ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (143)
  • München : Bayerisches Landesvermessungsamt
  • National Academy of Sciences
  • OceanNETs
  • Springer Nature
  • Wien : Geolog. Bundesanst.
Collection
  • 1
    Publication Date: 2024-04-03
    Description: In this report, we claim that although there is no national deployment or consultation program for OceanNETs in the US, Germany, or Australia, the very idea is sufficiently open-ended to accommodate and even federate different development pathways for industrial-scale emissions reduction. We use the “sociotechnical imaginaries” concept to show how existing moral and political outlooks can, concretely, support the more abstract “need” for OceanNETs within overshoot scenarios. Thus, even without an endorsement of the feasibility or desirability of OceanNETs—as a matter of transnational climate negotiations, for example—it is possible to observe openings for large-scale transformations in ocean use under the description of “climate action.” Such changes are patchier than the imagined research-to-deployment pipeline considered in conventional depictions of OceanNETs, and, indeed, may take the form of those techniques often deemed most marginal to the OceanNETs research agenda, such as “carbon capture and storage” or “seaweed afforestation.” Moreover, the difficulty of engaging local communities in these ongoing changes is a structural feature of negative emissions technology development more generally. This difficulty can be understood not only as a matter of geography, but of the assumptions of net-zero politics, in particular the abstraction of the global carbon budget. This exposes OceanNETs to considerable political and moral instabilities expressed in—yet not reducible to—concerns over the “hype cycle” or “rogue action.”
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-04-26
    Description: The sinking of particulate matter from the upper ocean dominates the export and sequestration of organic carbon by the biological pump, a critical component of the Earth's carbon cycle. Controls on carbon export are thought to be driven by ecological processes that produce and repackage sinking biogenic particles. Here, we present observations during the demise of the Northeast Atlantic Ocean spring bloom illustrating the importance of storm-induced turbulence on the dynamics of sinking particles. A sequence of four large storms caused upper layer mean turbulence levels to vary by more than three orders of magnitude. Large particle (>0.1 to 10 mm) abundance and size changed accordingly: increasing via shear coagulation when turbulence was moderate and decreasing rapidly when turbulence was intense due to shear disaggregation. Particle export was also tied to storm forcing as large particles were mixed to depth during mixed layer deepening. After the mixed layer shoaled, these particles, now isolated from intense surface mixing, grew larger and subsequently sank. This sequence of events matched the timing of sinking particle flux observations. Particle export was influenced by increases in aggregate abundance and porosity, which appeared to be enhanced by the repeated creation and destruction of aggregates. Last, particle transit efficiency through the mesopelagic zone was reduced by presumably biotic processes that created small particles (〈0.5 mm) from larger ones. Our results demonstrate that ocean turbulence significantly impacts the nature and dynamics of sinking particles, strongly influencing particle export and the efficiency of the biological pump.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-05-13
    Description: This dataset, resulting from Task 4.5 quantifies the potential of ocean-based negative emission technologies (NETs) using Earth System Models (ESMs). The dataset consists of simulations of ocean liming and direct CO2 removal from seawater. The ocean liming scenarios utilize excess CaO and cement production capacities from the EU, China, and the US, exploring their application for ocean alkalinization and gauging termination effects. Simulations ran from 2015-2100 using NorESM2-LM, EC-Earth3-CC, and AWI-CM models. This comprehensive dataset informs on the efficacy of ocean-based NETs and provides insights for future climate mitigation strategies, aligning with the Paris Agreement goals. It facilitates further analysis and supports ongoing research in global carbon cycle feedbacks of ocean-based NETs.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-05-13
    Description: Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the—widely anthropogenic—ongoing global warming.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-06-05
    Description: Significance Particulate organic carbon (POC) formed by photosynthesis in the sunlit surface ocean fuels the ecosystems in the dark ocean below. We show that mesoscale fronts and eddies, which are ubiquitous physical features in subtropical oceans, generate three-dimensional intrusions connecting the surface to deep ocean. Intrusions are enriched in total POC due to enhancement of small, nonsinking photosynthetic plankton and free-living bacteria that resemble surface microbial communities. Flow-driven export of POC, estimated using an approximation of eddy physics, is the same order of magnitude as export by sinking POC, which was previously thought to dominate export. These observations reveal coupling of surface and deep ocean productivity and biodiversity and give insight into mechanisms by which the ocean transports carbon to depth. Abstract Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-03-20
    Description: This document is the second of three periodic reports on available data. To present we can report on the deposition of one database, one supplementary dataset with code, one supplementary code repository, one preliminary dataset and 33 individual data files for internal use only marked as work in progress towards data publication. All web based links are listed in Part A of WP8's 2nd periodic Report.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-03-20
    Description: This report provides an overview of OceanNETs engagement with relevant stakeholders and the OceanNETs stakeholder reference group between 01.01.2021 – 31.12.2022.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-03-20
    Description: Global biogeochemical ocean models that are currently in place to investigate alkalinity enhancement at a global scale do usually not consider the effects of a changing carbonate system on phytoplankton. We introduce new and modified parameterizations of phytoplankton carbonate systems sensitivities into the biogeochemistry model REcoM. We then compare phytoplankton biomass and net primary production at different atmospheric CO2 concentrations to results from other deliverables (D5.3, 5.6, 5.7) based on experiments and models. The resilience of phytoplankton biomass towards low CO2 concentrations in our model compares well with the results of mesocosm experiments. Or model results differ in the phytoplankton responses compared to the results of a 1D biogeochemical model that employs similar parameterizations regarding the effects on calcifying phytoplankton and total net primary production, which we explain primarily with differences in the spatial scales and phytoplankton communities investigated.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    OceanNETs
    Publication Date: 2023-03-20
    Description: This report provides an overview on the cooperation activities with relevant EU projects and other initiatives on negative emission technologies in the second reporting period of the OceanNETs project (01.01.2022 – 31.12.2022).
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-03-21
    Description: In this report the workshop on cost and scale of deployment scenarios for ocean liming is described. Participants discussed potential configurations of ocean liming deployment scenarios and the associated cost and scale levels. A simulation tool was used as a means to structure the discussions. Cost and scale scenarios for the period 2030-2050 were covered.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2024-01-08
    Description: The South Shetland Trough, Antarctica, is an underexplored region for microbiological and biotechnological exploitation. Herein, we describe the isolation and characterization of the novel bacterium Lacinutrix shetlandiensis sp. nov. WUR7 from a deep-sea environment. We explored its chemical diversity via a metabologenomics approach, wherein the OSMAC strategy was strategically employed to upregulate cryptic genes for secondary metabolite production. Based on hybrid de novo whole genome sequencing and digital DNA–DNA hybridization, isolate WUR7 was identified as a novel species from the Gram-negative genus Lacinutrix. Its genome was mined for the presence of biosynthetic gene clusters with limited results. However, extensive investigation of its metabolism uncovered an unusual tryptophan decarboxylase with high sequence homology and conserved structure of the active site as compared to ZP_02040762, a highly specific tryptophan decarboxylase from Ruminococcus gnavus. Therefore, WUR7's metabolism was directed toward indole-based alkaloid biosynthesis by feeding it with L-tryptophan. As expected, its metabolome profile changed dramatically, by triggering the extracellular accumulation of a massive array of metabolites unexpressed in the absence of tryptophan. Untargeted LC-MS/MS coupled with molecular networking, followed along with chemoinformatic dereplication, allowed for the annotation of 10 indole alkaloids, belonging to β-carboline, bisindole, and monoindole classes, alongside several unknown alkaloids. These findings guided us to the isolation of a new natural bisindole alkaloid 8,9-dihydrocoscinamide B (1), as the first alkaloid from the genus Lacinutrix, whose structure was elucidated on the basis of extensive 1D and 2D NMR and HR-ESIMS experiments. This comprehensive strategy allowed us to unlock the previously unexploited metabolome of L. shetlandiensis sp. nov. WUR7.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-01-31
    Description: Abiotic laboratory-based experiments were undertaken to determine the characteristics of mineral dissolution in seawater and thereby examine the potential for ocean alkalinization applications. As part of the mesocosm campaigns on Gran Canaria 2021 (WP5.3) and Bergen 2022 (WP5.4) we contributed to the impact assessment of OAE by conducting labbased experiments, focused on the carbonate chemistry and the stability of alkalinity in TA enhanced seawater. Due to extensive precipitation of secondary Ca-carbonates during the dissolution experiments, the focus of WP5.1 changed from mineral dissolution experiments to describing and avoiding the process of runaway precipitation while studying the generation of alkalinity. Understanding when, why and how precipitation is triggered in an OAE context might be an essential factor to determine the potential as a negative emission technology. All data sets for the dissolution experiments, the precipitation process and critical thresholds are available for project members.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-01-31
    Description: This deliverable synthesizes the results from WP 3 on public perceptions of marine Carbon Dioxide Removal (CDR). The main purpose is to inform the overall synthesis report of OceanNets. It also helps inform the other work packages and stakeholders about our results in a timely and brief manner about the ways members of the public view marine CDR specifically
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-01-31
    Description: Examining the dissolution behavior of solid mineral phases for open ocean alkalinity enhancement scenarios with laboratory-based experiments was basically impractical. The general occurrence of secondary mineral precipitation during dissolution experiments led to a shift of focus towards the stability of alkalinity and the description of the observed runaway precipitation processes. Based on detailed examinations of the triggering factors for the observed precipitation, results from the stability experiments derived upper feasible limits for the implementation of open world OAE application scenarios.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-01-31
    Description: Limiting global warming to 1.5°C requires a large-scale removal of carbon dioxide from the atmosphere. The oceans have been proposed as one possible storage option, however, not without environmental consequences. Adverse impacts on ecosystems are expected to increase in the amount of carbon stored. The question arises whether the removed carbon should be stored in a small area, e.g. a bay, or spread out across the oceans. We study this question in an analytic model with two types of ocean boxes, characterised by their carbon content. Storing a lot of carbon in the small box (a bay) may cause the local ecosystem to cross a tipping point, whereas spreading out in the large box (the rest of the ocean) may avoid this, while still causing ecosystem damages. The model gives rise to two different steady state solutions. A “destroy” steady state, where the tipping point in the small ocean box has been crossed, and a “diffuse” steady state without destruction. We analytically and numerically study the optimal amount of carbon stored, and the optimal distribution of carbon sequestration across the two boxes.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-01-31
    Description: A common challenge in many ocean-based negative emissions technologies (NETs) is the difficulty of developing new global industries and supply chains, which could be necessary for their much needed rapid and large-scale deployment. Therefore, to facilitate roll-out, existing industries and infrastructure should preferably be utilised. For ocean alkalinity enhancement (OAE) by CaO, i.e., ocean liming (OL), the lime can be produced by calcination of limestone using the spare capacity in the cement industry. For OAE by NaOH, i.e., electrochemical brine splitting (EBS), the NaOH can be produced by electrolysis of waste brines from the desalination sector. In this case study, we investigate the realistic OAE potential of Spain, because of its large availability of limestone, its increasing spare cement kiln capacity, and its large and growing desalination industry. This case study shows Spain has a high potential for alkalinity addition to the oceans. Specifically, the total CDR capacity of Spain via OAE is 24.4 Mt yr.-1 with contributions of 22.6 Mt of CO2 removed by OL and 1.8 Mt of CO2 removed by EBS, assuming these processes are driven solely by renewable energy. Further, this case study provides a realistic estimate of the CO2 removal potential and life cycle emissions for alkalinity enhancement for a given region, in contrast to more general global or continental studies before it. By doing so, Spain’s annual carbon dioxide removal (CDR) capacity by OAE is also identified. Future work will look to include coastal enhanced weathering of olivine to the portfolio of Spain’s OAE approaches.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-01-31
    Description: This deliverable synthesizes the first results on public perceptions of marine Carbon Dioxide Removal (CDR) methods from a cross-country survey in Canada, China, France, Germany, Norway, and Taiwan. The purpose is to inform the other work packages in OceanNets and stakeholders about our results in a timely and brief manner about the ways members of the public view marine CDR specifically. The survey was fielded in April 2023, has approximately 2000 observations in each country, and aims to be representative for the population active online in the respective country. It covers the marine CDR approaches ocean alkalinity enhancement (OAE), macroalgae farming with BECCS (mBECCS) or macroalgae farming with biomass sinking. Our analysis found notable differences in perceptions of the three methods and between the countries. OAE received the largest shares of negative assessments in all countries, mBECCS received the highest shares of positive assessments. Overall, respondents in the Asian countries assess ocean-based CDR approaches more positively than respondents in Western countries. We also find differences in self-reported familiarity. In Western countries, a majority (55-84%) report never having heard of these approaches; in Asian countries, a majority (56-75%) report having heard of the approaches before. Results on the associations with the methods confirm the results for the general question and add more nuanced insights into how the methods are perceived. The survey also included an experimental design that indicates a potential spillover effect, wherein presenting OAE first negatively influenced perceptions of the subsequent technology.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2024-01-31
    Description: Carbon accounting is essential for quantifying carbon removal and determining required offsets. The valuation goes beyond mere measurement, taking into account factors such as temporary storage and the social cost of carbon (SCC). These valuations inform the issuance of carbon offsets, but governance frameworks also play a role in their issuance. For ocean-based carbon removal methods, such as ocean iron fertilization and blue carbon projects, cost-benefit accounting supported by SCC assessments is appropriate. Challenges arise for integration compliance systems such as the EU Emissions Trading Scheme (EU ETS). To align compliance systems with carbon accounting, an intermediary institution could facilitate the purchase and resale of international offsets while managing non-permanent storage liabilities. Ocean alkalinity enhancement, among ocean-based CDR methods, may fit into net accounting if monitoring, reporting, and verification (MRV) challenges are addressed. A proposed MRV approach based on the regulation of nonpoint source pollution can address these concerns.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2024-01-31
    Description: This deliverable provides a summary of a two-day expert workshop conducted in hybrid format. The workshop’s primary objective was aimed towards identifying future opportunities within the global ocean governance regime to strengthen governance of ocean-based NETs in a comprehensive manner. The workshop was organised by the Research Institute for Sustainability – Helmholtz Centre Potsdam (RIFS) as part of the work of Task 2.2 of the OceanNETs project. This deliverable follows a first online workshop (see Deliverable 2.3) that identified challenges within the current governance framework for ocean-based NETs. The second workshop consisted of breakout groups and plenary discussions designed to explore scenarios that reflect on identified governance challenges within the current and potential future global ocean governance regimes. Participants were asked to reflect on the concept of „good governance” and develop responses to the scenarios presented through specific prompts. They were encouraged to actively contribute to discussions that aimed to advance our understanding of the future governance of ocean-based NETs.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2024-01-31
    Description: In this report the workshop on cost and scale of deployment scenarios for ocean liming is described. Participants discussed potential configurations of ocean liming deployment scenarios and the associated cost and scale levels. A simulation tool was used as a means to structure the discussions. Cost and scale scenarios for the period 2030-2050 were covered.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    facet.materialart.
