ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (86)
  • GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel  (41)
  • Hoboken, USA  (39)
  • American Meteorological Society
  • Springer Nature
  • Taylor & Francis
  • 2020-2022  (85)
  • 1890-1899  (1)
Collection
Years
Year
  • 1
    Publication Date: 2021-06-28
    Description: A recent global meta‐analysis reported a decrease in terrestrial but increase in freshwater insect abundance and biomass (van Klink et al., Science 368, p. 417). The authors suggested that water quality has been improving, thereby challenging recent reports documenting drastic global declines in freshwater biodiversity. We raise two major concerns with the meta‐analysis and suggest that these account for the discrepancy with the declines reported elsewhere. First, total abundance and biomass alone are poor indicators of the status of freshwater insect assemblages, and the observed differences may well have been driven by the replacement of sensitive species with tolerant ones. Second, many of the datasets poorly represent global trends and reflect responses to local conditions or nonrandom site selection. We conclude that the results of the meta‐analysis should not be considered indicative of an overall improvement in the condition of freshwater ecosystems. This article is categorized under: Water and Life 〉 Conservation, Management, and Awareness
    Description: Relying on abundance or biomass and examining nonrepresentative datasets limits our ability to infer the condition of freshwater insect communities globally. Photo by Jeremy Monroe, Freshwaters Illustrated: a caddisfly larva from an Oregon Coastal stream, USA (Limnephilidae: Dicosmoecus sp.).
    Description: Federal Agency for Nature Conservation (BfN) http://dx.doi.org/10.13039/100010606
    Description: NSF Macrosystems Biology Program
    Description: Leibniz‐Gemeinschaft http://dx.doi.org/10.13039/501100001664
    Keywords: 577.6 ; freshwater ecosystems ; insect abundance ; long‐term research ; threats
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-01
    Description: Subtropical seagrass meadows play a major role in the coastal carbon cycle, but the nature of air–water CO2 exchanges over these ecosystems is still poorly understood. The complex physical forcing of air–water exchange in coastal waters challenges our ability to quantify bulk exchanges of CO2 and water (evaporation), emphasizing the need for direct measurements. We describe the first direct measurements of evaporation and CO2 flux over a calcifying seagrass meadow near Bob Allen Keys, Florida. Over the 78‐d study, CO2 emissions were 36% greater during the day than at night, and the site was a net CO2 source to the atmosphere of 0.27 ± 0.17 μmol m−2 s−1 (x̅ ± standard deviation). A quarter (23%) of the diurnal variability in CO2 flux was caused by the effect of changing water temperature on gas solubility. Furthermore, evaporation rates were ~ 10 times greater than precipitation, causing a 14% increase in salinity, a potential precursor of seagrass die‐offs. Evaporation rates were not correlated with solar radiation, but instead with air–water temperature gradient and wind shear. We also confirm the role of convective forcing on night‐time enhancement and day‐time suppression of gas transfer. At this site, temperature trends are regulated by solar heating, combined with shallow water depth and relatively consistent air temperature. Our findings indicate that evaporation and air–water CO2 exchange over shallow, tropical, and subtropical seagrass ecosystems may be fundamentally different than in submerged vegetated environments elsewhere, in part due to the complex physical forcing of coastal air–sea gas transfer.
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: National Science Foundation http://dx.doi.org/10.13039/100000001
    Keywords: 551.5 ; Florida ; Bob Allen Keys ; seagrass meadows ; air–water CO2 exchanges ; biometeorological measurements
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    John Wiley & Sons, Inc. | Hoboken, USA
    Publication Date: 2021-06-28
    Description: In this article, we review an array of positions in the contemporary literature that concern the moral reasons for vegan consumerism. We situate veganism within the broader field of ethical consumerism, present a variety of motivations and justifications for veganism, and discuss criticisms of vegan consumerism. The arguments presented in the article ultimately pertain to the question of whether concerns for animals, human rights, or climate justice entail strong moral reasons to adopt a vegan lifestyle. Additionally, we address issues of particular relevance for political philosophy, such as whether organized vegan consumer campaigns are a politically legitimate means to strive for structural change. We hope to show that there are anthropocentric, as well as animal‐centered, reasons that speak in favor of radically reformed human–animal relations, including diets that are at least predominantly plant‐based. This article is categorized under: Climate, Nature, and Ethics 〉 Ethics and Climate Change
    Description: Alexander von Humboldt‐Stiftung (Feodor Lynen Research Scholarship) http://dx.doi.org/10.13039/100005156
    Keywords: 304.2 ; animal ethics ; climate ethics ; climate justice ; ethical consumption ; veganism
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-16
    Description: Climate change imposes unusual long‐term trends in environmental conditions, plus some tremendous shifts in short‐term environmental variability, exerting additional stress on marine ecosystems. This paper describes an empirical method that aims to improve our understanding of the performance of benthic filter feeders experiencing changes in environmental conditions, such as temperature, on time scales of minutes to hours, especially during daily cycles or extreme events such as marine heatwaves or hypoxic upwelling. We describe the Fluorometer and Oximeter equipped Flow‐through Setup (FOFS), experimental design, and methodological protocols to evaluate the flood of data, enabling researchers to monitor important energy budget traits, including filtration and respiration of benthic filter‐feeders in response to fine‐tuned environmental variability. FOFS allows online recording of deviations in chlorophyll and dissolved oxygen concentrations induced by the study organism. Transparent data processing through Python scripts provides the possibility to adjust procedures to needs when working in different environmental contexts (e.g., temperature vs. pH, salinity, oxygen, biological cues) and with different filter‐feeding species. We successfully demonstrate the functionality of the method through recording responses of Baltic Sea blue mussels (Mytilus) during one‐day thermal cycles. This method practically provides a tool to help researchers exposing organisms to environmental variability for some weeks or months, to relate the observed long‐term performance responses to short‐term energy budget responses, and to explain their findings with the potential to generalize patterns. The method, therefore, allows a more detailed description of stress‐response relationships and the detection of species' tolerance limits.
