oceanographic Institution.
    Keywords: Salt marsh ; Geochemistry ; Carbon storage
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-10-20
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Marine Geology & Geophysics at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution May 2022.
    Description: It is a scientifically accepted fact that the Earth’s climate is presently undergoing significant changes with the potential for immense negative impacts on human society. As evidence of these impacts become clear and common, it becomes ever more important to constrain the nature, magnitude, and speed of changes to Earth systems. A fundamentally important tool to this understanding is the Earth’s past, recorded in the geologic record. There, lie examples of climate change under various forcings: important data for understanding the fundamental dynamics of climate change on our planet. However, when a climate signal is written in the geologic record, it is coded into the language of proxies and distorted by time. This thesis endeavors to decode that record using a variety of computational methods on a number of challenging proxies, to draw more information from the climate past than has previously been possible. First, machine learning and computer vision are used to decipher the primary, centimeter-scale textures of carbonate deposits in Searles Valley and Mono Lake, California. This work is able to connect facies in the tufa at Searles, grown during the Last Glacial Period, and those forming presently at Mono Lake. Next, the tracks of icebergs purged during Heinrich Events are simulated using the MIT General Circulation Model. This work, running multiple experiments exploring different aspects internal and external to the icebergs, reveals wind and sediment partitioning as centrally important to the spatial extent of Heinrich Layers. Each of these works considers a traditional geologic archive – a carbonate facies, a marine sediment layer – and uses computational methods to approach that archive from a different perspective. By applying these new methods, more information can be gleaned from the geologic record, building a richer narrative of the Earth’s climate history. The final chapter of this thesis discusses effective teaching and strategies for building communities to support teaching practice in Earth Science departments.
    Description: This thesis work was funded by the MIT EAPS Rasmussen and Whiteman Fellowships, NSF Project Number NSF-EAR-1903544, and the WHOI Academic Programs Office.
    Keywords: Paleoclimate ; Iceberg ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-27
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: Over the last 20 years, our understanding of the meridional overturning circulation has improved, but primarily in a two-dimensional, zonally-averaged framework. In this thesis, I have pushed beyond this simplification and shown that the additional complexity of meanders, storm tracks, and other zonal asymmetries is necessary to reproduce the lowest-order behavior of the overturning circulation. First I examined the role of basin width for determining whether the Atlantic or Pacific oceans experience deep convection. I used a two layered model and a rectangular single-basin model to show that the basin width, in combination with scalings for the overturning circulation make the overturning relatively weaker in the wider basin, priming it for a convection shut down. In addition to this large-scale work, I have examined Southern Ocean-like meanders using a hierarchy of idealized models to understand the role of bottom topography in determining how the large-scale circulation responds to climate change scenarios. These are useful because they preserve the lowest-order behavior, while remaining simple enough to understand. I tested the response of the stratification and transport in the Southern Ocean to changes in wind using a highly-idealized two-layer quasi-geostrophic model. In addition to showing that meanders are necessary to reproduce the behavior of the Southern Ocean, I found that strong winds concentrate the baroclinic and barotropic instabilities downstream of the bottom topography and weaken the instabilities elsewhere due to a form-drag process. With weak winds, however, the system is essentially symmetric in longitude, like a flat-bottomed ocean. This result is consistent with observations of elevated turbulence downstream of major topography in the Southern Ocean. My next study investigated a more realistic Southern Ocean-like channel, with and without bottom topography, and examined the three-dimensional circulation in order to understand where vertical transport occurs and develop a picture of the pathways taken by each individual water parcel. I found that the vertical transport happens in very isolated locations, just downstream of topography. Finally, I added a biogeochemical model to my simulations and found that carbon fluxes are enhanced near topography, again highlighting the role of zonal asymmetries.
    Description: I have been funded by the American Meteorological Society’s Graduate Fellowship, as well as the National Defense Science and Engineering Graduate Fellowship. I have also been supported by NSF OCE-1536515 and NCAR Large Scale Computing Award UMIT0025.