    Unknown
    OceanNETs
    Publication Date: 2024-01-31
    Description: This document is the second of three periodic reports on available data. To present we can report on the deposition of one database, one supplementary dataset with code, one supplementary code repository, one preliminary dataset and 33 individual data files for internal use only marked as work in progress towards data publication. All web based links are listed in Part A of WP8's 2nd periodic Report.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2024-01-31
    Description: This is the data management plan for the research project OceanNETs. It compiles OceanNETs research data output and describes the data handling during and after the projects duration with the aim to make OceanNETs research data FAIR – sustainably available for the scientific community. This data management plan is a living document; it will be continuously developed in close cooperation with the consortium members throughout the project duration. Version 3
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2024-01-31
    Description: The Carbon Dioxide Removal (CDR) market is experiencing rapid development, with different regions adopting distinct approaches. In Europe, the progress is primarily driven top-down through the implementation of regulations aimed at integrating CDR into various climate instrument pillars within the EU. In contrast, the United States is witnessing a bottom-up growth trajectory, characterized by the emergence of start-ups, carbon registries, marketplaces, and insurance companies, all playing a role in the expansion of the CDR sector. This surge in CDR-related businesses has been further catalyzed by substantial subsidies, particularly through the recent adjustments made to the 45Q tax credit system. The amendments were introduced as part of the "Inflation Reduction Act" (IRA) and the "Bipartisan Infrastructure Law" (BIL). Under these modifications, significant tax credits are offered for carbon capture and utilization at point sources, with subsequent storage (CCS). Notably, the tax credits have increased to 60 USD/tCO2 for carbon capture and utilization and storage at point sources, and to 85 USD/tCO2 for direct air capture and storage. The tax credits go even higher, amounting to 130 and 180 USD/tCO2, respectively, for utilization and storage if the carbon is directly removed from the air. In addition to these measures, the IRA and BIL also allocate substantial funding for forestry and sequestration projects, carbon transport infrastructure, and carbon removal hubs to test and develop technologies. Simultaneously, some top-down initiatives have been set in motion in the US, exemplified by the introduction of the Carbon Dioxide Removal Market Development Act as part of California's Cap-and-Trade Program. This act mandates emitting entities to offset a certain percentage of their emissions through CDR in subsequent years, culminating in full compensation of emissions with CDR by 2045. Moreover, the act emphasizes the promotion of domestic development by requiring that at least 50% of the negative emissions credits used by an emitting entity originate from CDR processes that directly mitigate climate impacts within the state. Against this backdrop, it comes as no surprise that the CDR start-up scene is predominantly dominated by US companies, with ocean-based removal companies accounting for approximately 10 percent of the market. However, despite their presence, ocean-based CDR projects are currently limited, with the majority focused on blue carbon projects, particularly mangrove restoration, and only a few exploring other ocean-based CDR methods. The land-based portion of the CDR market appears to be effectively addressing accounting, verification, and registry aspects, primarily due to market demand or existing regulations. Nevertheless, the development of such bottom-up approaches remains less likely for open access schemes like ocean-based CDR initiatives.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2024-01-31
    Description: Net-zero climate policies foresee deployment of atmospheric carbon dioxide removal wit geological, terrestrial, or marine carbon storage. While terrestrial and geological storage would be governed under the framework of national property rights, marine storage implies that carbon is transferred from one global common, the atmosphere, to another global common, the ocean, in particular if storage exceeds beyond coastal applications. This paper investigates the option of carbon dioxide removal (CDR) and storage in different (marine) reservoir types in an analytic climate-economy model, and derives implications for optimal mitigation efforts and CDR deployment. We show that the introduction of CDR lowers net energy input and net emissions over the entire time path. Furthermore, CDR affects the Social Cost of Carbon (SCC) via changes in total economic output but leaves the analytic structure of the SCC unchanged. In the first years after CDR becomes available the SCC is lower and in later years it is higher compared to a standard climate-economy model. Carbon dioxide emissions are first higher and then lower relative to a world without CDR. The paper provides the basis for the analysis of decentralized and potentially non-cooperative CDR policies.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2024-01-31
    Description: Any integration of extra carbon dioxide removal (CDR) via terrestrial or marine sink enhancement into climate policies requires accounting for their effectiveness in reducing atmospheric carbon concentration. Different accounting methods have been introduced to quantify the impacts of sink enhancements. Here, we provide a manual for the different accounting methods, accompanying the implementation of the accounting methods in a R-file which is free for download. Hence, the material allows applying the different accounting ethods and for demonstration purposes we provide a numerical example.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2024-02-07
    Description: Significance Assessing change in Southern Ocean ecosystems is challenging due to its remoteness. Large-scale datasets that allow comparison between present-day conditions and those prior to large-scale ecosystem disturbances caused by humans (e.g., fishing/whaling) are rare. We infer the contemporary offshore foraging distribution of a marine predator, southern right whales (n = 1,002), using a customized stable isotope-based assignment approach based on biogeochemical models of the Southern Ocean. We then compare the contemporary distributions during the late austral summer and autumn to whaling catch data representing historical distributions during the same seasons. We show remarkable consistency of mid-latitude distribution across four centuries but shifts in foraging grounds in the past 30 y, particularly in the high latitudes that are likely driven by climate-associated alterations in prey availability. Abstract Assessing environmental changes in Southern Ocean ecosystems is difficult due to its remoteness and data sparsity. Monitoring marine predators that respond rapidly to environmental variation may enable us to track anthropogenic effects on ecosystems. Yet, many long-term datasets of marine predators are incomplete because they are spatially constrained and/or track ecosystems already modified by industrial fishing and whaling in the latter half of the 20th century. Here, we assess the contemporary offshore distribution of a wide-ranging marine predator, the southern right whale (SRW, Eubalaena australis), that forages on copepods and krill from ~30°S to the Antarctic ice edge (〉60°S). We analyzed carbon and nitrogen isotope values of 1,002 skin samples from six genetically distinct SRW populations using a customized assignment approach that accounts for temporal and spatial variation in the Southern Ocean phytoplankton isoscape. Over the past three decades, SRWs increased their use of mid-latitude foraging grounds in the south Atlantic and southwest (SW) Indian oceans in the late austral summer and autumn and slightly increased their use of high-latitude (〉60°S) foraging grounds in the SW Pacific, coincident with observed changes in prey distribution and abundance on a circumpolar scale. Comparing foraging assignments with whaling records since the 18th century showed remarkable stability in use of mid-latitude foraging areas. We attribute this consistency across four centuries to the physical stability of ocean fronts and resulting productivity in mid-latitude ecosystems of the Southern Ocean compared with polar regions that may be more influenced by recent climate change.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2024-02-07
    Description: Prochlorococcus is a key member of open-ocean primary producer communities. Despite its importance, little is known about the predators that consume this cyanobacterium and make its biomass available to higher trophic levels. We identify potential predators along a gradient wherein Prochlorococcus abundance increased from near detection limits (coastal California) to 〉200,000 cells mL-1 (subtropical North Pacific Gyre). A replicated RNA-Stable Isotope Probing experiment involving the in situ community, and labeled Prochlorococcus as prey, revealed choanoflagellates as the most active predators of Prochlorococcus, alongside a radiolarian, chrysophytes, dictyochophytes, and specific MAST lineages. These predators were not appropriately highlighted in multiyear conventional 18S rRNA gene amplicon surveys where dinoflagellates and other taxa had highest relative amplicon abundances across the gradient. In identifying direct consumers of Prochlorococcus, we reveal food-web linkages of individual protistan taxa and resolve routes of carbon transfer from the base of marine food webs.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2024-02-23
    Description: Significance Oceans represent 70% of our planet’s surface, housing a large spectrum of microorganisms that interact with the above atmosphere. Ocean microorganisms were proposed in the late 80’s to be at the center of a climate feedback loop involving dimethyl sulfide (DMS) that would form aerosols and modify cloud properties (CLAW hypothesis). In the present paper, we report observational evidence from semicontrolled experiments in the South Pacific that nitrate ions, yet hitherto not considered, is a key species involved in aerosol nucleation in the pristine marine atmosphere and which precursors are coemitted with DMS. Our results further indicate that nitrate ion formation would be related to short-term microbial processes, sensitive to environmental stressors, therefore potentially “closing the loop”. Abstract Our understanding of ocean–cloud interactions and their effect on climate lacks insight into a key pathway: do biogenic marine emissions form new particles in the open ocean atmosphere? Using measurements collected in ship-borne air–sea interface tanks deployed in the Southwestern Pacific Ocean, we identified new particle formation (NPF) during nighttime that was related to plankton community composition. We show that nitrate ions are the only species for which abundance could support NPF rates in our semicontrolled experiments. Nitrate ions also prevailed in the natural pristine marine atmosphere and were elevated under higher sub-10 nm particle concentrations. We hypothesize that these nucleation events were fueled by complex, short-term biogeochemical cycling involving the microbial loop. These findings suggest a new perspective with a previously unidentified role of nitrate of marine biogeochemical origin in aerosol nucleation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2024-05-14
