ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.07. Tectonophysics  (8)
  • 05.04. Instrumentation and techniques of general interest  (5)
  • Elsevier  (9)
  • egusphere-egu22-1151, 2022  (2)
  • Oxford University Press  (1)
  • Annual Reviews
  • National Academy of Sciences
  • 2020-2023  (12)
  • 2000-2004
  • 1980-1984
  • 1945-1949
  • 1935-1939
  • 1925-1929
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-04-01
    Description: The Gutenberg–Richter law and the Omori law are both characterized by a scaling behavior. However, their relation is still an open question. Although several hypotheses have been formulated, a comprehen- sive geophysical mechanism is still missing to explain the observed variability of the scaling exponents b-value and p-value, e.g., correlating the seismic cycle to statistical seismology and tectonic processes. In this work, a model for describing the size-frequency scaling and the temporal evolution of seismicity is proposed starting from simple assumptions. The parameter describing how the number of earthquakes decreases after a major seismic event, p, turns out to be positively correlated to the exponent of the frequency-size distribution of seismicity, b, and related to tectonics. Our findings suggest that p ≈ 23 (b + 1). It implies that a relationship between fracturing regimes, “efficiency” of the seismic process, duration of the seismic sequences and geodynamic setting exists, with outstanding potential impact on seismic hazard. On the other hand, the Gutenberg–Richter law simply reflects the tendency of the segments of the Earth’s crust to reach mechanical stability via constrained energy-budget optimization. Each perturbation has a probability of growing an earthquake or not, depending on disorder within the fault zone and the energy accumulated in the adjoining volume, mainly controlling the evolution of seismic sequences. The results are consistent with the different energy sources related to the tectonic settings, i.e., gravitational in extensional regimes, having higher b and p values, and generating lower maximum magnitude earthquakes with respect to strike-slip and contractional settings, which are rather fueled by elastic energy, showing lower b and p values, and they may generate higher magnitude events.
    Description: Published
    Description: 117511
    Description: 3T. Fisica dei terremoti e Sorgente Sismica
    Description: JCR Journal
    Keywords: Gutenberg–Richter distribution ; fracturing and fault disorder ; Omori–Utsu law ; earthquake triggering ; tectonic setting ; 04.06. Seismology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-29
    Description: We carried out new geological, morphotectonic, geophysical and paleoseismological investigations on the Meduno Thrust that belongs to the Pliocene-Quaternary front of the eastern Southern Alps in Friuli (NE Italy). The study area is located in the Carnic Prealps, where a series of alluvial terraces, linked to both climatic and tectonic pulses characterises the lower reach of the Meduna Valley. In correspondence of the oblique ramp of the Meduno Thrust, the Late Pleistocene Rivalunga terrace shows a set of scarps perpendicular to the Meduno valley, often modified by human activity. In order to reconstruct the tectonic setting of the area and identify the location for digging paleoseismological trenches, integrated geophysical investigations including electrical resistivity tomography, seismic refraction and reflection, ground penetrating radar and surface wave analyses (HVSR, ReMi and MASW), were carried out across the scarps of the Rivalunga terrace. Geophysical surveys pinpointed that in correspondence of the oblique ramp, stress is accommodated by a transpressive thrust system involving all the seismo-stratigraphic horizons apart from the ploughed soil. Trenching illustrated the Meduno Thrust movements during Late Pleistocene-Holocene. Trenches exhibited both shear planes and extrados fracturing, showing deformed alluvial and colluvial units. 14C datings of the colluvial units show that the most recent fault movements occurred after 1360 CE and 1670 CE. The age of the deformed stratigraphic units compared with the earthquakes listed in current catalogues, suggests that the 1776 earthquake (Mw 5.8, Io = 8–9 MCS) could represent the last seismic event linked to the Meduno thrust activity. This study provided new quantitative constraints improving seismic hazard assessment for Carnic prealpine area.
