ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (12)
  • Other Sources
  • 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics  (8)
  • 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics  (6)
  • Wiley-Blackwell  (12)
  • Blackwell Publishing Ltd
  • 2020-2023
  • 2010-2014  (12)
Collection
  • Articles  (12)
  • Other Sources
Source
Years
Year
  • 1
    Publication Date: 2020-12-14
    Description: We study the implications of a recently published mass balance of the Greenland ice sheet (GrIS), derived from repeated surface elevation measurements from NASA’s ice cloud and land elevation satellite (ICESat) for the time period between 2003 and 2008. To characterize the effects of this new, high-resolution GrIS mass balance, we study the time-variations of various geophysical quantities in response to the current mass loss. They include vertical uplift and subsidence, geoid height variations, global patterns of sea level change (or fingerprints), and regional sea level variations along the coasts of Greenland. Long-wavelength uplifts and gravity variations in response to current or past ice thickness variations are obtained solving the sea level equation, which accounts for both the elastic and the viscoelastic components of deformation. To capture the short-wavelength components of vertical uplift in response to current ice mass loss, which is not resolved by satellite gravity observations, we have specifically developed a high-resolution regional elastic rebound (ER) model. The elastic component of vertical uplift is combined with estimates of the viscoelastic displacement fields associated with the process of glacial-isostatic adjustment (GIA), according to a set of published ice chronologies and associated mantle rheological profiles. We compare the sensitivity of global positioning system (GPS) observations along the coasts of Greenland to the ongoing ER and GIA. In notable contrast with past reports, we show that vertical velocities obtained by GPS data from five stations with sufficiently long records and from one tide gauge at the GrIS margins can be reconciled with model predictions based on the ICE-5G deglaciation model and the ER associated with the new ICESat-derived mass balance.
    Description: Published
    Description: 1457-1474
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Sea level change ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The 2009 April 6, Mw= 6.3 L’Aquila earthquake occurred within a complex system of NW–SE trending normal faults in the Abruzzi Central Apennines (Italy). We analyse the coseismic deformation as measured by 〉70 global positioning system (GPS) stations, both from continuous and survey-mode networks, providing unprecedented details for a moderate normal faulting earthquake in Italy from GPS measurements. We use rectangular, uniform-slip, dislocations embedded in an elastic, homogeneous and isotropic half-space and a constrained, non-linear optimization algorithm, to solve for the best-fitting rectangular dislocation geometry and coseismic-slip distribution. We use a bootstrap approach to investigate uncertainties in the model parameters and define confidence bounds for all the inverted parameters. The rupture occurred on a N129°E striking and 50° southwestward dipping normal fault, in agreement with geological observations of surface breaks along the Paganica fault. Our distributed slip model exhibits a zone of relatively higher slip (〉60 cm) between ∼1.5 and ∼11 km depth, along a roughly downdip, NW–SE elongated patch, confined within the fault plane inverted assuming uniform-slip. The highest slip, of the order of ∼1 m, occurred on a ∼16 km2 area located at ∼5 km depth, SE of the mainshock epicentre. The analysis of model resolution suggests that slip at depth below ∼5 km can be resolved only at a spatial scale larger than 2 km, so a finer discretization of different asperities within the main patch of coseismic-slip is not allowed by GPS data. We compute the coseismic Coulomb stress changes in the crustal volume affected by the major aftershocks, and compare the results obtained from the uniform-slip and the heterogeneous-slip models. We find that most of the large aftershocks occurred in areas of Coulomb stress increase of 0.2–13 bar and that a deepening of the slip distribution down to a depth greater than 6 km in the SE part of the fault plane, in agreement with the inverted slip model, can explain the deepest, April 7, Mw 5.3 aftershock.
    Description: Published
    Description: 473-489
    Description: 1.9. Rete GPS nazionale
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Satellite geodesy ; Space geodetic surveys ; Earthquake ground motions ; Earthquake source observations ; Earthquake interaction, forecasting, and prediction ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.02. Earthquake interactions and probability ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.06. Surveys, measurements, and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: The present-day sea level variations and geodetically observed ground deformations in the Mediterranean area are normally ascribed to the combined effect of tectonic or human-driven subsidence and postglacial uplift as a result of the melting of the major Pleistocene ice sheets. However, another potential cause of deformation, only marginally considered to date, is the melting of the glacier that covered the Alps during the last glacial maximum (LGM). The aim of this paper is to predict the long-term sea level variations induced by the melting of both the late-Pleistocene and Alpine ice sheets and compare our results with the relative sea level (RSL) observations available in the Mediterranean region. This task is accomplished solving the sea level equation (SLE) for a spherically symmetric viscoelastic Earth. Our analysis shows that the melting of the Alpine glacier has marginally affected the Holocene sea level variations in the near-field sites in southern France (Marseilles and Roussillon) and the central Tyrrhenian sea (Civitavecchia), and that the RSL predictions are significantly sensitive to the chronology of the remote ice aggregates. The computations, which are performed using a specific mantle viscosity profile consistent with global observations of RSL rise, show that the uplift rate driven by the Alpine isostatic readjustment may account for up to 1/3 of the rates observed at GPS stations in the western portion of the chain. Our results suggest that a thorough modelization of both near- and far-field ice sheets is necessary to gain a better insight into the present-day deformations and sea level variations in the Mediterranean region.