    Description: Many recent ocean modelling studies have demonstrated the added value of enhanced horizontal resolution, although it comes at a high computational cost. However, few modeling studies of ocean-based CDR have been done at high resolution. Here we assess the effects of model resolution on two simulated ocean-based CDR methods, unequilibrated ocean alkalinity enhancement (OAE) and the direct marine capture (DMC) of CO2 from seawater (with assumed permanent storage), in experiments with the FOCI Earth system model. To do this we utilized two FOCI configurations, one with a 1/2° ocean resolution and the other with a 1/10° ocean nest in the N. Atlantic. Both configurations were run in a series of “paired” experiments with identical climate forcing and CDR deployments. We show that model resolution does appear to matter when simulating OAE and DMC. For OAE, parameterization of physical processes in the coarse resolution version of the model appears to overestimate how long alkalized waters stay in contact with the atmosphere and where they are transported. This results in large differences in OAE efficacy with almost twice as much carbon sequestered when the model resolution is coarse. For the DMC simulations, at one site there were clear differences in the compensating CO2 flux induced by DIC removal, which was again higher with a coarse resolution, while at the other site variability was high and differences were difficult to determine. At both DMC sites there were clear differences in circulation with the two model resolutions, and thus on downstream biogeochemistry. We suggest that well resolving ocean physics may be necessary to best calculate unequilibrated OAE and DMC efficacies and side effects. These results should be confirmed using other models and with different resolutions.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2022-06-09
    Description: Research undertaken in Task 2.2 identified a range of governance challenges to ocean-based NETs related to the global ocean governance framework, e.g., linked to the transboundary nature of the ocean, potential effects of ocean-based NETs on the ocean’s condition and marine ecosystem services, as well as the many unknowns and uncertainties linked to NET-deployment. The fragmented approaches and frameworks in place to govern the global ocean further complicate comprehensive governance of these emerging technologies. This deliverable presents results from a workshop that explored how oceanbased NETs should be governed to best confront these challenges and integrate international climate targets as well as global goals for ocean and biodiversity conservation, in addition to global ambitions towards sustainable development. The workshop is part of research undertaken by Task 2.2 to assess how ocean-based NETs are addressed by the current global ocean governance framework and develop governance scenarios and recommendations to policy makers for a “good governance” of NETs in the ocean.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2022-08-19
    Description: Net-zero climate policies foresee deployment of atmospheric carbon dioxide removal wit geological, terrestrial, or marine carbon storage. While terrestrial and geological storage would be governed under the framework of national property rights, marine storage implies that carbon is transferred from one global common, the atmosphere, to another global common, the ocean, in particular if storage exceeds beyond coastal applications. This paper investigates the option of carbon dioxide removal (CDR) and storage in different (marine) reservoir types in an analytic climate-economy model, and derives implications for optimal mitigation efforts and CDR deployment. We show that the introduction of CDR lowers net energy input and net emissions over the entire time path. Furthermore, CDR affects the Social Cost of Carbon (SCC) via changes in total economic output but leaves the analytic structure of the SCC unchanged. In the first years after CDR becomes available the SCC is lower and in later years it is higher compared to a standard climate-economy model. Carbon dioxide emissions are first higher and then lower relative to a world without CDR. The paper provides the basis for the analysis of decentralized and potentially non-cooperative CDR policies.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2022-08-19
    Description: This study uses an existing perturbed parameter ensemble (PPE) of simulated ocean CO2 removal (CDR) to better determine sustainable pathways of ocean-based NET deployment and to provide information to constrain the design of subsequent modelling experiments. The results show that ocean alkalinity enhancement (OAE) can only help meet SDG13 (Climate Action) when other ambitious mitigation efforts are taken. This reinforces that OAE is not a substitute for emissions reduction, but could contribute to meeting our climate goals (if other factors suggest OAE is worth doing). For SDG14 (Life Below Water), the results suggest OEA can contribute to limiting or even reversing ocean acidification. Meeting many other SDG14 objectives is closely linked to also meeting SDG13. A key recommendation is therefore, that subsequent simulations in OceanNETs should only use SDG13 compatible baseline scenarios, unless there is some specific need for process understanding at higher levels of climate change. The analysis has also determined that the idealized CDR in the PPE is not suitable for determining many socio-economic constraints and the implications that these have for meeting the SDGs. Another key recommendation is therefore, that subsequent simulations within OceanNETs should use more realistic scenarios of CDR deployment.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2022-08-19
    Description: In part one of this deliverable, an ensemble of 14 CMIP6 Earth System Models is evaluated regarding their performance in simulating alkalinity and related parameters. The majority of the models and the multi-model-mean underestimate surface alkalinity compared to climatological observations. Alkalinity biases stemming from the parametrization of calcium carbonate formation and dissolution can be as big as biases stemming from model physics. In part two, we test the sensitivity of parametrizations concerning the carbonate chemistry in the FESOM2.1-REcoM3 and give recommendations for addressing alkalinity biases.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2022-09-07
    Description: This is the data management plan for the research project OceanNETs. It compiles OceanNETs research data output and describes the data handling during and after the projects duration with the aim to make OceanNETs research data FAIR – sustainably available for the scientific community. This data management plan is a living document; it will be continuously developed in close cooperation with the consortium members throughout the project duration. Version 2
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2022-09-19
    Description: The potential biogeochemical and ecological impacts of ocean alkalinity enhancement were tested in a 5-weeks mesocosm experiment conducted in the subtropical, oligotrophic waters off Gran Canaria in September/October 2021. In the nine mesocosms, each with a volume of about 10 m3 inhabiting a natural plankton community, alkalinity enhancement was achieved through addition of a mix of sodium bicarbonate and sodium carbonate, simulating CO2-equilibrated alkalinization in a gradient from control up to twice the natural alkalinity. The response of the enclosed plankton community to the alkalinity addition was monitored in over 50 parameters which were sampled or measured in situ daily or every second day. In addition to the mesocosm experiment, a series of side experiments were conducted, focusing on individual aspects of mineral dissolution, secondary precipitation and biological responses at the primary producer level. This campaign, in which 47 scientists from 6 nations participated, generated the most comprehensive data set collected so far on the ecological and biogeochemical impacts of ocean alkalinity enhancement.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2022-09-16
    Description: Emissions trading systems (ETS) and markets usually do not allow for the inclusion of carbon dioxide removal (CDR) activities and if they do, removal activities are primarily restricted to afforestation. The New Zealand emission trading system (NZ ETS), for examples, integrates afforestation, and the California Low-Fuel Standard, the Quebec ETS and the Chinese ETS permit the restricted inclusion of afforestation offsets. Furthermore, the California Low-Carbon Fuel Standard System allows for the inclusion of removal via Direct Air Capture. In combination with the 45Q tax credit program, the largest incentives for CDR via Negative Emissions Technologies (NETs) are currently provided in the US. However, both do not yet allow for the inclusion of ocean-based carbon removal. Hence, we provide first a brief overview about the NZ ETS and its inclusion of afforestation, pointing out that the concept will likely not be applicable to ocean-based CDR with the potential exemption of blue carbon projects. Second, we discuss the 45Q tax credit program, the California Low-Fuel Standard System, and the California Compliance Offset Scheme. Third, we provide an overview about the company database related to ocean-based carbon removal. Fourth, we briefly look at the voluntary carbon market, providing some insights for carbon removal accounting.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2022-11-04
    Description: This deliverable synthesizes the results on public perceptions of marine CDR methods from the first two years of OceanNETs. The purpose is to inform the other work packages in OceanNETs and stakeholders about our results in a timely and brief manner about the ways members of the public view marine CDR specifically but also in the broader context of net-zero targets and climate policy. The deliverable summarises results of two studies: (1) focus groups held in Germany and Norway that covered ocean fertilization, ocean alkalinity enhancement, artificial upwelling and blue carbon management and (2) a deliberative survey in Norway that covered ocean alkalinity enhancement, macroalgae farming with BECCS or biomass sinking and land-based BECCS and enhanced weathering as terrestrial approaches for comparison. Participants in both studies emphasise the importance of reducing emissions and changing consumptions patterns. They hardly discuss the need to remove CO2 from the atmosphere to reach the Paris climate goal and the concept of negative emissions seems difficult for them to engage with. Among the methods, participants prefer ecosystem-based approaches like mangrove or seagrass restoration over other methods like alkalinity enhancement or ocean fertilization. Participants are concerned about the actual feasibility of deployment at a relevant removal scale and for a longer period. Connected to this are concerns about the controllability of the deployment and the methods’ impact, like difficulties to control negative environmental effects from biomass sinking at the seafloor. They also question the buildup of additional infrastructure or additional interventions into nature on top of already existing human interference. The opportunity to deliberate the methods increases participants’ certainty about their assessment but only slightly changes the direction of the assessment.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2024-01-31
    Description: This report summarises the stakeholder engagement work conducted with actors in the Bergen region during OceanNETs research activities on ocean alkalinity enhancement. We describe our approach to stakeholder engagement and summarize some key insights derived from this process.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2024-01-31
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2024-02-07
    Description: Significance A substantial component of the global nitrogen cycle is the production of biologically inaccessible dinitrogen attributed to anaerobic denitrification by prokaryotes. Recent evidence identified a eukaryote, foraminifera, as new key players in this “loss” of bioavailable nitrogen. The evolution of denitrification in eukaryotes is a rare event, and the genetic mechanisms of the denitrification pathway in foraminifera are just starting to be elucidated. We present large-scale sequencing analyses of 10 denitrifying foraminiferal species, which reveals the high conservation of the foraminiferal denitrification pathway. We further find evidence for a complementation of denitrification by the foraminiferal microbiome. Together, these findings provide insights into the early evolution of a previously overlooked component in the marine nitrogen cycle. Abstract: Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origin. However, the prevalence of denitrification genes in foraminifera remains unknown, and the missing denitrification pathway components are elusive. Analyzing transcriptomes and metagenomes of 10 foraminiferal species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer the last common ancestor of denitrifying foraminifera, which enables us to predict the ability to denitrify for additional foraminiferal species. Additionally, an examination of the foraminiferal microbiota reveals evidence for a stable interaction with Desulfobacteraceae, which harbor genes that complement the foraminiferal denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera-associated microbiome. The interaction of foraminifera with their resident bacteria is at the basis of foraminiferal adaptation to anaerobic environments that manifested in ecological success in oxygen depleted habitats.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2024-02-07
