ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Geophysical Union  (321)
  • INGV  (56)
  • Cell Press
  • Molecular Diversity Preservation International (MDPI)
  • 2020-2023  (384)
Collection
Years
Year
  • 1
    Publication Date: 2022-04-06
    Description: Nell’ambito del progetto EDISECUR, finanziato della regione Lazio, è stato sviluppato un prototipo di telesensore infrasonico, TIS, a tracciamento di speckle per la misura della velocità angolare, delle frequenze fondamentali e delle armoniche di una superficie sottoposta a oscillazioni. Il TIS si presta particolarmente per il rilevamento e il monitoraggio nel tempo degli edifici, ponti e altri manufatti. Conoscere lo stato vibrazionale di queste strutture può essere d’interesse sia per la loro caratterizzazione dinamica che per la sicurezza. Questo prototipo, sufficientemente compatto, si presta a una misura immediata della velocità angolare e, con semplici operazioni, si possono dedurre spostamenti e accelerazioni angolari. Dalle grandezze angolari e dalla conoscenza geometrica della superficie, tramite alcuni schemi ed esempi, si mostra come sia possibile determinare anche altri parametri cinematici lineari. Il telesensore può essere impiegato nelle misure delle vibrazioni di superfici a lunga distanza di varia natura, anche laddove non fosse possibile accedere per eseguire una misura diretta. Lo strumento copre un campo di frequenze fino alle decine di Hz, ha una sensibilità e una dinamica tale da rilevare le vibrazioni indotte dal rumore industriale, dal traffico, dal vento e altro. Questo lavoro è principalmente rivolto alle applicazioni del TIS nel rilevamento delle vibrazioni delle strutture ed è in questo ambito che vengono spiegate le modalità, i limiti e i vantaggi del suo impiego insieme agli errori insiti nella tecnica di misura. Dato che il TIS misura un movimento relativo tra lo stesso strumento e la superficiebersaglio, sono stati valutati gli errori delle vibrazioni dovute alla microsismicità e altre cause ambientali. Vengono infine riportati due preliminari esempi di misura su una struttura edile.
    Description: Regione Lazio, progetto EDISECUR
    Description: Published
    Description: 1-36
    Description: 7TM.Sviluppo e Trasferimento Tecnologico
    Description: JCR Journal
    Keywords: Remote Sensor ; Vibration Detector
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-11
    Description: L’Istituto Nazionale di Geofisica e Vulcanologia (INGV) riceve, nella Sala di Sorveglianza Sismica e Centro Allerta Tsunami di Roma, i segnali in tempo reale da centinaia di stazioni sismiche distribuite sul territorio nazionale. Entro due minuti dall’occorrenza di un qualsiasi terremoto, appositi sistemi automatici forniscono una prima valutazione dei parametri ipocentrali. Due sismologi, sempre presenti nella sala operativa della sede centrale, controllano le informazioni ottenute e, per i terremoti sopra una determinata soglia di magnitudo (ML ≥ 2.5), comunicano alla Sala Situazione Italia della Protezione Civile i dati elaborati, in media in circa 12 minuti (massimo entro 30 minuti) [Margheriti et al., 2021]. La valutazione definitiva dei parametri ipocentrali di tutti i terremoti, dai più grandi avvertiti in vaste aree del territorio ai più piccoli rilevati solo da pochi strumenti, è demandata a un’analisi più accurata svolta in un secondo tempo, ormai da alcuni decenni, da un gruppo di analisti specializzati nell’interpretazione dei segnali sismici. Gli analisti sismologi del Bollettino Sismico Italiano revisionano tutti i dati registrati dalle stazioni della Rete Sismica Nazionale (RSN) dell’INGV e riconoscono la presenza di terremoti attraverso un’analisi diretta delle forme d’onda. In tal modo l’analista rileva il tempo d’arrivo delle onde sismiche ai vari sensori e valuta l’ampiezza delle oscillazioni e la direzione del moto del suolo; questi parametri, utilizzati da apposite procedure di calcolo, consentono di localizzare ogni terremoto e di valutare la magnitudo associata. Le informazioni così ottenute confluiscono nel database che l’INGV gestisce e che mette a disposizione della comunità1. Questa pubblicazione ha come scopo quello di far conoscere un prodotto dell’Istituto Nazionale di Geofisica e Vulcanologia, Il Bollettino Sismico Italiano (BSI), con particolare riferimento all’anno 2015. Saranno delineate le principali caratteristiche della sismicità naturale e quella di origine antropica registrata in Italia nel corso dell’anno esaminato.