    Description: Published
    Description: 137-147
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Alpine glacier ; glacial rebound ; mantle viscosity ; sea level variations ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-03-16
    Description: Post-seismic relaxation is known to occur after large or moderate earthquakes, on time scales ranging from days to years or even decades. In general, long-term deformation following seismic events has been detected by means of standard geodetic measurements, although seismic instruments are only used to estimate short timescale transient processes. Albeit inertial seismic sensors are also sensitive to rotation around their sensitive axes, the recording of very slow inclination of the ground surface at their standard output channels is practically impossible, because of their design characteristics. However, modern force-balance, broad- band seismometers provide the possibility to detect and measure slow surface inclination, through the analysis of the mass position signal. This output channel represents the integral of the broad-band velocity and is generally considered only for state-of-health diagnostics. In fact, the analysis of mass position data recorded at the time of the 2009 April 6, L’Aquila (MW = 6.3) earthquake, by a closely located STS-2 seismometer, evidenced the occurrence of a very low frequency signal, starting right at the time of the seismic event. This waveform is only visible on the horizontal components and is not related to the usual drift coupled with the temperature changes. This analysis suggests that the observed signal is to be ascribed to slowly developing ground inclination at the station site, caused by post-seismic relaxation following the main shock. The observed tilt reached 1.7 × 10−5 rad in about 2 months. This estimate is in very good agreement with the geodetic observations, giving comparable tilt magnitude and direction at the same site. This study represents the first seismic analysis ever for the mass position signal, suggesting useful applications for usually neglected data.
    Description: Published
    Description: 1717-1724
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Seismic cycle ; Earthquake source observations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-03
    Description: On 2009 April 6 a Mw = 6.3 earthquake struck the Abruzzi region (Central Italy) and caused severe destruction in L’Aquila and the surrounding area. In this work we present a Finite Element analysis of the event based on a realistic complex 3-D model, accounting for topographic relief and rheological heterogeneities deduced from local tomography. Finite Element computed Green’s functions were implemented in a linear inversion of GPS coseismic displacements, to retrieve the slip distribution on the rupture plane. The inverted slip models basically agree with previous studies carried out on homogeneous domains, but reveal the presence of a single high slip patch, whereas half-space or 1-D approaches obtain a more complex slip pattern. Our results point out that the introduction of 3-D features significantly influences the obtained source model, suggesting a trade-off between domain complexities and source details.
    Description: Published
    Description: 1339–1358
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: restricted
    Keywords: Numerical approximations and analysis ; Seismicity and tectonics ; Dynamics and mechanics of faulting ; L'Aquila earthquake ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: We used the SBAS DInSAR analysis technique to estimate the interseismic deformation along the western part of the Doruneh fault system (DFS), northeastern Iran. We processed 90 ENVISAT images from four different frames from ascending and descending orbits. Three of the ground velocity maps show a significant interseismic signal. Using a simple dislocation approach we model 2-D velocity profiles concerning three InSAR data set relative to the western part of the DFS, obtaining a good fit to the observations. The resulting model indicates that a slip rate of ∼5mmyr−1 accumulates on the fault below 10 km depth, and that in its western sector the Doruneh fault is not purely strike-slip (left-lateral) as in its central part, but shows a significant thrust component. Based on published geological observations, and assuming that all interseismic deformation is recovered with a single event, we can estimate a characteristic recurrence interval between 630 and 1400 yr.
    Description: Published
    Description: 622-628
    Description: 1.10. TTC - Telerilevamento
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Image processing; Satellite geodesy; Seismic cycle; Radar interferometry; Seismicity and tectonics; Continental tectonics: strike-slip and transform. ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.03. Geodesy::04.03.07. Satellite geodesy ; 04. Solid Earth::04.04. Geology::04.04.09. Structural geology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The peculiar source characteristics of long-period seismic events (time persistency of the source, low-frequency peaks in the source spectrum, absence of high-frequency radiation) prevent the formation of a definite high-frequency coda in the seismograms. In contrast, this is well formed in volcano–tectonic quakes. For this reason, the widely used duration magnitude scale that is based on the proportionality between the energy and the coda duration cannot be used for long-period estimation. In observatory practice, the long-period magnitude is sometimes estimated using the same duration magnitude scale, leading to confusing results. In this report, we show a new method to estimate the magnitude of long-period events that generally occur for volcanoes, with some application examples from data for Mt Etna (Italy), Colima Volcano (Mexico) and Campi Flegrei (Italy).