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-27
    Description: Submitted in partial fulfillment of the requirements for the degree of Master of Science in Physical Oceanography at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2020.
    Description: The Atlantic Water (AW) Layer in the Arctic Subpolar gyre sTate Estimate (ASTE), a regional, medium-resolution coupled ocean-sea ice state estimate, is analyzed for the first time using bounding isopycnals. A surge of AW, marked by rapid increases in mean AW Layer potential temperature and AW Layer thickness, begins two years into the state estimate (2004) and traverses the Arctic Ocean along boundary current pathways at approximately 2 cm/s. The surge also alters AW flow direction and speed including a significant reversal in flow direction along the Lomonosov Ridge. The surge results in a new quasi-steady AW flow from 2010 through the end of the state estimate period in 2017. The time-mean AW circulation during this time period indicates a significant amount of AW spreads over the Lomonosov Ridge rather than directly returning along the ridge to Fram Strait. A three-layer depiction of ASTE’s overturning circulation within the AO indicates AW is converted to colder, fresher Surface Layer water at a faster rate than is transformed to Bottom Water (1.2 Sv vs. 0.4 Sv). Observed AW properties compared to ASTE output indicate increasing misfit during the simulated period with ASTE’s AW Layer generally being warmer and thicker than in observations.
    Description: This research was funded via the United States Navy’s Civilian Institution Program with the MIT/WHOI Joint Program (JP). The thesis supervisor’s participation in this project was supported by National Science Foundation-Grant #PLR-1603660 and by Office of Naval Research-Grant #N000141612381. This project, specifically ASTE developed by Dr. An T. Nguyen, is also supported by National Science Foundation-Grant #PLR-1603903.
    Keywords: Atlantic water ; Arctic Ocean ; Arctic Subpolar Gyre State Estimate
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-27
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2022.
    Description: Attenuation from fish can reduce the intensity of acoustic signals and significantly decrease detection range for long-range active and passive sensing in the ocean. This makes it important to understand the relevant mechanisms and accurately predict attenuation from fish in underwater acoustic sensing. Formulations for predicting attenuation from fish, however, depend on the accurate characterization of population density and spatial distribution of fish groups along long-range propagation paths, which is difficult to achieve using conventional survey methods. In previous investigations of attenuation from fish, population densities were inferred from reductions in the intensity of long-range acoustic signals caused by diel or seasonal shoaling patterns of fish groups. Here, Ocean Acoustic Waveguide Remote Sensing (OAWRS) is used to instantaneously image massive Norwegian herring shoals that stretch for thousands of square kilometers and simultaneously measure attenuation from these shoals within the active OAWRS transmissions, as well as attenuation to ship-radiated tonals detected by Passive Ocean Acoustic Waveguide Remote Sensing (POAWRS). Reductions in signal intensity are predicted using a normal-mode-based analytical theory derived from first principles for acoustic propagation and scattering through inhomogeneities in an ocean waveguide. The predictions of the waveguide attenuation formulation are in agreement with measured reductions from attenuation, where the position, size, and population density of the fish groups are characterized using OAWRS imagery as well as in situ echosounder measurements of the specific shoals occluding the propagation path. Common heuristic formulations that employ free space scattering assumptions for attenuation from fish groups are not in agreement with measurements here, and waveguide scattering theory is found to be necessary for accurate predictions. It is experimentally and theoretically shown that attenuation can be significant when the sensing frequency is near the resonance frequency of the shoaling fish, where scattering losses from the fish swimbladders and damping from fish flesh is most significant. Negligible attenuation was observed in previous OAWRS and POAWRS surveys because the frequency of the acoustic signals was sufficiently far from the swimbladder resonance peak of the shoaling fish or the packing densities of the fish shoals were not sufficiently high.