    Description: Climate‐Biogeochemistry Interactions in the Tropical Ocean
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Exzellenzcluster Ozean der Zukunft http://dx.doi.org/10.13039/501100010783
    Description: GEOMAR Helmholtz‐Zentrum für Ozeanforschung Kiel http://dx.doi.org/10.13039/501100003153
    Description: Helmholtz‐Gemeinschaft http://dx.doi.org/10.13039/501100001656
    Description: Programme d’Investissements d’Avenir
    Description: Studienstiftung des Deutschen Volkes http://dx.doi.org/10.13039/501100004350
    Keywords: 578.77 ; benthic filter-feeders ; shallow-water marine habitats ; environmental changes ; monitoring energy budget responses
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-03
    Description: By interacting with radiation, clouds modulate the flow of energy through the Earth system, the circulation of the atmosphere, and regional climate. We review the impact of cloud‐radiation interactions for the atmospheric circulation in the present‐day climate, its internal variability and its response to climate change. After summarizing cloud‐controlling factors and cloud‐radiative effects, we clarify the scope and limits of the Clouds On‐Off Klimate Model Intercomparison Experiment (COOKIE) and cloud‐locking modeling methods. COOKIE showed that the presence of cloud‐radiative effects shapes the circulation in the present‐day climate in many important ways, including the width of the tropical rain belts and the position of the extratropical storm tracks. Cloud locking, in contrast, identified how clouds affect internal variability and the circulation response to global warming. This includes strong, but model‐dependent, shortwave and longwave cloud impacts on the El‐Nino Southern Oscillation, and the finding that most of the poleward circulation expansion in response to global warming can be attributed to radiative changes in clouds. We highlight the circulation impact of shortwave changes from low‐level clouds and longwave changes from rising high‐level clouds, and the contribution of these cloud changes to model differences in the circulation response to global warming. The review in particular draws attention to the role of cloud‐radiative heating within the atmosphere. We close by raising some open questions which, among others, concern the need for studying the cloud impact on regional scales and opportunities created by the next generation of global storm‐resolving models. This article is categorized under: Climate Models and Modeling 〉 Knowledge Generation with Models
    Description: Clouds interact with radiation. We review the role of cloud‐radiation interactions in shaping the atmospheric circulation and thus regional climate and climate change. Figure from Blue Marble Collection of NASA Visible Earth.