    Description: The research developed in the framework of the agreement between the Regione Autonoma Friuli Venezia Giulia - Direzione Centrale Ambiente ed Energia - Servizio Geologico, the Istituto Superiore per la Protezione e la Ricerca Ambientale (I.S.P.R.A.) and the University of Udine. The project was funded by the Regione Autonoma Friuli Venezia Giulia, Direzione Centrale Ambiente ed Energia, Servizio Geologico (C.I. G.: Z0E0C5EF75, p.i. Maria Eliana Poli).
    Description: Published
    Description: 229071
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Active fault ; Paleoseismology ; Morphogenic earthquake ; Eastern Southern Alps ; Applied geophysics ; NE Italy ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    Publication Date: 2022-02-10
    Description: The airborne magnetic method was established a few decades ago, as a strong tool in mining and petroleum exploration. Several economically relevant discoveries are often credited to aeromagnetism. Geological reconnaissance and mapping, deep crustal and upper mantle studies, environmental characterization, and national and international security issues can greatly benefit from the aeromagnetic method, as compared with other geophysical prospecting schemes. The rapid rate of coverage and the low cost per unit area explored represent just a few among the many advantages of the technique. Consequently, large-scale airborne magnetic surveys have been carried out in various parts of the globe. The amount of direct discoveries of ore bodies by means of aeromagnetism is impressive. Large magnetic iron deposits found in the early 1960s are in Southern California, Missouri, Nevada, Pennsylvania, Quebec, Ontario, and elsewhere. In the field of petroleum exploration, the method has also been used, although with less direct application. Depth to magnetic basement estimation in sedimentary basins narrows down areas of interest where to conduct exploration surveys in detail by means of more costly methods. The most relevant use of airborne magnetic results is crustal imaging and characterization. Nowadays, geology is interpreted in three dimensions using a digital aeromagnetic map.
    Description: Published
    Description: 675-688
    Description: 1T. Struttura della Terra
    Description: 4T. Sismicità dell'Italia
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: 5A. Ricerche polari e paleoclima
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: 1TR. Georisorse
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: 6SR VULCANI – Servizi e ricerca per la società
    Description: 7SR AMBIENTE – Servizi e ricerca per la società
    Keywords: aeromagnetism ; potential fields ; magnetic anomaly ; 04.02. Exploration geophysics ; 04.05. Geomagnetism ; 04.07. Tectonophysics ; 04.08. Volcanology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-22
    Description: The westernmost Mediterranean hosts part of the plate boundary between the European and African tectonic plates. Based on the scattered instrumental seismicity, this boundary has been traditionally interpreted as a wide zone of diffuse deformation. However, recent seismic images and seafloor mapping studies support that most of the plate convergence may be accommodated in a few tectonic structures, rather than in a broad region. Historical earthquakes with magnitudes Mw 〉 6 and historical tsunamis support that the low-to-moderate instrumental seismicity might also have led to underestimation of the seismogenic and tsunamigenic potential of the area. We evaluate the largest active faults of the westernmost Mediterranean: the reverse Alboran Ridge, and the strike-slip Carboneras, Yusuf and Al-Idrissi fault systems. For the first time, we use a dense grid of modern seismic data to characterize the entire dimensions of the main fault systems, accurately describe the geometry of these structures and estimate their seismic source parameters. Tsunami scenarios have been tested based on 3D-surfaces and seismic source parameters, using both uniform and heterogeneous slip distributions. The comparison of our results with previous studies, based on limited information on the fault geometry and kinematics, indicates that accurate fault geometries and heterogeneous slip distributions are needed to properly assess the seismic and tsunamigenic potential in this area. Based on fault scaling relations, the four fault systems have a large seismogenic potential, being able to generate earthquakes with Mw 〉 7. The reverse Alboran Ridge Fault System has the largest tsunamigenic potential, being able to generate a tsunami wave amplitude greater than 3 m in front of the coasts of Southern Spain and Northern Africa.