    Description: Published
    Description: 1-48
    Description: 4IT. Banche dati
    Description: JCR Journal
    Keywords: Bollettino Sismico Italiano 2015 ; Italian Seismic Bulletin 2015 ; sequences and seismic swarms ; explosion ; 04. Solid Earth::04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-07
    Description: This study represents the first attempt to combine the geomorphological characteristics of the island of Ustica with the human settlements that have been established during prehistory, with the purpose of reconstructing the interactions between communities and the natural environment from the Neolithic to the Middle Bronze Age (6th - 1st millennia B.C.). Ustica is a small island in the Southern Tyrrhenian Sea, visible but far (~55 km) from the northern coast of western Sicily. Its rugged volcanic nature, remodeled and enriched by the sea, offered to the first colonizers a wide repertoire of opportunities and challenges. This island can be treated as an ideal “laboratory” to understand how settlers, taking their first steps towards the foundation of organized communities, were able to seize opportunities or succumb to obstacles. The review of archaeological research until now carried out in Ustica, integrated with geomorphological data and other biogeographical indicators, offers a picture of the prehistory of Ustica in which human presence is continuous and distributed in various sites of the island characterized by different physiographic characteristics. There are phases dominated by the choice of naturally protected sites and phases in which settlements expands on open land, suitable for agricultural use. Where the archaeological evidence is scarce, the geomorphological peculiarities allow us to decipher the vocations and characters of a human settlement. The study leads to an open question: in the Middle Bronze Age, after about five thousand years of uninterrupted habitation of Ustica, which factors, geological, social, or other, induced the early communities to abandon the island, without returning there for about eight centuries, until the Hellenistic-Roman age?
    Description: Published
    Description: VO550
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: Geoarchaeology ; Geoarchaeology ; Prehistoric Settlements ; Island Archaeology ; Volcanic Landscape
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-03-09
    Description: This work sets out to identify a state-of-the-art system to be used for the calibration of seismic sensors. The aim is to acquire such a system within the framework of the PON ARS01 00926 EWAS (an Early Warning System for cultural heritage) project, which seeks to develop new technologies for the protection, conservation and safety of cultural heritage and envisages creating a newly developed seismic monitoring system. This system will exploit the ETL3D/5s-H hybrid sensors, resulting from the integration of a precision accelerometer within the ETL3D/5s velocimeter [Fertitta et al., 2020]. The new calibration system, already acquired and being installed, can be used by the EWAS project partners (including the National Institute of Geophysics and Volcanology and the Kore University of Enna), to calibrate the ETL3D/5s-H sensors, and by external organisations to calibrate or gauge other seismic sensors, thus providing a useful service to the scientific community and supporting industrial activities. This paper presents the method used and the activities undertaken to define the technical specifications of the calibration system. A feasibility study of an electromechanical vibrating table and the testing of two electrodynamic calibration systems were carried out. One of the electrodynamic systems is the CS18P (Calibration System for Seismic Sensors) produced by the German firm SPEKTRA. The CS18P comprises two vibrating tables, one horizontal and one vertical, which, thanks to their fluid-dynamic suspension, eliminate the sliding and rolling friction associated with the movement of the moving part with respect to the fixed part. A hardware and software system monitors and controls the motion in real time, analyses the data and automatically processes a predefined set of measurements. In the light of the technical specifications and experimental results, the CS18P represents the ideal solution for the aims of the EWAS project and also in view of the possible future uses of the calibration system.
