ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Physical Society  (257,501)
  • American Institute of Physics  (219,651)
  • DARPA/AFGL
  • Inst. für Meteorologie und Geophysik der Johann Wolfgang von Goethe-Universität Frankfurt am Main
  • NORSAR
  • Saint Louis University
  • 2020-2023  (4)
  • 2015-2019  (169,074)
  • 2010-2014  (182,925)
  • 1985-1989  (75,944)
  • 1975-1979  (49,248)
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2019-03-28
    Description: The understanding of the dynamical properties of skyrmion is a fundamental aspect for the realization of a competitive skyrmion based technology beyond CMOS. Most of the theoretical approaches are based on the approximation of a rigid skyrmion. However, thermal fluctuations can drive a continuous change of the skyrmion size via the excitation of thermal modes. Here, by taking advantage of the Hilbert-Huang transform, we demonstrate that at least two thermal modes can be excited which are non-stationary in time. In addition, one limit of the rigid skyrmion approximation is that this hypothesis does not allow for correctly describing the recent experimental evidence of skyrmion Hall angle dependence on the amplitude of the driving force, which is proportional to the injected current. In this work, we show that, in an ideal sample, the combined effect of field-like and damping-like torques on a breathing skyrmion can indeed give rise to such a current dependent skyrmion Hall angle. While here we design and control the breathing mode of the skyrmion, our results can be linked to the experiments by considering that the thermal fluctuations and/or disorder can excite the breathing mode. We also propose an experiment to validate our findings.
    Description: Published
    Description: 224418
    Description: 1A. Geomagnetismo e Paleomagnetismo
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Physics - Mesoscopic Systems and Quantum Hall Effect ; Physics - Mesoscopic Systems and Quantum Hall Effect
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Physical Society
    In:  EPIC3Physical Review E, American Physical Society, 90, pp. 022711-1, ISSN: 1539-3755
    Publication Date: 2014-11-04
    Description: The fascinating ability of algae, insects, and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water-ice interface thus preventing complete solidification. We propose a dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau-type approach to describe the phase separation in the two-component system (ice, AFP). The free-energy density involves two fields: one for the ice phase with a low AFP concentration and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Physical Society
    In:  EPIC3Physical Review E, American Physical Society, 88(6), ISSN: 1539-3755
    Publication Date: 2018-02-16
    Description: In this study we model population dynamics in a three-species food web with heterogeneous resources and intraguild predation by using a nonspatial Lotka-Volterra system with a density-dependent interaction of resource items. The model consists of two predators with an intraguild predation (IGP) relation competing for a common resource. The resource is subdivided into subpopulations of different quality that are distinguished by grazing rates of the two predators, contact rates between subpopulations and mortality rates. The proposed system describes an exchange of traits between species from distinct subpopulations by using a species interaction term. In particular, we examine the percentage of stable coexistence solutions versus resource carrying capacity and contact rates between distinct resource pools. We also present a numerical comparison of the percentage of stable food webs found for different numbers of subpopulations. While at high enrichment no stable coexistence was found in the IGP system with a single resource, our model predicts a stable coexistence of two IGP-related predators and resources at high and intermediate enrichment already at a low contact rate between subpopulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Physical Society
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Physical Review E Statistical, Nonlinear, and Soft Matter Physics 92 (2015): 052128, doi: 10.1103/PhysRevE.92.052128.
    Description: Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.
    Description: This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 2388357, the Gordon and Betty Moore Foundation, and the National Science Foundation, Award No. OCE-1315201.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: The effect of pressure on melt viscosity was investigated for five compositions along the join An(CaAl2Si2O8)–Di(CaMgSi2O6) and four alkali silicates containing lithium, sodium, and potassium in constant ratio of ∼ 1:1:1, but alkali-silica ratios are varying. The experiments were performed in an internally heated gas pressure vessel at pressures from 50 to 400 MPa in the viscosity range from 108 to 1011.5 Pa⋅s using parallel plate viscometry. The polymerized An composition shows a negative pressure dependence of viscosity while the other, more depolymerized compositions of the join An–Di have neutral to positive pressure coefficients. The alkali silicates display neutral to slightly positive pressure coefficients for melt viscosity. These findings in the high viscosity range of 108–1011 Pa⋅s, where pressure appears to be more efficient than in low viscous melts at high temperature, are consistent with previous results on the viscosity of polymerized to depolymerized melts in the system NaAlSi3O8–CaMgSi2O6 by Behrens and Schulze [ H. Behrens and F. Schulze, Am. Mineral. 88, 1351 (2003) ]. Thus we confirm that the sign of the pressure coefficient for viscosity is mainly related to the degree of melt polymerization in silicate and aluminosilicate melts.
    Description: DFG Grant n.°BE1720/9
    Description: Published
    Description: 044504-14
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: JCR Journal
    Description: open
    Keywords: viscosity ; polymerisation ; anorthite ; diopside ; 04. Solid Earth::04.08. Volcanology::04.08.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Derr, N. J., Fronk, D. C., Weber, C. A., Mahadevan, A., Rycroft, C. H., & Mahadevan, L. Flow-driven branching in a frangible porous medium. Physical Review Letters, 125(15), (2020): 158002, doi:10.1103/PhysRevLett.125.158002.
    Description: Channel formation and branching is widely seen in physical systems where movement of fluid through a porous structure causes the spatiotemporal evolution of the medium. We provide a simple theoretical framework that embodies this feedback mechanism in a multiphase model for flow through a frangible porous medium with a dynamic permeability. Numerical simulations of the model show the emergence of branched networks whose topology is determined by the geometry of external flow forcing. This allows us to delineate the conditions under which splitting and/or coalescing branched network formation is favored, with potential implications for both understanding and controlling branching in soft frangible media.
    Description: N. D. was partially supported by the NSF-Simons Center for Mathematical and Statistical Analysis of Biology at Harvard, Grant No. 1764269, and the Harvard Quantitative Biology Initiative. C. H. R. and N. D. were partially supported by the National Science Foundation under Grant No. DMS-1753203. C. H. R. was partially supported by the Applied Mathematics Program of the U.S. DOE Office of Science Advanced Scientific Computing Research under Contract No. DE-AC02-05CH11231. L. M. was partially supported by the National Science Foundation under Grants No. DMR-2011754 and No. DMR-1922321.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Institute of Physics
    Publication Date: 2022-05-26
    Description: Author Posting. © American Institute of Physics, 2017. This article is posted here by permission of American Institute of Physics for personal use, not for redistribution. The definitive version was published in Physics Today 70, no. 11 (2017): 78, doi:10.1063/PT.3.3773.
    Description: With only a minimal flapping, the wandering albatross can circumnavigate the globe. During its peregrinations over the Southern Ocean, the seabird exploits wind shear—the gradient of wind speed—to extract energy for its sustained flight. That same maneuver, called dynamic soaring, is used by pilots of radio-controlled gliders. In flights that take advantage of the shear associated with wind blowing over mountain ridges, the gliders reach air speeds of an astonishing 500 mph. Engineers are currently developing autonomous unmanned vehicles that can use the technique to supplement different sources of energy for sustained flight over the oceans. Possible applications include environmental monitoring, surveillance, and search and rescue.
    Description: 2018-11-01
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-19
    Type: info:eu-repo/semantics/report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-01-19
    Type: info:eu-repo/semantics/report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Saint Louis University
    In:  Garland, Saint Louis University, vol. 1, no. Publ. No. 12, pp. 95-104, (ISBN: 0-08-043930-6)
    Publication Date: 1986
    Keywords: Earthquake catalog ; Seismicity
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...