    Description: Published
    Description: 106749
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Western Mediterranean ; Seismogenic potential ; Tsunamigenic potential ; Numerical modelling ; Active faults ; Active seismic data ; 04.04. Geology ; 04.07. Tectonophysics ; 04.06. Seismology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-09-15
    Description: We have mapped and constrained the timing of tectonically deformed uplifted Late Quaternary palaeoshorelines in the Messina Strait, southern Italy, an area above a subduction zone containing active normal faults. The palaeoshorelines are preserved from up to thirteen Late Quaternary sea-level highstands, providing a record of the deformation over this timescale (~500 ka) for the Messina-Taormina Fault, the Reggio Calabria Fault and the Armo Fault. The palaeoshorelines reveal spatial patterns of uplift through time along the strike of these normal faults, and, given the across strike arrangement of the faults, also reveal how the contribution of each fault to the regional strain-rate progressed through time. The results reveal that the uplift rates mapped within the fault hangingwalls and footwalls were not constant through time, with a marked change in the location of strain accumulation at ~50 ka. The uplift rates, once converted into throw-rates, imply that the three faults comprised similar throw-rates prior to ~50 ka (in the range 0.77–0.96 mm/yr), with the Armo and Reggio Calabria faults then switching to lower rates (0.32 mm/yr and 0.33 mm/yr respectively), whilst the Messina-Taormina Fault accelerated to 2.34 mm/yr. The regional extension rate, gained by summing the implied heave rates across the three faults, was maintained through time despite this re-organisation of local strain accumulation at ~50 ka. We explain these out-of-phase fault throw-rate changes during the constant-rate regional extension conditions as due to interactions between these upper plate normal faults. We finally discuss how fault throw-rates changing through time may affect a long-term seismic hazard assessment within active normal fault systems.
    Description: Published
    Description: 105432
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Crustal Deformation ; Active Faults ; Marine terraces ; Uplift ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-09-15
    Description: Innovations in virtual reality (VR) technology have led to exciting possibilities in teaching earth sciences, allowing students to experience complex geological sites that, due to cost and logistical reasons, they would not normally be able to experience. The need for high quality online digital learning resources and blended learning was brought to the forefront during the SARS-CoV-2 pandemic, as courses with a traditional physical field work component were forced to move online and provide alternatives to students. While it is unlikely that virtual field trips (VFT) would be accepted by students as a replacement of real-world fieldwork moving out of the pandemic, research shows promise that using IVR experiences can lead to enhanced learning outcomes in geosciences, warranting its inclusion on the curricula. This paper presents the outputs of a project to improve student learning in complex geological environments using VR. Here we outline a workflow that was developed to collect high resolution imagery using remote sensing to create digital outcrop models (DOM) of complex geological sites. Using this framework, this paper will then explore the use of VR for an investigation of the Husavik Triple Junction, a complex structural site in northern Iceland, explaining how the drone data was converted to a 3D DOM and demonstrating how VR can be used to simulate real world field mapping. Finally, we describe how these IVR activities have been integrated into taught modules at postgraduate level and discuss how the use of IVR experiences can complement existing geoscience curriculum design.
    Description: Erasmus+ Key Action 2 funded project 2017-1-UK01-KA203-036719 3DTeLC-Bringing the 3Dworld into the classroom: a new approach to Teaching, Learning and Communicating the science of geohazards in terrestrial and marine environments coordinated by M. Whitworth. (https://ec.europa.eu/programmes/erasmus-plus/projects/eplus-projectdetails/#project/2017-1-UK01-KA203-036719and http://www.3dtelc.com) and the MIUR Project ACPR15T4_00098–Argo3D, coordinated by A. Tibaldi (http://argo3d.unimib.it/).