    Description: Published
    Description: 1-38
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Seismic sensors calibration, Vibration exciter, Seismometer
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-04-29
    Description: In recent years, new approaches for developing earthquake rupture forecasts (ERFs) have been proposed to be used as an input for probabilistic seismic hazard assessment (PSHA). Zone- based approaches with seismicity rates derived from earthquake catalogs are commonly used in many countries as the standard for national seismic hazard models. In Italy, a single zone- based ERF is currently the basis for the official seismic hazard model. In this contribution, we present eleven new ERFs, including five zone-based, two smoothed seismicity-based, two fault- based, and two geodetic-based, used for a new PSH model in Italy. The ERFs were tested against observed seismicity and were subject to an elicitation procedure by a panel of PSHA experts to verify the scientific robustness and consistency of the forecasts with respect to the observations. Tests and elicitation were finalized to weight the ERFs. The results show a good response to the new inputs to observed seismicity in the last few centuries. The entire approach was a first attempt to build a community-based set of ERFs for an Italian PSHA model. The project involved a large number of seismic hazard practitioners, with their knowledge and experience, and the development of different models to capture and explore a large range of epistemic uncertainties in building ERFs, and represents an important step forward for the new national seismic hazard model.
    Description: Published
    Description: SE220
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 125(6), (2020): e2019JB019239, doi:10.1029/2019JB019239.
    Description: P‐to‐S‐converted waves observed in controlled‐source multicomponent ocean bottom seismometer (OBS) records were used to derive the Vp/Vs structure of Cascadia Basin sediments. We used P‐to‐S waves converted at the basement to derive an empirical function describing the average Vp/Vs of Cascadia sediments as a function of sediment thickness. We derived one‐dimensional interval Vp/Vs functions from semblance velocity analysis of S‐converted intrasediment and basement reflections, which we used to define an empirical Vp/Vs versus burial depth compaction trend. We find that seaward from the Cascadia deformation front, Vp/Vs structure offshore northern Oregon and Washington shows little variability along strike, while the structure of incoming sediments offshore central Oregon is more heterogeneous and includes intermediate‐to‐deep sediment layers of anomalously elevated Vp/Vs. These zones with elevated Vp/Vs are likely due to elevated pore fluid pressures, although layers of high sand content intercalated within a more clayey sedimentary sequence, and/or a higher content of coarser‐grained clay minerals relative to finer‐grained smectite could be contributing factors. We find that the proto‐décollement offshore central Oregon develops within the incoming sediments at a low‐permeability boundary that traps fluids in a stratigraphic level where fluid overpressure exceeds 50% of the differential pressure between the hydrostatic pressure and the lithostatic pressure. Incoming sediments with the highest estimated fluid overpressures occur offshore central Oregon where deformation of the accretionary prism is seaward vergent. Conversely, landward vergence offshore northern Oregon and Washington correlates with more moderate pore pressures and laterally homogeneous Vp/Vs functions of Cascadia Basin sediments.
    Description: This research was funded by National Science Foundation (NSF) Grant OCE‐1657237 to J. P. C, OCE‐1657839 to A. F. A. and S. H., and OCE‐1657737 to S. M. C. Data used in this study were acquired with funding from NSF Grants OCE‐1029305 and OCE‐1249353. Data used in this research were provided by instruments from the Ocean Bottom Seismic Instrument Center (http://obsic.whoi.edu, formerly OBSIP), which is funded by the NSF. OBSIC/OBSIP data are archived at the IRIS Data Management Center (http://www.iris.edu) under network code X6 (https://doi.org/10.7914/SN/X6_2012). Data processing was conducted with Emerson‐Paradigm Software package Echos licensed to Woods Hole Oceanographic Institution under Paradigm Academic Software Program and MATLAB package SeismicLab of the University of Alberta, Canada (http://seismic-lab.physics.ualberta.ca), under GNU General Public License (MATLAB® is a registered trademark of MathWorks).