    Description: This work was supported by: • Office of Naval Research under grant number N00014-17-1-2197. • Office of Naval Research via the Graduate Traineeship Award under grant number N00014-18-1-2085.
    Keywords: Attenuation ; Fish ; Acoustic
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    PANGAEA
    In:  EPIC3INTERACT Webinar on Data Repositories, Online, 2022-05-12Bremerhaven, PANGAEA
    Publication Date: 2022-10-04
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-08-16
    Description: The Calabrian block, along with Alboran, Kabylies, and Peloritani form isolated and enigmatic igneous/metamorphic terranes (AlKaPeCa) stacked over the Meso-Cenozoic sedimentary successions of the Apennines and Maghrebides. They are commonly interpreted as fragments of the Hercynian chain rifted apart from Europe during Jurassic Alpine Tethys spreading, drifted southward during Neogene roll-back of (Neo) Tethyan slab fragments for hundreds of kilometers on top of nappe piles. We report on the paleomagnetism of upper Triassic-lower Miocene sedimentary rocks from the Longobucco succession that is transgressive over the crystalline Sila Massif (NE Calabria). Well-defined magnetization directions carried by hematite were isolated in 10 sites (122 samples) in Jurassic rocks. Nine Toarcian and one Tithonian Ammonitico Rosso sites yielded a dual polarity “A” magnetization component whit a direction over 40° from the geocentric axial dipole (GAD) field direction, that supports a positive fold test. Five sites yielded a “B” normal polarity component NE (〈40°) of the GAD direction characterized by a negative fold test. We interpret the B component as a Miocene magnetic overprint later clockwise rotated by ∼20° during the well-known Pleistocene (1–2 Ma) rotation of Calabria. When corrected for such rotation, the A component defines a ∼160° counterclockwise (CCW) rotation of the Calabrian block with respect to Europe. Of these, ∼90° likely occurred along with Corsica-Sardinia block during its Eocene-Miocene rotation from the Provençal margin. Thus, the Calabrian block underwent an additional Cretaceous-Eocene 70° CCW rotation that we relate to Early-mid Cretaceous 〉500 km left-lateral transcurrent motion between Africa and Europe.
    Description: Published
    Description: e2021TC007156
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2022-08-16
    Description: Ionospheric irregularities may affect electromagnetic signals propagating through the ionosphere and consequently contribute to the malfunctioning of the Global Navigation Satellite Systems hindering their accuracy and reliability. In this study, we use data recorded on board two of the three satellites of the Swarm constellation (namely, Swarm A and Swarm B) from July 15th, 2014 to December 31st, 2021 to assess the possible dependence of the Global Positioning System (GPS) signals loss of lock on the presence of a specific kind of ionospheric irregularities. To accomplish this task we study the scaling features of the electron density fluctuations through the structure function analysis simultaneously to the occurrence of loss of lock events through measurements recorded by the Langmuir probes and the precise orbit determination antennas on board Swarm A and Swarm B satellites. We find that the plasma density irregularities in a turbulent state characterized by intermittent structures and extremely high values of the Rate Of change of electron Density Index can lead to GPS loss of lock events. This is always true at mid- and high-latitudes, especially inside the auroral oval. In the equatorial belt, this happens in at least 75% of identified GPS loss of lock events that basically coincide with the occurrence of plasma bubbles.
    Description: Published
    Description: e2022SW003129
    Description: 2A. Fisica dell'alta atmosfera
    Description: JCR Journal
    Keywords: Turbulence ; ionosphere ; Loss of Lock events ; 01.02. Ionosphere
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2022-08-23
    Description: We present the world’s first time series acquired in the summit area of an active volcano with an absolute atom interferometry gravimeter. The device was installed ~2.5 km from the active craters of Mt. Etna volcano and produced a continuous high–quality gravity time series, despite the unfavorable environmental conditions at the installation site and the occurrence of phases of high volcanic tremor during the acquisition interval. Comparison with data from other gravimeters installed elsewhere on Mt. Etna highlights correlated anomalies, demonstrating that the quantum device measured gravity variations driven by bulk mass changes. The latter are reflective of volcanic processes, involving the dynamics of magma and exsolved gas in the upper part of Mt. Etna's plumbing system. Our results confirm the operational possibilities of quantum gravimetry and open new horizons for the application of the gravity method in geophysics.