    Description: Significance: Adaptive radiation, the evolutionary process whereby a lineage diversifies over a short period of time, often occurs in geographically isolated or newly formed habitats where colonizing species encounter unoccupied niches and reduced selective pressures. Rapid radiations may also occur in diverse and complex environments, but these cases are less well documented. Here, we show that the hamlets, a group of Caribbean reef fishes, radiated within the last 10,000 generations in a burst of diversification that ranks among the fastest in fishes. Genomic analysis suggests that color pattern diversity is generated by different combinations of alleles at a few genes with large effect. Such a modular genomic architecture of diversification is emerging as a common denominator to a variety of radiations. Abstract: Rapid diversification is often observed when founding species invade isolated or newly formed habitats that provide ecological opportunity for adaptive radiation. However, most of the Earth’s diversity arose in diverse environments where ecological opportunities appear to be more constrained. Here, we present a striking example of a rapid radiation in a highly diverse marine habitat. The hamlets, a group of reef fishes from the wider Caribbean, have radiated into a stunning diversity of color patterns but show low divergence across other ecological axes. Although the hamlet lineage is ∼26 My old, the radiation appears to have occurred within the last 10,000 generations in a burst of diversification that ranks among the fastest in fishes. As such, the hamlets provide a compelling backdrop to uncover the genomic elements associated with phenotypic diversification and an excellent opportunity to build a broader comparative framework for understanding the drivers of adaptive radiation. The analysis of 170 genomes suggests that color pattern diversity is generated by different combinations of alleles at a few large-effect loci. Such a modular genomic architecture of diversification has been documented before in Heliconius butterflies, capuchino finches, and munia finches, three other tropical radiations that took place in highly diverse and complex environments. The hamlet radiation also occurred in a context of high effective population size, which is typical of marine populations. This allows for the accumulation of new variants through mutation and the retention of ancestral genetic variation, both of which appear to be important in this radiation.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2024-02-07
    Description: Significance Resilience to global change will require adaptation to multiple concurrent environmental changes. However, it is unclear if adaptations to multiple stressors can be predicted from the sum of single-stressor adaptation. To answer this question, we experimentally evolved a marine copepod to warming, acidification, and their combination, finding that copepods were able to adapt to all conditions over 25 generations. Warming was a much stronger selective pressure than acidification alone and under multiple-stressor conditions. Nevertheless, the multiple-stressor response to selection was synergistic and unique from either single stressor. Thus, adaptation to single stressors may not reveal adaptive potential or mechanisms of adaptation under multiple stressors, demonstrating the complexity of predicting adaptive responses under multifaceted environmental change. Abstract Metazoan adaptation to global change relies on selection of standing genetic variation. Determining the extent to which this variation exists in natural populations, particularly for responses to simultaneous stressors, is essential to make accurate predictions for persistence in future conditions. Here, we identified the genetic variation enabling the copepod Acartia tonsa to adapt to experimental ocean warming, acidification, and combined ocean warming and acidification (OWA) over 25 generations of continual selection. Replicate populations showed a consistent polygenic response to each condition, targeting an array of adaptive mechanisms including cellular homeostasis, development, and stress response. We used a genome-wide covariance approach to partition the allelic changes into three categories: selection, drift and replicate-specific selection, and laboratory adaptation responses. The majority of allele frequency change in warming (57%) and OWA (63%) was driven by shared selection pressures across replicates, but this effect was weaker under acidification alone (20%). OWA and warming shared 37% of their response to selection but OWA and acidification shared just 1%, indicating that warming is the dominant driver of selection in OWA. Despite the dominance of warming, the interaction with acidification was still critical as the OWA selection response was highly synergistic with 47% of the allelic selection response unique from either individual treatment. These results disentangle how genomic targets of selection differ between single and multiple stressors and demonstrate the complexity that nonadditive multiple stressors will contribute to predictions of adaptation to complex environmental shifts caused by global change.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2024-05-22
    Description: Orbital cyclicity is a fundamental pacemaker of Earth’s climate system. The Newark–Hartford Basin (NHB) lake sediment record of eastern North America contains compelling geologic expressions of this cyclicity, reflecting variations of climatic conditions in tropical Pangea during the Late Triassic and earliest Jurassic (~233 to 199 Ma). Climate modeling enables a deeper mechanistic understanding of Earth system modulation during this unique greenhouse and supercontinent period. We link major features of the NHB record to the combined climatic effects of orbital forcing, paleogeographic changes, and atmospheric p CO 2 variations. An ensemble of transient, orbitally driven climate simulations is assessed for nine time slices, three atmospheric p CO 2 values, and two paleogeographic reconstructions. Climatic transitions from tropical humid to more seasonal and ultimately semiarid are associated with tectonic drift of the NHB from ~ 5 ° N to 20 ° N . The modeled orbital modulation of the precipitation–evaporation balance is most pronounced during the 220 to 200 Ma interval, whereas it is limited by weak seasonality and increasing aridity before and after this interval. Lower p CO 2 at around 205 Ma contributes to drier climates and could have led to the observed damping of sediment cyclicity. Eccentricity-modulated precession dominates the orbitally driven climate response in the NHB region. High obliquity further amplifies summer precipitation through the seasonal shifts in the tropical rainfall belt. Regions with other proxy records are also assessed, providing guidance toward an integrated picture of global astronomical climate forcing in the Late Triassic and ultimately of other periods in Earth history.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2024-07-01
    Description: Ocean Alkalinization deliberately modifies the chemistry of the surface ocean to enhance the uptake of atmospheric CO2. Here we quantify, using idealized Earth system model (ESM) simulations, changes in carbon cycle feedbacks and in the seasonal cycle of the surface ocean carbonate system due to ocean alkalinization. We find that both, carbon-concentration and carbon climate feedback, are enhanced due to the increased sensitivity of the carbonate system to changes in atmospheric CO2 and changes in temperature. While the temperature effect, which decreases ocean carbon uptake, remains small in our model, the carbon concentration feedback enhances the uptake of carbon due to alkalinization by more than 20%. The seasonal cycle of air-sea CO2 fluxes is strongly enhanced due to an increased buffer capacity in an alkalinized ocean. This is independent of the seasonal cycle of pCO2, which is only slightly enhanced. The most significant change in the seasonality of the surface ocean carbonate system is an increased seasonal cycle of the aragonite saturation state, which has the potential to adversely affect ecosystem health.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D3.1 . OceanNETs, 4 pp.
    Publication Date: 2021-04-27
    Description: This deliverable reports about the successful completion of three group discussions on marine carbon dioxide removal (CDR) with laypersons in Germany. The 2-hour group discussions were held online. 5 participants discussed these three topics: (1) the environmental state of the oceans, (2) four selected marine CDR approaches, and (3) responsible research and innovation. The four approaches were ocean fertilization, ocean alkalinization via ocean liming and electrochemical weathering in desalination plants, artificial upwelling, and blue carbon management via kelp forests, mangroves and seagrass meadows.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D3.2 . OceanNETs, 4 pp.
    Publication Date: 2021-04-27
    Description: This deliverable reports about the successful completion of three group discussions on marine carbon dioxide removal (CDR) with laypersons in Norway. The 2-hour group discussions were held online. In three groups, and a pilot group, between 2 and 7 participants discussed these three topics: (1) the environmental state of the oceans, (2) four selected marine CDR approaches, and (3) responsible research and innovation. The four approaches were ocean fertilization, ocean alkalinization via ocean liming and electrochemical weathering in desalination plants, artificial upwelling, and blue carbon management via kelp forests, mangroves and seagrass meadows.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D7.3 . OceanNETs, Kiel, Germany, 4 pp.
    Publication Date: 2021-12-09
    Description: The SRG platform we established for OceanNETs serves as a tool for our consortium members interaction with stakeholders. The platform allows for direct interaction and stakeholders are engaged in a harmonized and coherent way across all WPs. The platform is established on our OceanNETs Slack channel and connected to our media platform Elements.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D2.7 . OceanNETs, Kiel, Germany, 25 pp.
    Publication Date: 2021-12-09
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D6.3 . OceanNETs, Kiel, Germany, 8 pp.
    Publication Date: 2022-01-14
    Description: This report summarizes the first WP6 consultation on ocean liming, which focused on the life-cycle assessment (LCA) of lime produced within existing industrial processes for carbon dioxide removal through ocean alkalinity enhancement (see Deliverable 6.2 for further details on the LCA).
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D8.3 . OceanNETs, Kiel, Germany, 5 pp.
    Publication Date: 2022-01-17
    Description: This document is the first of three periodic reports on available data.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D9.4 . OceanNETs, Kiel, Germany, 5 pp.
    Publication Date: 2022-01-17
    Description: This report provides an overview on the cooperation activities with relevant EU projects and other initiatives on negative emission technologies in the first phase of the OceanNETs project (01.07.2020 – 31.12.2021).
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D7.4 . OceanNETs, Kiel, Germany, 17 pp.
    Publication Date: 2022-01-18
    Description: This report provides an overview of OceanNETs engagement with relevant stakeholders and the OceanNETs stakeholder reference group in the first 18 month of the project (01.07.2020 – 31.12.2021).