    Description: 2020-11-28
    Keywords: Vp/Vs ; sediments ; ocean bottom seismometer ; Juan de Fuca plate ; Cascadia
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016068, doi:10.1029/2020JC016068.
    Description: Labrador Sea Water (LSW) is a major component of the deep limb of the Atlantic Meridional Overturning Circulation, yet LSW transport pathways and their variability lack a complete description. A portion of the LSW exported from the subpolar gyre is advected eastward along the North Atlantic Current and must contend with the Mid‐Atlantic Ridge before reaching the eastern basins of the North Atlantic. Here, we analyze observations from a mooring array and satellite altimetry, together with outputs from a hindcast ocean model simulation, to estimate the mean transport of LSW across the Charlie‐Gibbs Fracture Zone (CGFZ), a primary gateway for the eastward transport of the water mass. The LSW transport estimated from the 25‐year altimetry record is 5.3 ± 2.9 Sv, where the error represents the combination of observational variability and the uncertainty in the projection of the surface velocities to the LSW layer. Current velocities modulate the interannual to higher‐frequency variability of the LSW transport at the CGFZ, while the LSW thickness becomes important on longer time scales. The modeled mean LSW transport for 1993–2012 is higher than the estimate from altimetry, at 8.2 ± 4.1 Sv. The modeled LSW thickness decreases substantially at the CGFZ between 1996 and 2009, consistent with an observed decline in LSW volume in the Labrador Sea after 1994. We suggest that satellite altimetry and continuous hydrographic measurements in the central Labrador Sea, supplemented by profiles from Argo floats, could be sufficient to quantify the LSW transport at the CGFZ.
    Description: A. G. N. appreciates conversations with Kathy Donohue, Tom Rossby and Lisa Beal, which helped to interpret the results. J. B. P. acknowledges support from NSF through Grant OCE‐1947829. The authors thank all colleagues and ship crew involved in the R/V Meteor cruise M‐82/2 and Maria S. Merian cruise MSM‐21/2. The mooring data presented in this paper were funded by NSF through Grant OCE‐0926656.
    Description: 2021-01-03
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 47(3), (2020): e2019GL086703, doi:10.1029/2019GL086703.
    Description: Salt marsh assessments focus on vertical metrics such as accretion or lateral metrics such as open‐water conversion, without exploration of how the dimensions are related. We exploited a novel geospatial data set to explore how elevation is related to the unvegetated‐vegetated marsh ratio (UVVR), a lateral metric, across individual marsh “units” within four estuarine‐marsh systems. We find that elevation scales consistently with the UVVR across systems, with lower elevation units demonstrating more open‐water conversion and higher UVVRs. A normalized elevation‐UVVR relationship converges across systems near the system‐mean elevation and a UVVR of 0.1, a critical threshold identified by prior studies. This indicates that open‐water conversion becomes a dominant lateral instability process at a relatively conservative elevation threshold. We then integrate the UVVR and elevation to yield lifespan estimates, which demonstrate that higher elevation marshes are more resilient to internal deterioration, with an order‐of‐magnitude longer lifespan than predicted for lower elevation marshes.
    Description: This study was supported by the USGS through the Coastal Marine Hazards/Resources Program, the National Park Service through the Natural Resource Preservation Program, and the U.S. Fish and Wildlife Service through the Science Support Partnership. Erika Lentz, Elizabeth Pendleton, Meagan Gonneea, Joel Carr, and two anonymous reviewers provided constructive advice on the study. S.F. was partly supported by US National Science Foundation award 1637630 (PIE LTER), 1832221 (VCR LTER). The geospatial data used in this study are published in the Coastal Wetlands Synthesis Products catalog on ScienceBase (https://www.sciencebase.gov/catalog/item/5b73325ee4b0f5d5787c5ff3).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research- Biogeosciences 125(4), (2020): e2019JG005158, doi:10.1029/2019JG005158.