    Description: NEWTON-g project - H2020, FETOPEN-2016/2017 call (Grant Agreement No 801221)
    Description: Published
    Description: e2022GL097814
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2022-05-05
    Description: This article is composed of two independent opinion pieces about the state of integrated, coordinated, open, and networked (ICON) principles (Goldman et al., 2021, https://doi.org/10.1029/2021EO153180; Goldman et al., 2022, https://doi.org/10.1029/2021ea002099) in Tectonophysics and discussion on the opportunities and challenges of adopting them. Each opinion piece focuses on a different topic: (a) global collaboration, technology transfer and application, reproducibility, and data sharing and infrastructure; and (b) field, experimental, remote sensing, and real-time data research and application. Within tectonophysics science, ICON-FAIR principles are starting to be adopted and implemented, however they have not become frequent and there are still plenty of opportunities for further development. During the last decade, standardization reduced fragmentation, facilitated openly available databases, and enabled different modeling methods to be combined. On the other hand, integration and coordination remained insufficient as exemplified by numerous geophysical interpretation programs running on different platforms, lacking the proper documentation and with diverse output formats. We agree that adapting the principles of ICON-FAIR brings high efforts and risks, but in the end, it has great benefits and potential in the tectonophysics community.
    Description: Published
    Description: e2021EA002144
    Description: 1T. Struttura della Terra
    Description: JCR Journal
    Keywords: integrated, coordinated, open, and networked (ICON) science ; Databases ; Data sharing ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-09-14
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Oceanography and Applied Ocean Science and Engineering at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2020.
    Description: Carbonates are prevalent in many modern and ancient lacustrine settings, but reconstructions of past lake levels or environments from such materials have been hindered by poor chronology. Uranium-thorium (U-Th) dating has the potential to fill a gap in current geochronological tools for such archives, but past attempts have been confounded by poor understanding of the complex makeup of lacustrine carbonates, leading to misguided conclusions on both the utility of certain geochronological tools as well as the age of these deposits. This thesis showcases strategies for the successful application of U-Th geochronology to two types of lacustrine carbonates: lake bottom sediments and tufa deposits. Chapter 2 presents a systematic approach to U-Th dating carbonate-rich lake sediments using the ICDP sediment core from Lake Junín, Peru. Chapters 3–5 seek to demonstrate the descriptive power of combining precise U-Th dates on tufas and other carbonates with geologic observations of their depositional context at all scales—from the outcrop to the microscale. Here, the tufas originate from a transect of closed-basin lakes in the central Andes of northern Chile. With improved sample selection and leveraging of the incontrovertible constraints of stratigraphy and coevality, we are able to test the validity of U-Th data. Combining quality-controlled geochronological constraints with careful characterization of different carbonate facies can yield new insight on the character of lake level changes. These case studies offer frameworks for interpreting scattered geochronologic data of any size or system. By embracing the noise in our data, we now have a richer understanding of the controls on uranium in these deposits. Of all the lessons learned, we hold the following as most important: for the determination of the age of lacustrine carbonates, geologic context—in the form of sedimentological observations, additional geochemical data, and paleoecological descriptions—is of equal importance to the numerical accuracy and precision of geochronological measurements.
    Description: Funding sources: National Science Foundation, Massachusetts Institute of Technology, Geological Society of America, MIT MISTI, Comer Foundation, American Philosophical Society, National Geographic Society, Explorers Club.
    Keywords: Carbonates ; Tufa ; Geochronology
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...