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2022-06-17
    Description: This working paper presents first insights on lay public perceptions of marine carbon dioxide removal (CDR) approaches. In seven focus groups, three in Germany and four in Norway (including one pilot) the researchers asked members of the lay public to share their views of the ocean and the effects of climate change, four CDR approaches, as well as their reflections on responsible research and innovation (RRI) of marine CDR. The four CDR methods were ocean iron fertilization, ocean alkalinity enhancement, artificial upwelling, and blue carbon management through restoration of coastal and marine ecosystems. In addition, respondents were asked to compare the four approaches. Our findings indicate that the public will be very supportive of blue carbon management irrespective of its actual carbon sequestration potential, due in part to the perceived bad state of marine ecosystems worldwide. Participants were skeptical whether any of the CDR approaches could have relevant effect on carbon sequestration and long-term storage; they reasoned about issues such as the ability to scale up treatments in time and space, unforeseen or unforeseeable effects on ecosystems in time and space, and the role of industry in the implementation process. They argued that despite the potential availability of marine CDR, industry and the general public should stop polluting behaviors and practices. Nevertheless, the participants universally agreed that further research on all four CDR methods should be pursued to better understand effects on climate, ecosystems, local communities, and the economy.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2022-06-17
    Description: This is the stylized description of our ocean liming case study, which we are using the introduce our life-cycle assessment to stakeholders in our consultation process
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2022-06-17
    Description: Any integration of extra carbon dioxide removal (CDR) via terrestrial or marine sink enhancement into climate policies requires accounting for their effectiveness in reducing atmospheric carbon concentration and translating this information into the amount of carbon credits (to be used in official and voluntary emission trading schemes). Here, we assess accounting schemes in their appropriateness of assigning carbon credits. We discuss the role of temporary carbon storage and present the various ccounting methods for carbon credit assignment. We explain how we have implemented the methods numerically and analyse carbon assignments across the different accounting schemes, using stylized, model-based ocean sink enhancement experiments.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2022-06-17
    Description: This report summarizes OceanNETs stakeholder engagement activities in the Canary Islands, prior and during the mesocosm study in ocean alkalinity enhancement carried out on the island of Gran Canaria in September-October 2021. It also presents ideas for future stakeholder engagement in the islands.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2022-06-17
    Description: Realistic alkalinization scenarios, under the global context, are proposed and examined, which can be extent to include spatial considerations and specific technical and regulatory constraints. Results provide a set of stylistic projections of total mineral (carbonate and silicate) addition, with its temporal timeframe spanning from as early as 2025 up to 2100). Among others, these estimates can be used to constrain model simulations that will be carried out in Work Package 4.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2022-06-17
    Description: We applied a 1-D plankton ecosystem-biogeochemical model to assess the impacts of ocean alkalinity enhancement (OAE) on seasonal changes in biogeochemistry and plankton dynamics. Depending on deployment scenarios, OAE should theoretically have variable effects on pH and seawater pCO2, which might in turn affect (a) plankton growth conditions and (b) the efficiency of carbon dioxide removal (CDR) via OAE. Thus, a major focus of our work is how different magnitudes and temporal frequencies of OAE might affect seasonal response patterns of net primary productivity (NPP), ecosystem functioning and biogeochemical cycling. With our study we aimed at identifying a parameterization of how magnitude and frequency of OAE affect net growth rates, so that these effects could be employed for Earth System Modell applications. So far we learned that a meaningful response parameterization has to resolve positive and negative anomalies that covary with temporal shifts. As to the intricacy of the response patterns, the derivation of such parameterization is work in progress. However, our study readily provides valuable insights to how OAE can alter plankton dynamics and biogeochemistry. Our modelling study first focuses at a local site where time series data are available (European Station for Time series in the Ocean Canary Islands ESTOC), including measurements of pH, concentrations of total alkalinity, dissolved inorganic carbon (DIC), chlorophyll-a and dissolved inorganic nitrogen (DIN). These observational data were made available by Andres Cianca (personal communication, PLOCAN, Spain), Melchor Gonzalez and Magdalena Santana Casiano (personal communication, Universidad de Las Palmas de Gran Canaria). The choice of this location was underpinned by the fact that the first OAE mesocosm experiment was conducted on the Canary Island Gran Canaria, which will facilitate synthesizing our modelling approach with experimental findings. For our simulations at the ESTOC site in the Subtropical North Atlantic we found distinct, non-linear responses of NPP to different temporal modes of alkalinity deployment. In particular, phytoplankton bloom patterns displayed pronounced temporal phase shifts and changes in their amplitude. Notably, our simulations suggest that OAE can have a slightly stimulating effect on NPP, which is however variable, depending on the magnitude of OAE and the temporal mode of alkalinity addition. Furthermore, we find that increasing alkalinity perturbations can lead to a shift in phytoplankton community composition (towards coccolithophores), which even persists after OAE has stopped. In terms of CDR, we found that a decrease in efficiency with increasing magnitude of alkalinity addition, as well as substantial differences related to the timing of addition. Altogether, our results suggest that annual OAE during the right season (i.e. physical and biological conditions), could be a reasonable compromise in terms of logistical feasibility, efficiency of CDR and side-effects on marine biota. With respect to transferability to global models, the complex, non-linear responses of biological processes to OAE identified in our simulations do not allow for simple parameterizations that can easily adapted. Dedicated future work is required to transfer the observed responses at small spatiotemporal scales to the coarser resolution of global models.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2024-02-07
    Description: During the last ice age, the Northern Hemisphere experienced a series of abrupt millennial-scale climatic changes linked to variations in the strength of the Atlantic Meridional Overturning Circulation and sea-ice extent. However, our understanding of their impacts on decadal-scale climate variability in central Europe has been limited by the lack of high-resolution continental archives. Here, we present a near annual-resolution climate proxy record of central European temperature reconstructed from the Eifel maar lakes of Holzmaar and Auel in Germany, spanning the past 60,000 years. The lake sediments reveal a series of previously undocumented multidecadal climate cycles of around 20 to 150 years that persisted through the last glacial cycle. The periodicity of these cycles suggests that they are related to the Atlantic multidecadal climate oscillations found in the instrumental record and in other climate archives during the Holocene. Our record shows that multidecadal variability in central Europe was strong during all warm interstadials, but was substantially muted during all cold stadial periods. We suggest that this decrease in multidecadal variability was the result of the atmospheric circulation changes associated with the weakening of the Atlantic Meridional Overturning Circulation and the expansion of North Atlantic sea-ice cover during the coldest parts of the last ice age.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: other
    Format: text
    Format: other
    Format: other
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2024-02-07
    Description: During the last glacial interval, marine sediments recorded reduced current ventilation within the ocean interior below water depths of approximately 〉1,500 m [B. A. Hoogakker et al., Nat. Geosci. 8, 40–43 (2015)]. The degree of the associated oxygen depletion in the different ocean basins, however, is still poorly constrained. Here, we present sedimentary records of redox-sensitive metals from the southwest African margin. These records show evidence of continuous bottom water anoxia in the eastern South Atlantic during the last glaciation that led to enhanced carbon burial over a prolonged period of time. Our geochemical data indicate that upwelling-related productivity and the associated oxygen minimum zone in the eastern South Atlantic shifted far seaward during the last glacial period and only slowly retreated during deglaciation times. While increased productivity during the last ice age may have contributed to oxygen depletion in bottom waters, especially on the upper slope, slow-down of the Late Quaternary deep water circulation pattern [Rutberg et al., Nature 405, 935–938 (2000)] appears to be the ultimate driver of anoxic conditions in deep waters.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2024-02-07
    Description: Animal gastrointestinal tracts harbor a microbiome that is integral to host function, yet species from diverse phyla have evolved a reduced digestive system or lost it completely. Whether such changes are associated with alterations in the diversity and/or abundance of the microbiome remains an untested hypothesis in evolutionary symbiosis. Here, using the life history transition from planktotrophy (feeding) to lecithotrophy (nonfeeding) in the sea urchin Heliocidaris, we demonstrate that the lack of a functional gut corresponds with a reduction in microbial community diversity and abundance as well as the association with a diet-specific microbiome. We also determine that the lecithotroph vertically transmits a Rickettsiales that may complement host nutrition through amino acid biosynthesis and influence host reproduction. Our results indicate that the evolutionary loss of a functional gut correlates with a reduction in the microbiome and the association with an endosymbiont. Symbiotic transitions can therefore accompany life history transitions in the evolution of developmental strategies.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2024-02-07
    Description: Significance: A central goal in invasion genomics is to identify and determine the mechanisms that underlie the successful colonization, establishment, and subsequent range expansion of invasive populations of nonindigenous species. Using a whole-genome approach, we evaluate the importance of genetic diversity for the successful establishment of nonindigenous species. Our study shows that genetic diversity per se is not the major factor driving invasions, since we observed all possible scenarios with invasive populations showing reduced, similar but also increased, genetic diversity relative to the native population. Using coalescent methods, we reconstruct the demographic history of the invasion and infer the source population of each invasion event, which shows that propagule pressure and multiple introductions play an important role in determining invasion success. Abstract: Invasion rates have increased in the past 100 y irrespective of international conventions. What characterizes a successful invasion event? And how does genetic diversity translate into invasion success? Employing a whole-genome perspective using one of the most successful marine invasive species world-wide as a model, we resolve temporal invasion dynamics during independent invasion events in Eurasia. We reveal complex regionally independent invasion histories including cases of recurrent translocations, time-limited translocations, and stepping-stone range expansions with severe bottlenecks within the same species. Irrespective of these different invasion dynamics, which lead to contrasting patterns of genetic diversity, all nonindigenous populations are similarly successful. This illustrates that genetic diversity, per se, is not necessarily the driving force behind invasion success. Other factors such as propagule pressure and repeated introductions are an important contribution to facilitate successful invasions. This calls into question the dominant paradigm of the genetic paradox of invasions, i.e., the successful establishment of nonindigenous populations with low levels of genetic diversity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2024-02-07
    Description: With over 18,000 species, the Acanthomorpha, or spiny-rayed fishes, form the largest and arguably most diverse radiation of vertebrates. One of the key novelties that contributed to their evolutionary success are the spiny rays in their fins that serve as a defense mechanism. We investigated the patterning mechanisms underlying the differentiation of median fin Anlagen into discrete spiny and soft rayed domains during the ontogeny of the direct-developing cichlid fish Astatotilapia burtoni. Distinct transcription factor signatures characterize these two fin domains, whereby mutually exclusive expression of hoxa13a/b with alx4a/b and tbx2b marks the spine to soft-ray boundary. The soft-ray domain is established by BMP inhibition via gremlin1b, which synergizes in the posterior fin with shh secreted from a zone of polarizing activity. Modulation of BMP signaling by chemical inhibition or gremlin1b CRISPR/Cas9 knockout induces homeotic transformations of spines into soft rays and vice versa. The expression of spine and soft-ray genes in nonacanthomorph fins indicates that a combination of exaptation and posterior expansion of an ancestral developmental program for the anterior fin margin allowed the evolution of robustly individuated spiny and soft-rayed domains. We propose that a repeated exaptation of such pattern might underly the convergent evolution of anterior spiny fin elements across fishes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, d10.3 . OceanNETs, 2 pp.
    Publication Date: 2021-03-11
    Description: This document provides information on the application of ethical standards and guidelines of Horizon2020 in OceanNETs concerning work conducted outside of EU- countries.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, d9.1 . OceanNETs, 35 pp.
    Publication Date: 2021-03-02
    Description: The aim of this deliverable is to establish a strategy for the proper exploitation and dissemination of the results obtained in OceanNETs. We develop guidelines for knowledge management and protection as well as dissemination goals and also identify the target audiences and define the relevant communication channels and tools.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D10.1 . OceanNETs, 40 pp.
    Publication Date: 2021-03-18
    Description: The purpose of this deliverable is to provide detailed information on the informed consent procedures that will be implemented for the participation of humans, including the information about the management of informed consent forms. This pertains to work conducted in WP 2 Governance, policy, and international law, WP 3 Public perception, WP 6 Ocean alkalinization case studies, and WP 7 Stakeholder Dialogue and the Provision of Knowledge, which involves the collection of information from laypersons and stakeholders.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, D10.2 . OceanNETs, 12 pp.
    Publication Date: 2021-03-18
    Description: This deliverable explains how the OceanNETs project ensures that it is compliant with data protection requirements. It outlines the methodology chosen to ensure compliance, as well as providing an overview of relevant tasks, and the measures employed to ensure compliance.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNets Deliverable, d9.2 . OceanNETs, 5 pp.
    Publication Date: 2021-03-02
    Description: This deliverable presents the list of International Scientific Advisory Board (ISAB) members, which is composed of international distinguished scientists to ensure external evaluation of the project and link to other programs and activities inside and outside Europe. The Terms of Reference list establishes the purpose and responsibilities of the ISAB.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    facet.materialart.
    Unknown
    Springer Nature
    In:  In: Encyclopedia of Solid Earth Geophysics. , ed. by Gupta, H. Encyclopedia of Earth Sciences Series . Springer Nature, Cham, Switzerland, , 11 pp. ISBN 978-3-030-10475-7
    Publication Date: 2021-02-10
    Description: The Trans-European Suture Zone (TESZ) is the transition zone from the Precambrian East European Craton in the north and east to the younger Phanerozoic mobile belts to the south and west. It is the most prominent lithospheric tectonic feature of Europe. The term Trans-European Suture Zone was only adapted around year 2000 during the Pan-European EUROPROBE program of the European Science Foundation. Until then, parts of the zone were termed Teisseyre-Tornquist Zone, Sorgenfrei-Tornquist Zone, Trans-European Fault, and Tornquist Fan.
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    facet.materialart.
    Unknown
    OceanNETs
    In:  OceanNETs, 13 pp.
    Publication Date: 2021-04-27
    Description: This is the data management plan for the research project OceanNETs. It compiles OceanNETs research data output and describes the data handling during and after the projects duration with the aim to make OceanNETs research data FAIR – sustainably available for the scientific community. This data management plan is a living document; it will be continously developed in close cooperation with the consortium members throughout the project duration.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-03-02
    Description: This document describes the GEOMAR data portal used by the data management team to make data openly accessible that do not fit into a specialized repository.