    Description: Published
    Description: 104681
    Description: 1TM. Formazione
    Description: JCR Journal
    Keywords: Virtual reality ; Geosciences ; Teaching ; Fieldwork ; Structural geology ; Digital outcrop model ; 05.04. Instrumentation and techniques of general interest ; 04.04. Geology ; 05.03. Educational, History of Science, Public Issues
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-28
    Description: A representative fluid sampling of surface geothermal manifestations and its analytical data quality assurance and quality control (QA/QC) are challenging aspects of understanding the geothermal reservoir processes. To achieve these goals, an interlaboratory test for the chemical analyses of ten water samples: one synthetic water, two lake waters (i.e., duplicated), one stream water, and six water samples from two geothermal wells of Los Azufres Geothermal field (LAGF), Michoacan, Mexico, was conducted. The geothermal wells were sampled at four points: (1) total discharge of condensed fluid at the wellhead, (2) separate liquid condensed in the well separator, (3) flushed liquid at the weir box, and (4) separated vapor condensed at the well-separator (data taken from Verma et al., 2022). Sixteen laboratories from ten countries reported their results. The pH, electrical conductivity, Ca2+, Li+, SO4 2 B, and Si-total measurements were 8.35 ± 0.04, 12.25 ± 0.53 mS/cm, 25 ± 1 mg/l, 18 ± 1 mg/l, 569 ± 33 mg/l, 320 ± 21 mg/l, and 20.5 ± 0.7 mg/l, which are close to the conventional true values, 8.40, 12.31 mS/cm, 23 mg/l, 19 mg/l, 647 mg/l, 330 mg/l, and 20.0 mg/l, respectively. Analytical errors for major ions, Na+, Cl
    Description: Published
    Description: 105477
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Geothermal water ; Inter-laboratory test ; Geothermal system ; Los Azufres ; Geochemical modeling ; Uncertainty propagation ; NIST Uncertainty machine ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-27
    Description: The dynamics driving an eruption play a crucial role in the impact volcanic activity has on the community at large. The interpretation of geophysical and geochemical changes heralding a volcanic unrest is a fundamental key to forecasting upcoming phenomena. However, the style and intensity of the eruption are difficult to predict, even in open-conduit volcanoes where eruptions can be relatively frequent. This is the case of Etna, in Italy, one of the most active basaltic volcanoes in the world. In 2021, fifty-two lava fountains arose from its Southeast Crater accompanied by lava emissions and ash fallout, which disrupted air and road traffic in numerous Sicilian municipalities. Lava fountains are just one of the typical eruptive styles of Etna. Strombolian activity and lava flows are also relatively frequent here, each with its own characteristics in terms of intensity and social impact. We developed a machine learning (ML) method for the analysis of the seismic data continuously acquired by the local stations of the Etna permanent seismic network, exploiting the spectral characteristics of the signal. Its design started from: i) the need to detect the volcanic hazard, and ii) provide timely and indicative information on possible eruptive scenarios to the Civil Protection and the Authorities. Besides the identification of anomalies in the data, which flag enhanced volcano dynamics in its early stages, we investigate on clues concerning the potential intensity level of eruptive phenomena. The method works in near real time and can effectively contribute to the multidisciplinary analysis of volcanic hazard.
    Description: This work was undertaken within the project IMPACT (A multidisciplinary Insight on the kinematics and dynamics of Magmatic Processes at Mt. Etna Aimed at identifying preCursor phenomena and developing early warning sysTems). IMPACT belongs to the Progetti Dipartimentali INGV [DIP7], https://progetti.ingv.it/index.php/it/progetti-dipartimentali/vulcani/impact#informazioni-sul-progetto.
    Description: Published
    Description: Vienna (Austria)
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Keywords: Volcanic tremor ; volcano unrest ; Etna ; eruptive activity ; thresholds ; forecasting ; 04.08. Volcanology ; 04.06. Seismology ; 05.06. Methods ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-27
    Description: Field-based classes in geological sciences are crucial components of geoscience education and research. Owing to the COVID-19 pandemic, such activities became problematic due to limitations such as travel restrictions and lockdown periods: this motivated the geoeducational community to tailor new ways to engage people in field activities. As a result, we adopted Immersive Virtual Reality as a tool to involve students, academics, and the lay public in field exploration, thus making geological exploration accessible also to people affected by permanent or temporary motor disabilities. In particular, we evaluated how users perceive the usefulness of this approach as applied to Earth Science learning and teaching, through nine outreach events, where a total of 459 participants were involved, with different ages and cultural backgrounds. The participants explored, in an immersive mode, four geological landscapes, defined as virtual geological environments, which have been reconstructed by cutting-edge, unmanned aerial system-based photogrammetry techniques. They include: Santorini (Greece), the North Volcanic Zone (Iceland), and Mt. Etna (Italy). After the exploration, each participant filled in an anonymous questionnaire. The results show that the majority would be willing to repeat the experience, and, most importantly, the majority of the students and Earth Science academics who took part in the navigation confirmed the usefulness of this technique for geo-education purposes. Our approach can be considered as a groundbreaking tool and an innovative democratic way to access information and experiences, as well as to promote inclusivity and accessibility in geo-education, while reducing travel costs, saving time, and decreasing the carbon footprint. This work has been carried out in the framework of the following projects: i) ACPR15T4_ 00098 “Agreement between the University of Milan Bicocca and the Cometa Consortium for the experimentation of cutting-edge interactive technologies for the improvement of science teaching and dissemination” of Italian Ministry of Education, University and Research (ARGO3D - https://argo3d.unimib.it/); ii) Erasmus+ Key Action 2 2017-1-UK01-KA203- 036719 “3DTeLC – Bringing the 3D-world into the classroom: a new approach to Teaching, Learning and Communicating the science of geohazards in terrestrial and marine environments” (http://3dtelc.lmv.uca.fr/; https://www.3dtelc.com/); iii) 2018 EGU Public Engagement Grants (https://www.egu.eu/outreach/peg/).