    Description: Long‐term soil warming can decrease soil organic matter (SOM), resulting in self‐reinforcing feedback to the global climate system. We investigated additional consequences of SOM reduction for soil water holding capacity (WHC) and soil thermal and hydrological buffering. At a long‐term soil warming experiment in a temperate forest in the northeastern United States, we suspended the warming treatment for 104 days during the summer of 2017. The formerly heated plot remained warmer (+0.39 °C) and drier (−0.024 cm3 H2O cm−3 soil) than the control plot throughout the suspension. We measured decreased SOM content (−0.184 g SOM g−1 for O horizon soil, −0.010 g SOM g−1 for A horizon soil) and WHC (−0.82 g H2O g−1 for O horizon soil, −0.18 g H2O g−1 for A horizon soil) in the formerly heated plot relative to the control plot. Reduced SOM content accounted for 62% of the WHC reduction in the O horizon and 22% in the A horizon. We investigated differences in SOM composition as a possible explanation for the remaining reductions with Fourier transform infrared (FTIR) spectra. We found FTIR spectra that correlated more strongly with WHC than SOM, but those particular spectra did not differ between the heated and control plots, suggesting that SOM composition affects WHC but does not explain treatment differences in this study. We conclude that SOM reductions due to soil warming can reduce WHC and hydrological and thermal buffering, further warming soil and decreasing SOM. This feedback may operate in parallel, and perhaps synergistically, with carbon cycle feedbacks to climate change.
    Description: We would like to acknowledge Jeffery Blanchard, Priya Chowdhury, Kristen DeAngelis, Luiz Dominguez‐Horta, Kevin Geyer, Rachelle Lacroix, Xaiojun Liu, William Rodriguez, and Alexander Truchonand and for assistance with field sampling. We would like to acknowledge Michael Bernard for assistance with field sampling and lab work. We would like to acknowledge Aaron Ellison for statistical consultation. This research was financially supported by the U.S. National Science Foundation's Long Term Ecological Research Program (NSF‐DEB‐0620443 and NSF‐DEB‐1237491), the Long Term Research in Environmental Biology Program (NSF DEB‐1456528) , and the U.S. Department of Energy (DOE‐DE‐SC0005421 and DOE‐DE‐SC0010740). Data used in this study are available from the Harvard Forest Data Archive (Datasets HF018‐03, HF018‐04, and HF018‐13), accessible at https://harvardforest.fas.harvard.edu/harvard‐forest‐data‐archive.
    Description: 2020-10-04
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(8), (2020): e2020JC016445, doi:10.1029/2020JC016445.
    Description: The Mid‐Atlantic Bight (MAB) Cold Pool is a bottom‐trapped, cold (temperature below 10°C) and fresh (practical salinity below 34) water mass that is isolated from the surface by the seasonal thermocline and is located over the midshelf and outer shelf of the MAB. The interannual variability of the Cold Pool with regard to its persistence time, volume, temperature, and seasonal along‐shelf propagation is investigated based on a long‐term (1958–2007) high‐resolution regional model of the northwest Atlantic Ocean. A Cold Pool Index is defined and computed in order to quantify the strength of the Cold Pool on the interannual timescale. Anomalous strong, weak, and normal years are categorized and compared based on the Cold Pool Index. A detailed quantitative study of the volume‐averaged heat budget of the Cold Pool region (CPR) has been examined on the interannual timescale. Results suggest that the initial temperature and abnormal warming/cooling due to advection are the primary drivers in the interannual variability of the near‐bottom CPR temperature anomaly during stratified seasons. The long persistence of temperature anomalies from winter to summer in the CPR also suggests a potential for seasonal predictability.
    Description: This work was funded by the National Oceanic and Atmospheric Administration through Awards NOAA‐NA‐15OAR4310133 and NOAA‐NA‐13OAR4830233 and the National Science Foundation Awards OCE‐1049088, OCE‐1419584, and OCE‐0961545.
    Description: 2021-02-03
    Keywords: Mid‐Atlantic Bight ; Cold Pool ; continental shelf ; temperature balance ; interannual variability ; near‐bottom temperature
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...