    Type: Report , NonPeerReviewed , info:eu-repo/semantics/book
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2023-02-08
    Description: Habitat heterogeneity and species diversity are often linked. On the deep seafloor, sediment variability and hard-substrate availability influence geographic patterns of species richness and turnover. The assumption of a generally homogeneous, sedimented abyssal seafloor is at odds with the fact that the faunal diversity in some abyssal regions exceeds that of shallow-water environments. Here we show, using a ground-truthed analysis of multibeam sonar data, that the deep seafloor may be much rockier than previously assumed. A combination of bathymetry data, ruggedness, and backscatter from a trans-Atlantic corridor along the Vema Fracture Zone, covering crustal ages from 0 to 100 Ma, show rock exposures occurring at all crustal ages. Extrapolating to the whole Atlantic, over 260,000 km2 of rock habitats potentially occur along Atlantic fracture zones alone, significantly increasing our knowledge about abyssal habitat heterogeneity. This implies that sampling campaigns need to be considerably more sophisticated than at present to capture the full deep-sea habitat heterogeneity and biodiversity.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2023-02-08
    Description: The impact of the ongoing anthropogenic warming on the Arctic Ocean sea ice is ascertained and closely monitored. However, its long-term fate remains an open question as its natural variability on centennial to millennial timescales is not well documented. Here, we use marine sedimentary records to reconstruct Arctic sea-ice fluctuations. Cores collected along the Lomonosov Ridge that extends across the Arctic Ocean from northern Greenland to the Laptev Sea were radiocarbon dated and analyzed for their micropaleontological and palynological contents, both bearing information on the past sea-ice cover. Results demonstrate that multiyear pack ice remained a robust feature of the western and central Lomonosov Ridge and that perennial sea ice remained present throughout the present interglacial, even during the climate optimum of the middle Holocene that globally peaked ∼6,500 y ago. In contradistinction, the southeastern Lomonosov Ridge area experienced seasonally sea-ice-free conditions, at least, sporadically, until about 4,000 y ago. They were marked by relatively high phytoplanktonic productivity and organic carbon fluxes at the seafloor resulting in low biogenic carbonate preservation. These results point to contrasted west–east surface ocean conditions in the Arctic Ocean, not unlike those of the Arctic dipole linked to the recent loss of Arctic sea ice. Hence, our data suggest that seasonally ice-free conditions in the southeastern Arctic Ocean with a dominant Arctic dipolar pattern, may be a recurrent feature under “warm world” climate.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Format: other
    Format: other
    Format: other
    Format: other
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2023-02-08
    Description: A fundamental problem for the evolution of pregnancy, the most specialized form of parental investment among vertebrates, is the rejection of the nonself-embryo. Mammals achieve immunological tolerance by down-regulating both major histocompatibility complex pathways (MHC I and II). Although pregnancy has evolved multiple times independently among vertebrates, knowledge of associated immune system adjustments is restricted to mammals. All of them (except monotremata) display full internal pregnancy, making evolutionary reconstructions within the class mammalia meaningless. Here, we study the seahorse and pipefish family (syngnathids) that have evolved male pregnancy across a gradient from external oviparity to internal gestation. We assess how immunological tolerance is achieved by reconstruction of the immune gene repertoire in a comprehensive sample of 12 seahorse and pipefish genomes along the “male pregnancy” gradient together with expression patterns of key immune and pregnancy genes in reproductive tissues. We found that the evolution of pregnancy coincided with a modification of the adaptive immune system. Divergent genomic rearrangements of the MHC II pathway among fully pregnant species were identified in both genera of the syngnathids: The pipefishes (Syngnathus) displayed loss of several genes of the MHC II pathway while seahorses (Hippocampus) featured a highly divergent invariant chain (CD74). Our findings suggest that a trade-off between immunological tolerance and embryo rejection accompanied the evolution of unique male pregnancy. That pipefishes survive in an ocean of microbes without one arm of the adaptive immune defense suggests a high degree of immunological flexibility among vertebrates, which may advance our understanding of immune-deficiency diseases.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2023-02-08
    Description: Assessment of the global budget of the greenhouse gas nitrous oxide ([Formula: see text]O) is limited by poor knowledge of the oceanic [Formula: see text]O flux to the atmosphere, of which the magnitude, spatial distribution, and temporal variability remain highly uncertain. Here, we reconstruct climatological [Formula: see text]O emissions from the ocean by training a supervised learning algorithm with over 158,000 [Formula: see text]O measurements from the surface ocean-the largest synthesis to date. The reconstruction captures observed latitudinal gradients and coastal hot spots of [Formula: see text]O flux and reveals a vigorous global seasonal cycle. We estimate an annual mean [Formula: see text]O flux of 4.2 ± 1.0 Tg N[Formula: see text], 64% of which occurs in the tropics, and 20% in coastal upwelling systems that occupy less than 3% of the ocean area. This [Formula: see text]O flux ranges from a low of 3.3 ± 1.3 Tg N[Formula: see text] in the boreal spring to a high of 5.5 ± 2.0 Tg N[Formula: see text] in the boreal summer. Much of the seasonal variations in global [Formula: see text]O emissions can be traced to seasonal upwelling in the tropical ocean and winter mixing in the Southern Ocean. The dominant contribution to seasonality by productive, low-oxygen tropical upwelling systems (〉75%) suggests a sensitivity of the global [Formula: see text]O flux to El Niño-Southern Oscillation and anthropogenic stratification of the low latitude ocean. This ocean flux estimate is consistent with the range adopted by the Intergovernmental Panel on Climate Change, but reduces its uncertainty by more than fivefold, enabling more precise determination of other terms in the atmospheric [Formula: see text]O budget.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2023-02-08
    Description: Climate-driven depletion of ocean oxygen strongly impacts the global cycles of carbon and nutrients as well as the survival of many animal species. One of the main uncertainties in predicting changes to marine oxygen levels is the regulation of the biological respiration demand associated with the biological pump. Derived from the Redfield ratio, the molar ratio of oxygen to organic carbon consumed during respiration (i.e., the respiration quotient, r−O2:C) is consistently assumed constant but rarely, if ever, measured. Using a prognostic Earth system model, we show that a 0.1 increase in the respiration quotient from 1.0 leads to a 2.3% decline in global oxygen, a large expansion of low-oxygen zones, additional water column denitrification of 38 Tg N/y, and the loss of fixed nitrogen and carbon production in the ocean. We then present direct chemical measurements of r−O2:C using a Pacific Ocean meridional transect crossing all major surface biome types. The observed r−O2:C has a positive correlation with temperature, and regional mean values differ significantly from Redfield proportions. Finally, an independent global inverse model analysis constrained with nutrients, oxygen, and carbon concentrations supports a positive temperature dependence of r−O2:C in exported organic matter. We provide evidence against the common assumption of a static biological link between the respiration of organic carbon and the consumption of oxygen. Furthermore, the model simulations suggest that a changing respiration quotient will impact multiple biogeochemical cycles and that future warming can lead to more intense deoxygenation than previously anticipated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2023-02-08
    Description: The ocean is our planet’s largest life-support system. It stabilizes climate; stores carbon; produces oxygen; nurtures biodiversity; directly supports human well-being through food, mineral, and energy resources; and provides cultural and recreational services. The value of the ocean economy speaks to its importance: The Organization for Economic Cooperation and Development (OECD) estimates that by 2030, $3 trillion USD will be generated annually from ocean sectors such as transportation, fishing, tourism, and energy (1). Unsustainable resource extraction, pollution, climate change, and habitat destruction are on the rise and affecting many parts of the world’s oceans (2). The ocean is rapidly changing, and yet the ways in which these changes will play out are not yet clear.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 116 (36). pp. 17934-17942.
    Publication Date: 2022-01-31
    Description: Plastid endosymbiosis has been a major force in the evolution of eukaryotic cellular complexity, but how endosymbionts are integrated is still poorly understood at a mechanistic level. Dinoflagellates, an ecologically important protist lineage, represent a unique model to study this process because dinoflagellate plastids have repeatedly been reduced, lost, and replaced by new plastids, leading to a spectrum of ages and integration levels. Here we describe deep-transcriptomic analyses of the Antarctic Ross Sea dinoflagellate (RSD), which harbors long-term but temporary kleptoplasts stolen from haptophyte prey, and is closely related to dinoflagellates with fully integrated plastids derived from different haptophytes. In some members of this lineage, called the Kareniaceae, their tertiary haptophyte plastids have crossed a tipping point to stable integration, but RSD has not, and may therefore reveal the order of events leading up to endosymbiotic integration. We show that RSD has retained its ancestral secondary plastid and has partitioned functions between this plastid and the kleptoplast. It has also obtained genes for kleptoplast-targeted proteins via horizontal gene transfer (HGT) that are not derived from the kleptoplast lineage. Importantly, many of these HGTs are also found in the related species with fully integrated plastids, which provides direct evidence that genetic integration preceded organelle fixation. Finally, we find that expression of kleptoplast-targeted genes is unaffected by environmental parameters, unlike prey-encoded homologs, suggesting that kleptoplast-targeted HGTs have adapted to posttranscriptional regulation mechanisms of the host.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2022-01-31
    Description: Significance: Although viruses are well-characterized regulators of eukaryotic algae, little is known about those infecting unicellular predators in oceans. We report the largest marine virus genome yet discovered, found in a wild predatory choanoflagellate sorted away from other Pacific microbes and pursued using integration of cultivation-independent and laboratory methods. The giant virus encodes nearly 900 proteins, many unlike known proteins, others related to cellular metabolism and organic matter degradation, and 3 type-1 rhodopsins. The viral rhodopsin that is most abundant in ocean metagenomes, and also present in an algal virus, pumps protons when illuminated, akin to cellular rhodopsins that generate a proton-motive force. Giant viruses likely provision multiple host species with photoheterotrophic capacities, including predatory unicellular relatives of animals. Abstract: Giant viruses are remarkable for their large genomes, often rivaling those of small bacteria, and for having genes thought exclusive to cellular life. Most isolated to date infect nonmarine protists, leaving their strategies and prevalence in marine environments largely unknown. Using eukaryotic single-cell metagenomics in the Pacific, we discovered a Mimiviridae lineage of giant viruses, which infects choanoflagellates, widespread protistan predators related to metazoans. The ChoanoVirus genomes are the largest yet from pelagic ecosystems, with 442 of 862 predicted proteins lacking known homologs. They are enriched in enzymes for modifying organic compounds, including degradation of chitin, an abundant polysaccharide in oceans, and they encode 3 divergent type-1 rhodopsins (VirR) with distinct evolutionary histories from those that capture sunlight in cellular organisms. One (VirRDTS) is similar to the only other putative rhodopsin from a virus (PgV) with a known host (a marine alga). Unlike the algal virus, ChoanoViruses encode the entire pigment biosynthesis pathway and cleavage enzyme for producing the required chromophore, retinal. We demonstrate that the rhodopsin shared by ChoanoViruses and PgV binds retinal and pumps protons. Moreover, our 1.65-Å resolved VirRDTS crystal structure and mutational analyses exposed differences from previously characterized type-1 rhodopsins, all of which come from cellular organisms. Multiple VirR types are present in metagenomes from across surface oceans, where they are correlated with and nearly as abundant as a canonical marker gene from Mimiviridae. Our findings indicate that light-dependent energy transfer systems are likely common components of giant viruses of photosynthetic and phagotrophic unicellular marine eukaryotes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2022-01-31
    Description: Benthic foraminifera populate a diverse range of marine habitats. Their ability to use alternative electron acceptors—nitrate (NO3−) or oxygen (O2)—makes them important mediators of benthic nitrogen cycling. Nevertheless, the metabolic scaling of the two alternative respiration pathways and the environmental determinants of foraminiferal denitrification rates are yet unknown. We measured denitrification and O2 respiration rates for 10 benthic foraminifer species sampled in the Peruvian oxygen minimum zone (OMZ). Denitrification and O2 respiration rates significantly scale sublinearly with the cell volume. The scaling is lower for O2 respiration than for denitrification, indicating that NO3− metabolism during denitrification is more efficient than O2 metabolism during aerobic respiration in foraminifera from the Peruvian OMZ. The negative correlation of the O2 respiration rate with the surface/volume ratio is steeper than for the denitrification rate. This is likely explained by the presence of an intracellular NO3− storage in denitrifying foraminifera. Furthermore, we observe an increasing mean cell volume of the Peruvian foraminifera, under higher NO3− availability. This suggests that the cell size of denitrifying foraminifera is not limited by O2 but rather by NO3− availability. Based on our findings, we develop a mathematical formulation of foraminiferal cell volume as a predictor of respiration and denitrification rates, which can further constrain foraminiferal biogeochemical cycling in biogeochemical models. Our findings show that NO3− is the preferred electron acceptor in foraminifera from the OMZ, where the foraminiferal contribution to denitrification is governed by the ratio between NO3− and O2.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2022-01-31
    Description: Significance During the Holocene (11,600 y ago to present), northern peatlands accumulated significant C stocks over millennia. However, virtually nothing is known about peatlands that are no longer in the landscape, including ones formed prior to the Holocene: Where were they, when did they form, and why did they disappear? We used records of peatlands buried by mineral sediments for a reconstruction of peat-forming wetlands for the past 130,000 y. Northern peatlands expanded across high latitudes during warm periods and were buried during periods of glacial advance in northern latitudes. Thus, peat accumulation and burial represent a key long-term C storage mechanism in the Earth system. Abstract Glacial−interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (〉40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 115 (8). pp. 1754-1759.