    Description: This work has been carried out in the framework of the following projects: i) ACPR15T4_ 00098 “Agreement between the University of Milan Bicocca and the Cometa Consortium for the experimentation of cutting-edge interactive technologies for the improvement of science teaching and dissemination” of Italian Ministry of Education, University and Research (ARGO3D - https://argo3d.unimib.it/); ii) Erasmus+ Key Action 2 2017-1-UK01-KA203- 036719 “3DTeLC – Bringing the 3D-world into the classroom: a new approach to Teaching, Learning and Communicating the science of geohazards in terrestrial and marine environments” (http://3dtelc.lmv.uca.fr/; https://www.3dtelc.com/); iii) 2018 EGU Public Engagement Grants (https://www.egu.eu/outreach/peg/).
    Description: Published
    Description: Vienna (Austria)
    Description: 1TM. Formazione
    Keywords: Virtual Reality ; geology ; tectonophysics ; education ; 04.07. Tectonophysics ; 05.03. Educational, History of Science, Public Issues ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-08-26
    Description: This article has been accepted for publication in Geophysical Journal International ©: The Authors 2022. Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved. Uploaded in accordance with the publisher's self-archiving policy.
    Description: Defining the regional variability of minimum magnitude for earthquake detection is crucial for planning seismic networks. Knowing the earthquake detection magnitude values is fundamental for the optimal location of new stations and to select the priority for reactivating the stations of a seismic network in case of a breakdown. In general, the assessment of earthquake detection is performed by analysing seismic noise with spectral or more sophisticated methods. Further, to simulate amplitude values at the recording sites, spectral methods require knowledge of several geophysical parameters including rock density, S-wave velocity, corner frequency, quality factor, site specific decay parameter and so on, as well as a velocity model for the Earth's interior. The simulation results are generally expressed in terms of Mw and therefore a further conversion must be done to obtain the values of local magnitude (ML), which is the parameter commonly used for moderate and small earthquakes in seismic catalogues. Here, the relationship utilized by a seismic network to determine ML is directly applied to obtain the expected amplitude [in mm, as if it were recorded by a Wood–Anderson (WA) seismometer] at the recording site, without any additional assumptions. The station detection estimates are obtained by simply considering the ratio of the expected amplitude with respect to the background noise, also measured in mm. The seismic noise level for the station is estimated starting from four waveforms (each signal lasting 1 min) sampled at various times of the day for a period of one week. The proposed method is tested on Italian seismic events occurring in 2019 by using the locations of 16.879 earthquakes recorded by 374 stations. The first results indicate that by evaluating the station noise level with 5-s windows, a representative sample of the variability in expected noise level is generated for every station, even if only 4 min of signal per day over a week of recordings is used. The method was applied to define the detection level of the Italian National Seismic Network (RSN). The RSN detection level represents a reference for the definition and application of guidelines in the field of monitoring of subsurface industrial activities in Italy. The proposed approach can be successfully applied to define the current performance of a local seismic network (managed by private companies) and to estimate the expected further improvements, requested to fulfil the guidelines with the installation of new seismic stations. This method has been tested in Italy and can be reproduced wherever the local magnitude ML, based on synthetic WA records, is used.