    Description: Published
    Description: 911-919
    Description: 3.1. Fisica dei terremoti
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source observations; ; Volcano monitoring ; Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.09. Waves and wave analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The monitoring of crustal motions in Northern Victoria Land (NVL) of Antarctica by means of episodic GPS stations (EGPSs) provides an accurate and dense (∼50-km spaced) velocity field. The data, gathered starting in Austral summer 1999, derive from a series of benchmarks belonging to the Victoria Land Network for DEFormation control (VLNDEF) geodetic network. The velocity uncertainties are checked on the basis of length and returning time of the episodic surveys, to obtain a meaningful strain rate field by means of a least-square computation where the contribution of a GPS station is weighted by the inverse square of its velocity error. The study shows that the NVL is characterized by a complex kinematics and that, although three subregions with different prevailing deformational behaviour can be recognized, the single blocks cannot be resolved because too few stations exist. Only features having 150–200 km size at least can be recognized. Moreover, it is demonstrated that an appropriate data processing of EGPS data can lead to an accurate evaluation of the strain rate field even in a harsh environment like Antarctica.
    Description: Published
    Description: 851-862
    Description: 3.3. Geodinamica e struttura dell'interno della Terra
    Description: JCR Journal
    Description: reserved
    Keywords: Time-series analysis ; Satellite geodesy ; Geomorphology ; Antarctica ; 04. Solid Earth::04.07. Tectonophysics::04.07.02. Geodynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: For decades, many authors have attempted to define the location, geometry and kinematics of the causative fault for the 1908 December 28, M 7.1 earthquake that struck the Messina Straits between Sicily and Calabria (southern Italy). The coseismic displacement caused a predominant downwarping of the Straits and small land uplift away from it, which were documented by levelling surveys performed 1 yr before and immediately after the earthquake. Most of the source models based on inversion of levelling data suggested that the earthquake was caused by a low angle, east-dipping blind normal fault, whose upper projection intersects the Earth surface on the Sicilian (west) side of the Messina Straits.An alternative interpretation holds that the causative fault is one of the high-angle, west-dipping faults located in southern Calabria, on the eastern side of the Straits, and may in large part coincide with the mapped Armo Fault. Here, we critically review the levelling data with the aim of defining both their usefulness and limits in modelling the seismogenic fault. We demonstrate that the levelling data alone are not capable of discriminating between the two oppositely dipping fault models, and thus their role as a keystone for modellers is untenable. However, new morphotectonic and geodetic data indicate that the Armo Fault has very recent activity and is accumulating strain. The surface observations, together with appraisal ofmacroseismic intensity distribution, available seismic tomography and marine geophysical evidence, lends credit to the hypothesis that the Armo and possibly the S. Eufemia faults are part of a major crustal structure that slipped during the 1908 earthquake.
    Description: Published
    Description: 1025-1041
    Description: JCR Journal
    Description: restricted
    Keywords: Earthquake source ; Messina Straits ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.07. Tectonics ; 05. General::05.01. Computational geophysics::05.01.03. Inverse methods ; 05. General::05.01. Computational geophysics::05.01.04. Statistical analysis
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-11-25
    Description: Here we inverted the GPS data to infer the coseismic slip of the Tohoku-Oki earthquake and the time-dependent afterslip distribution in the 4 months following the main shock. The Tohoku-Oki earthquake showed an unexpected magnitude and a characteristic depth-dependent differentiation of seismic energy radiation. In this context the estimation and comparison of the distribution of the fault portions that slip coseismically and post-seismically contribute to a better understanding of the variation of frictional characteristics of the plate interface. The inferred coseismic slip extends in a relatively compact region located updip from the hypocentre and reaches its highest value (about 60 m) near the trench. Afterslip occurs mostly outside the coseismic rupture and is distributed in two main modal centres. It reaches its largest values in an area located downdip of the coseismic slip and extends to a depth of 80 km. In the depth range between 30 and 50 km afterslip overlaps the portion of the fault that experienced historical moderate earthquakes, high-frequency seismic radiation and thrust-type aftershocks. The behaviour of this area can be explained by a rheologically heterogeneous region made of a ductile fault matrix interspersed with compact brittle asperities. On the contrary, the region beneath 50–60 km depth is probably characterized by a fully velocity strengthening behaviour. Southern afterslip, located off-Chiba Prefecture, is probably related to the Mw 7.9 Ibaraki-Oki aftershock. The northward extension of the afterslip stops at a latitude of about 40◦ N, just south of the off-Aomori region. This may be related to three large events occurred in this area during the last century and the consequent strong coupling or complete depletion of the accumulated strain that characterize this region.
    Description: Published
    Description: 580-596
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Satellite geodesy; Seismic cycle; Earthquake source observations; Subduction zone processes ; 04. Solid Earth::04.06. Seismology::04.06.01. Earthquake faults: properties and evolution ; 04. Solid Earth::04.06. Seismology::04.06.03. Earthquake source and dynamics ; 04. Solid Earth::04.07. Tectonophysics::04.07.04. Plate boundaries, motion, and tectonics ; 04. Solid Earth::04.07. Tectonophysics::04.07.06. Subduction related processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...