    Publication Date: 2021-02-08
    Description: Ocean acidification (OA) is considered an important threat to coral reef ecosystems, because it reduces the availability of carbonate ions that reef-building corals need to produce their skeletons. However, while theory predicts that coral calcification rates decline as carbonate ion concentrations decrease, this prediction is not consistently borne out in laboratory manipulation experiments or in studies of corals inhabiting naturally low-pH reefs today. The skeletal growth of corals consists of two distinct processes: extension (upward growth) and densification (lateral thickening). Here, we show that skeletal density is directly sensitive to changes in seawater carbonate ion concentration and thus, to OA, whereas extension is not. We present a numerical model of Porites skeletal growth that links skeletal density with the external seawater environment via its influence on the chemistry of coral calcifying fluid. We validate the model using existing coral skeletal datasets from six Porites species collected across five reef sites and use this framework to project the impact of 21st century OA on Porites skeletal density across the global tropics. Our model predicts that OA alone will drive up to 20.3 ± 5.4% decline in the skeletal density of reef-building Porites corals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 115 (21). pp. 5365-5370.
    Publication Date: 2021-02-08
    Description: The Pacific hosts the largest oxygen minimum zones (OMZs) in the world ocean, which are thought to intensify and expand under future climate change, with significant consequences for marine ecosystems, biogeochemical cycles, and fisheries. At present, no deep ventilation occurs in the North Pacific due to a persistent halocline, but relatively better-oxygenated subsurface North Pacific Intermediate Water (NPIW) mitigates OMZ development in lower latitudes. Over the past decades, instrumental data show decreasing oxygenation in NPIW; however, long-term variations in middepth ventilation are potentially large, obscuring anthropogenic influences against millennial-scale natural background shifts. Here, we use paleoceanographic proxy evidence from the Okhotsk Sea, the foremost North Pacific ventilation region, to show that its modern oxygenated pattern is a relatively recent feature, with little to no ventilation before six thousand years ago, constituting an apparent Early–Middle Holocene (EMH) threshold or “tipping point.” Complementary paleomodeling results likewise indicate a warmer, saltier EMH NPIW, different from its modern conditions. During the EMH, the Okhotsk Sea switched from a modern oxygenation source to a sink, through a combination of sea ice loss, higher water temperatures, and remineralization rates, inhibiting ventilation. We estimate a strongly decreased EMH NPIW oxygenation of ∼30 to 50%, and increased middepth Pacific nutrient concentrations and carbon storage. Our results (i) imply that under past or future warmer-than-present conditions, oceanic biogeochemical feedback mechanisms may change or even switch direction, and (ii) provide constraints on the high-latitude North Pacific’s influence on mesopelagic ventilation dynamics, with consequences for large oceanic regions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2023-02-10
    Description: Microbial communities often exhibit incredible taxonomic diversity, raising questions regarding the mechanisms enabling species coexistence and the role of this diversity in community functioning. On the one hand, many coexisting but taxonomically distinct microorganisms can encode the same energy-yielding metabolic functions, and this functional redundancy contrasts with the expectation that species should occupy distinct metabolic niches. On the other hand, the identity of taxa encoding each function can vary substantially across space or time with little effect on the function, and this taxonomic variability is frequently thought to result from ecological drift between equivalent organisms. Here, we synthesize the powerful paradigm emerging from these two patterns, connecting the roles of function, functional redundancy and taxonomy in microbial systems. We conclude that both patterns are unlikely to be the result of ecological drift, but are inevitable emergent properties of open microbial systems resulting mainly from biotic interactions and environmental and spatial processes.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2020-02-06
    Description: Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15–46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800–1066 CE) and subsequent medieval (1066–1280 CE) Atlantic cod (Gadus morhua) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2020-06-25
    Description: Recognition that evolution operates on the same timescale as ecological processes has motivated growing interest in eco-evolutionary dynamics. Nonetheless, generating sufficient data to test predictions about eco-evolutionary dynamics has proved challenging, particularly in natural contexts. Here we argue that genomic data can be integrated into the study of eco-evolutionary dynamics in ways that deepen our understanding of the interplay between ecology and evolution. Specifically, we outline five major questions in the study of eco-evolutionary dynamics for which genomic data may provide answers. Although genomic data alone will not be sufficient to resolve these challenges, integrating genomic data can provide a more mechanistic understanding of the causes of phenotypic change, help elucidate the mechanisms driving eco-evolutionary dynamics, and lead to more accurate evolutionary predictions of eco-evolutionary dynamics in nature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2020-06-25
    Description: Although nearly all 2 °C scenarios use negative CO2 emission technologies, only relatively small investments are being made in them, and concerns are being raised regarding their large-scale use. If no explicit policy decisions are taken soon, however, their use will simply be forced on us to meet the Paris climate targets.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 114 (21). pp. 5355-5360.
    Publication Date: 2020-02-06
    Description: Continued warming of the Arctic Ocean in coming decades is projected to trigger the release of teragrams (1 Tg = 10(6) tons) of methane from thawing subsea permafrost on shallow continental shelves and dissociation of methane hydrate on upper continental slopes. On the shallow shelves (〈100 m water depth), methane released from the seafloor may reach the atmosphere and potentially amplify global warming. On the other hand, biological uptake of carbon dioxide (CO2) has the potential to offset the positive warming potential of emitted methane, a process that has not received detailed consideration for these settings. Continuous sea-air gas flux data collected over a shallow ebullitive methane seep field on the Svalbard margin reveal atmospheric CO2 uptake rates (-33,300 ± 7,900 μmol m(-2)⋅d(-1)) twice that of surrounding waters and ∼1,900 times greater than the diffusive sea-air methane efflux (17.3 ± 4.8 μmol m(-2)⋅d(-1)). The negative radiative forcing expected from this CO2 uptake is up to 231 times greater than the positive radiative forcing from the methane emissions. Surface water characteristics (e.g., high dissolved oxygen, high pH, and enrichment of (13)C in CO2) indicate that upwelling of cold, nutrient-rich water from near the seafloor accompanies methane emissions and stimulates CO2 consumption by photosynthesizing phytoplankton. These findings challenge the widely held perception that areas characterized by shallow-water methane seeps and/or strongly elevated sea-air methane flux always increase the global atmospheric greenhouse gas burden.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    Springer Nature
    In:  Nature Ecology & Evolution, 1 (Article number: 0116).
    Publication Date: 2020-06-25
    Description: Marine microscopic plastic (microplastic) debris is a modern societal issue, illustrating the challenge of balancing the convenience of plastic in daily life with the prospect of causing ecological harm by careless disposal. Here we develop the concept of microplastic as a complex, dynamic mixture of polymers and additives, to which organic material and contaminants can successively bind to form an ‘ecocorona’, increasing the density and surface charge of particles and changing their bioavailability and toxicity. Chronic exposure to microplastic is rarely lethal, but can adversely affect individual animals, reducing feeding and depleting energy stores, with knock-on effects for fecundity and growth. We explore the extent to which ecological processes could be impacted, including altered behaviours, bioturbation and impacts on carbon flux to the deep ocean. We discuss how microplastic compares with other anthropogenic pollutants in terms of ecological risk, and consider the role of science and society in tackling this global issue in the future.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    facet.materialart.
    Unknown
    Springer Nature
    In:  Nature Reviews Cancer, 17 (9). pp. 528-542.
    Publication Date: 2020-06-24
    Description: Autophagy is a mechanism by which cellular material is delivered to lysosomes for degradation, leading to the basal turnover of cell components and providing energy and macromolecular precursors. Autophagy has opposing, context-dependent roles in cancer, and interventions to both stimulate and inhibit autophagy have been proposed as cancer therapies. This has led to the therapeutic targeting of autophagy in cancer to be sometimes viewed as controversial. In this Review, we suggest a way forwards for the effective targeting of autophagy by understanding the context-dependent roles of autophagy and by capitalizing on modern approaches to clinical trial design.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS), 114 (33). pp. 8716-8721.