    Description: Published
    Description: 1283–1297
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Time-series analysis ; Earthquake ground motions ; Seismic noise ; Induced seismicity ; 04.06. Seismology ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2022-06-09
    Description: Joint analysis of high-penetration multi-channel and high-resolution single-channel seismic reflection profiles, calibrated by deep well boreholes, allowed a detailed reconstruction of the Late Miocene to Recent tectonic history of the Capo Granitola and Sciacca fault systems offshore southwestern Sicily. These two fault arrays are part of a regional system of transcurrent faults that dissect the foreland block in front of the Neogene Sicilian fold and thrust belt. The Capo Granitola and Sciacca faults are thought to reactivate inherited Mesozoic to Miocene normal faults developed on the northern continental margin of Africa. During Latest Miocene-Pliocene, the two ~NNE-SSW striking faults were active in left transpression, which inverted Late Miocene extensional half-grabens and created push-up ridges along both systems. Tectonic activity decreased during the Pleistocene, but transpressional folds deform Middle-Late Pleistocene sediments as well, suggesting that the two fault systems are active. The ~40 km long longitudinal amplitude profile of 1st order folds (Capo Granitola and Sciacca anticlines) shows ~15–20 km bell-shaped undulations that represents 2nd order folds. The length of these undulations together with the map pattern of faults allowed to divide the CGFS and SFS into two segments, northern and southern, respectively. Total uplift of the Sciacca Anticline is twice than the uplift of the Capo Granitola Anticline. Incremental fold growth rates decreased during time from 0.22 mm/yr (Capo Granitola Anticline) and 0.44 mm/yr (Sciacca Anticline) in the Pliocene, to 0.07 and 0.22 mm/yr, respectively, during the last ~1.8 Ma.
    Description: Published
    Description: 187-204
    Description: 2T. Deformazione crostale attiva
    Description: 3A. Geofisica marina e osservazioni multiparametriche a fondo mare
    Description: JCR Journal
    Keywords: Multiscale analysis ; Basin inversion ; Strike-slip faults ; Fold growth rates ; Pelagian foreland ; SW Sicily offshore ; 04.07. Tectonophysics ; 04.04. Geology ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-06-09
    Description: Young and tectonically active chains like the Central Apennines (Italy) are featured by high structural complexity as a result of the overprint of subsequent deformational stages, making interpretation of seismotectonics challenging. The Central Apennines are characterized by the stacking of tectono-sedimentary units organized in thrust sheets. However, extensional tectonics is currently affecting the axial sector of the thrust belt, mostly expressing in extensional earthquakes. Using a large subsurface dataset acquired for hydrocarbon exploration in the region struck by the 2016–2017 Central Italy seismic sequence, we built a comprehensive 3D geological model and compared it with the seismicity. The model primarily shows a series of thrusts developed during the Miocene-Pliocene Apennines orogenesis and inherited normal faults developed during the Mesozoic extensional phase and the Miocene foreland flexural process. These normal faults were segmented and transported within the thrust sheets, and sometimes they still show a clear surface expression. The succession of tectonic stages resulted in a widespread reactivation of inherited structures, sometimes inverting their kinematics with different styles and rates, and disarticulating pre-existing configurations. Such evolution has a strong impact on the seismicity observed in the area, as demonstrated by some examples that show how the seismicity is aligned on segments of inherited faults, both compressional and extensional. Their reactivation can be explained by their favorable orientation within the current extensional stress field. Results feed the debate about the seismogenic potential of faults identified both at depth and surface, which can impact the seismic hazard of the Apennines.
    Description: Published
    Description: 228861
    Description: 1T. Struttura della Terra
    Description: 2T. Deformazione crostale attiva
    Description: 4T. Sismicità dell'Italia
    Description: JCR Journal
    Keywords: Normal faults ; Thrust sheets ; Inherited faults ; Earthquakes ; Central Apennines ; 3D geological model ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...