    Publication Date: 2020-02-06
    Description: Connections between glaciation, chemical weathering, and the global carbon cycle could steer the evolution of global climate over geologic time, but even the directionality of feedbacks in this system remain to be resolved. Here, we assemble a compilation of hydrochemical data from glacierized catchments, use this data to evaluate the dominant chemical reactions associated with glacial weathering, and explore the implications for long-term geochemical cycles. Weathering yields from catchments in our compilation are higher than the global average, which results, in part, from higher runoff in glaciated catchments. Our analysis supports the theory that glacial weathering is characterized predominantly by weathering of trace sulfide and carbonate minerals. To evaluate the effects of glacial weathering on atmospheric pCO2, we use a solute mixing model to predict the ratio of alkalinity to dissolved inorganic carbon (DIC) generated by weathering reactions. Compared with nonglacial weathering, glacial weathering is more likely to yield alkalinity/DIC ratios less than 1, suggesting that enhanced sulfide oxidation as a result of glaciation may act as a source of CO2 to the atmosphere. Back-of-the-envelope calculations indicate that oxidative fluxes could change ocean–atmosphere CO2 equilibrium by 25 ppm or more over 10 ky. Over longer timescales, CO2 release could act as a negative feedback, limiting progress of glaciation, dependent on lithology and the concentration of atmospheric O2. Future work on glaciation–weathering–carbon cycle feedbacks should consider weathering of trace sulfide minerals in addition to silicate minerals.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2020-02-06
    Description: Significance: Cold and dry glacial-state climate conditions persisted in the Southern Hemisphere until approximately 17.7 ka, when paleoclimate records show a largely unexplained sharp, nearly synchronous acceleration in deglaciation. Detailed measurements in Antarctic ice cores document exactly at that time a unique, ∼192-y series of massive halogen-rich volcanic eruptions geochemically attributed to Mount Takahe in West Antarctica. Rather than a coincidence, we postulate that halogen-catalyzed stratospheric ozone depletion over Antarctica triggered large-scale atmospheric circulation and hydroclimate changes similar to the modern Antarctic ozone hole, explaining the synchronicity and abruptness of accelerated Southern Hemisphere deglaciation. Abstract: Glacial-state greenhouse gas concentrations and Southern Hemisphere climate conditions persisted until ∼17.7 ka, when a nearly synchronous acceleration in deglaciation was recorded in paleoclimate proxies in large parts of the Southern Hemisphere, with many changes ascribed to a sudden poleward shift in the Southern Hemisphere westerlies and subsequent climate impacts. We used high-resolution chemical measurements in the West Antarctic Ice Sheet Divide, Byrd, and other ice cores to document a unique, ∼192-y series of halogen-rich volcanic eruptions exactly at the start of accelerated deglaciation, with tephra identifying the nearby Mount Takahe volcano as the source. Extensive fallout from these massive eruptions has been found 〉2,800 km from Mount Takahe. Sulfur isotope anomalies and marked decreases in ice core bromine consistent with increased surface UV radiation indicate that the eruptions led to stratospheric ozone depletion. Rather than a highly improbable coincidence, circulation and climate changes extending from the Antarctic Peninsula to the subtropics—similar to those associated with modern stratospheric ozone depletion over Antarctica—plausibly link the Mount Takahe eruptions to the onset of accelerated Southern Hemisphere deglaciation ∼17.7 ka.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2023-07-11
    Description: Phytoplankton photosynthesis is a critical flux in the carbon cycle, accounting for approximately 40% of the carbon dioxide fixed globally on an annual basis and fuelling the productivity of aquatic food webs. However, rapid evolutionary responses of phytoplankton to warming remain largely unexplored, particularly outside the laboratory, where multiple selection pressures can modify adaptation to environmental change. Here, we use a decade-long experiment in outdoor mesocosms to investigate mechanisms of adaptation to warming (+4 °C above ambient temperature) in the green alga Chlamydomonas reinhardtii, in naturally assembled communities. Isolates from warmed mesocosms had higher optimal growth temperatures than their counterparts from ambient treatments. Consequently, warm-adapted isolates were stronger competitors at elevated temperature and experienced a decline in competitive fitness in ambient conditions, indicating adaptation to local thermal regimes. Higher competitive fitness in the warmed isolates was linked to greater photosynthetic capacity and reduced susceptibility to photoinhibition. These findings suggest that adaptive responses to warming in phytoplankton could help to mitigate projected declines in aquatic net primary production by increasing rates of cellular net photosynthesis.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2020-06-24
    Description: Nitrogen fixation — the reduction of dinitrogen (N2) gas to biologically available nitrogen (N) — is an important source of N for terrestrial and aquatic ecosystems. In terrestrial environments, N2-fixing symbioses involve multicellular plants, but in the marine environment these symbioses occur with unicellular planktonic algae. An unusual symbiosis between an uncultivated unicellular cyanobacterium (UCYN-A) and a haptophyte picoplankton alga was recently discovered in oligotrophic oceans. UCYN-A has a highly reduced genome, and exchanges fixed N for fixed carbon with its host. This symbiosis bears some resemblance to symbioses found in freshwater ecosystems. UCYN-A shares many core genes with the 'spheroid bodies' of Epithemia turgida and the endosymbionts of the amoeba Paulinella chromatophora. UCYN-A is widely distributed, and has diversified into a number of sublineages that could be ecotypes. Many questions remain regarding the physical and genetic mechanisms of the association, but UCYN-A is an intriguing model for contemplating the evolution of N2-fixing organelles.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-02-01
    Description: A major percentage of fixed nitrogen (N) loss in the oceans occurs within nitrite-rich oxygen minimum zones (OMZs) via denitrification and anammox. It remains unclear to what extent ammonium and nitrite oxidation co-occur, either supplying or competing for substrates involved in nitrogen loss in the OMZ core. Assessment of the oxygen (O2) sensitivity of these processes down to the O2 concentrations present in the OMZ core (〈10 nmol⋅L−1) is therefore essential for understanding and modeling nitrogen loss in OMZs. We determined rates of ammonium and nitrite oxidation in the seasonal OMZ off Concepcion, Chile at manipulated O2 levels between 5 nmol⋅L−1 and 20 μmol⋅L−1. Rates of both processes were detectable in the low nanomolar range (5–33 nmol⋅L−1 O2), but demonstrated a strong dependence on O2 concentrations with apparent half-saturation constants (Kms) of 333 ± 130 nmol⋅L−1 O2 for ammonium oxidation and 778 ± 168 nmol⋅L−1 O2 for nitrite oxidation assuming one-component Michaelis–Menten kinetics. Nitrite oxidation rates, however, were better described with a two-component Michaelis–Menten model, indicating a high-affinity component with a Km of just a few nanomolar. As the communities of ammonium and nitrite oxidizers were similar to other OMZs, these kinetics should apply across OMZ systems. The high O2 affinities imply that ammonium and nitrite oxidation can occur within the OMZ core whenever O2 is supplied, for example, by episodic intrusions. These processes therefore compete with anammox and denitrification for ammonium and nitrite, thereby exerting an important control over nitrogen loss.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2022-09-20
    Description: The isotopic diversity of oceanic island basalts (OIB) is usually attributed to the influence, in their sources, of ancient material recycled into the mantle, although the nature, age, and quantities of this material remain controversial. The unradiogenic Pb isotope signature of the enriched mantle I (EM I) source of basalts from, for example, Pitcairn or Walvis Ridge has been variously attributed to recycled pelagic sediments, lower continental crust, or recycled subcontinental lithosphere. Our study helps resolve this debate by showing that Pitcairn lavas contain sulfides whose sulfur isotopic compositions are affected by mass-independent fractionation (S-MIF down to Δ33S = −0.8), something which is thought to have occurred on Earth only before 2.45 Ga, constraining the youngest possible age of the EM I source component. With this independent age constraint and a Monte Carlo refinement modeling of lead isotopes, we place the likely Pitcairn source age at 2.5 Ga to 2.6 Ga. The Pb, Sr, Nd, and Hf isotopic mixing arrays show that the Archean EM I material was poor in trace elements, resembling Archean sediment. After subduction, this Archean sediment apparently remained stored in the deep Earth for billions of years before returning to the surface as Pitcairn´s characteristic EM I signature. The presence of negative S-MIF in the deep mantle may also help resolve the problem of an apparent deficit of negative Δ33S anomalies so far found in surface reservoirs.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2023-12-13
    Description: Members of the archaeal phylum Bathyarchaeota are widespread and abundant in the energy-deficient marine subsurface sediments. However, their life strategies have remained largely elusive. Here, we provide genetic evidence that some lineages of Bathyarchaeota are acetogens, being capable of homoacetogenesis, a metabolism so far restricted to the domain Bacteria. Metabolic reconstruction based on genomic bins assembled from the metagenome of deep-sea subsurface sediments shows that the metabolism of some lineages of Bathyarchaeota is similar to that of bona fide bacterial homoacetogens, by having pathways for acetogenesis and for the fermentative utilization of a variety of organic substrates. Heterologous expression and activity assay of the acetate kinase gene ack from Bathyarchaeota, demonstrate further the capability of these Bathyarchaeota to grow as acetogens. The presence and expression of bathyarchaeotal genes indicative of active acetogenesis was also confirmed in Peru Margin subsurface sediments where Bathyarchaeota are abundant. The analyses reveal that this ubiquitous and abundant subsurface archaeal group has adopted a versatile life strategy to make a living under energy-limiting conditions. These findings further expand the metabolic potential of Archaea and argue for a revision of the role of Archaea in the carbon cycle of marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  PNAS Proceedings of the National Academy of Sciences of the United States of America, 112 (4). pp. 1089-1094.
    Publication Date: 2021-04-23
    Description: The biological carbon pump, which transports particulate organic carbon (POC) from the surface to the deep ocean, plays an important role in regulating atmospheric carbon dioxide (CO2) concentrations. We know very little about geographical variability in the remineralization depth of this sinking material and less about what controls such variability. Here we present previously unpublished profiles of mesopelagic POC flux derived from neutrally buoyant sediment traps deployed in the North Atlantic, from which we calculate the remineralization length scale for each site. Combining these results with corresponding data from the North Pacific, we show that the observed variability in attenuation of vertical POC flux can largely be explained by temperature, with shallower remineralization occurring in warmer waters. This is seemingly inconsistent with conclusions drawn from earlier analyses of deep-sea sediment trap and export flux data, which suggest lowest transfer efficiency at high latitudes. However, the two patterns can be reconciled by considering relatively intense remineralization of a labile fraction of material in warm waters, followed by efficient downward transfer of the remaining refractory fraction, while in cold environments, a larger labile fraction undergoes slower remineralization that continues over a longer length scale. Based on the observed relationship, future increases in ocean temperature will likely lead to shallower remineralization of POC and hence reduced storage of CO2 by the ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    National Academy of Sciences
    In:  Proceedings of the National Academy of Sciences of the United States of America (PNAS), 112 (26). pp. 8008-8012.
    Publication Date: 2019-03-05
    Description: Theoretical studies predict that competition for limited resources reduces biodiversity to the point of ecological instability, whereas strong predator/prey interactions enhance the number of coexisting species and limit fluctuations in abundances. In open ocean ecosystems, competition for low availability of essential nutrients results in relatively few abundant microbial species. The remarkable stability in overall cell abundance of the dominant photosynthetic cyanobacterium Prochlorococcus is assumed to reflect a simple food web structure strongly controlled by grazers and/or viruses. This hypothesized link between stability and ecological interactions, however, has been difficult to test with open ocean microbes because sampling methods commonly have poor temporal and spatial resolution. Here we use continuous techniques on two different winter-time cruises to show that Prochlorococcus cell production and mortality rates are tightly synchronized to the day/night cycle across the subtropical Pacific Ocean. In warmer waters, we observed harmonic oscillations in cell production and mortality rates, with a peak in mortality rate consistently occurring ∼6 h after the peak in cell production. Essentially no cell mortality was observed during daylight. Our results are best explained as a synchronized two-component trophic interaction with the per-capita rates of Prochlorococcus consumption driven either directly by the day/night cycle or indirectly by Prochlorococcus cell production. Light-driven synchrony of food web dynamics in which most of the newly produced Prochlorococcus cells are consumed each night likely enforces ecosystem stability across vast expanses of the open ocean. © 2015, National Academy of Sciences. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2022-09-20
    Description: No records exist to evaluate long-term pH dynamics in high-latitude oceans, which have the greatest probability of rapid acidification from anthropogenic CO2 emissions. We reconstructed both seasonal variability and anthropogenic change in seawater pH and temperature by using laser ablation high-resolution 2D images of stable boron isotopes (δ11B) on a long-lived coralline alga that grew continuously through the 20th century. Analyses focused on four multiannual growth segments. We show a long-term decline of 0.08 ± 0.01 pH units between the end of the 19th and 20th century, which is consistent with atmospheric CO2 records. Additionally, a strong seasonal cycle (∼0.22 pH units) is observed and interpreted as episodic annual pH increases caused by the consumption of CO2 during strong algal (kelp) growth in spring and summer. The rate of acidification intensifies from –0.006 ± 0.007 pH units per decade (between 1920s and 1960s) to –0.019 ± 0.009 pH units per decade (between 1960s and 1990s), and the episodic pH increases show a continuous shift to earlier times of the year throughout the centennial record. This is indicative of ecosystem shifts in shallow water algal productivity in this high-latitude habitat resulting from warming and acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...