    Description: U.S. Department of Energy's Office of Biological & Environmental Research
    Description: U.S. National Science Foundation
    Description: NERC CIRCULATES project
    Description: FONA: Research for Sustainable Development
    Description: German Ministry of Education and Research (BMBF) http://dx.doi.org/10.13039/501100002347
    Keywords: 551.5 ; circulation ; climate and climate change ; clouds ; global models ; radiation
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-27
    Description: Freshwater ecosystems are hotspots of biodiversity. They are of major importance for humans because they provide vital ecosystem services. However, as humans tend to settle near freshwaters and coastal areas, these ecosystems are also over‐proportionally affected by anthropogenic stressors. Artificial light at night can occur as a form of environmental pollution, light pollution. Light pollution affects large areas on a worldwide scale, is growing exponentially in radiance and extent and can have diverse negative effects on flora, fauna and on human health. While the majority of ecological studies on artificial light at night covered terrestrial systems, the studies on aquatic light pollution have unraveled impact on aquatic organisms, ecosystem functions as well as land‐water‐interactions. Although monitoring of light pollution is routinely performed from space and supported by ground‐based measurements, the extent and the amount of artificial light at night affecting water bodies is still largely unknown. This information, however, is essential for the design of future laboratory and field experiments, to guide light planners and to give recommendations for light pollution regulations. We analyze this knowledge gap by reviewing night‐time light measurement techniques and discuss their current obstacles in the context of water bodies. We also provide an overview of light pollution studies in the aquatic context. Finally, we give recommendations on how comprehensive night‐time light measurements in aquatic systems, specifically in freshwater systems, should be designed in the future. This article is categorized under: Water and Life 〉 Stresses and Pressures on Ecosystems Water and Life 〉 Conservation, Management, and Awareness Water and Life 〉 Methods
    Description: Artificial light at night can occur as a form of environmental pollution, light pollution, which also affects aquatic systems. We identify a knowledge gap of insufficient data regarding the status quo of aquatic light pollution and provide a route to fill this gap with in‐situ measurements. image
    Description: European Cooperation in Science and Technology http://dx.doi.org/10.13039/501100000921
    Description: Leibniz Association http://dx.doi.org/10.13039/501100001664
    Description: Leibniz‐Institute of Freshwater Ecology and Inland Fisheries
    Keywords: 333.91 ; ALAN ; artificial light at night ; light measurement ; light pollution
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-06-16
    Description: Large areas of Europe, especially in the Alps, are covered by carbonate rocks and in many alpine regions, karst springs are important sources for drinking water supply. Because of their high variability and heterogeneity, the understanding of the hydrogeological functioning of karst aquifers is of particular importance for their protection and utilisation. Climate change and heavy rainfall events are major challenges in managing alpine karst aquifers which possess an enormous potential for future drinking water supply. In this study, we present research from a high‐alpine karst system in the UNESCO Biosphere Reserve Großes Walsertal in Austria, which has a clearly defined catchment and is drained by only one spring system. Results show that (a) the investigated system is a highly dynamic karst aquifer with distinct reactions to rainfall events in discharge and electrical conductivity; (b) the estimated transient atmospheric CO2 sink is about 270 t/a; (c) the calculated carbonate rock denudation rate is between 23 and 47 mm/1000a and (d) the rainfall‐discharge behaviour and the internal flow dynamics can be successfully simulated using the modelling package KarstMod. The modelling results indicate the relevance of matrix storage in determining the discharge behaviour of the spring, particularly during low‐flow periods. This research and the consequent results can contribute and initiate a better understanding and management of alpine karst aquifers considering climate change with more heavy rainfall events and also longer dry periods.
    Description: The investigated karst system contributes to the transient atmospheric CO2 sink with about 270 t/a. Carbonate denudation rates vary between 23 and 47 mm/1000a. Rainfall‐discharge modelling results indicate the importance of matrix storage particularly during low‐flow periods. image
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Description: FP7 People: Marie‐Curie Actions http://dx.doi.org/10.13039/100011264
    Keywords: 551.49 ; CO2 sink ; denudation rate ; groundwater ; hydrochemical variability ; karst spring ; rainfall‐discharge model
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-06-22
    Description: The contribution of sediments to nutrient cycling of the coastal North Sea is strongly controlled by the intensity of fluxes across the sediment water interface. Pore‐water advection is one major exchange mechanism that is well described by models, as it is determined by physical parameters. In contrast, biotransport (i.e., bioirrigation, bioturbation) as the other major transport mechanism is much more complex. Observational data reflecting biotransport, from the German Bight for example, is scarce. We sampled the major sediment provinces of the German Bight repeatedly over the years from 2013 to 2019. By employing ex situ whole core incubations, we established the seasonal and spatial variability of macrofauna‐sustained benthic fluxes of oxygen and nutrients. A multivariate, partial least squares analysis identified faunal activity, in specifically bioturbation and bioirrigation, alongside temperature, as the most important drivers of oxygen and nutrient fluxes. Their combined effect explained 63% of the observed variability in oxygen fluxes, and 36–48% of variability in nutrient fluxes. Additional 10% of the observed variability of fluxes were explained by sediment type and the availability of plankton biomass. Based on our extrapolation by sediment provinces, we conclude that pore‐water advection and macrofaunal activity contributed equally to the total benthic oxygen uptake in the German Bight.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: 551 ; southern North Sea ; coastal sediments ; macrofauna ; bioturbation ; bioirrigation ; organic matter turnover
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-06-27
    Description: To test the general assumption that global warming will induce body size reduction in aquatic organisms, we used a system of lakes continually heated for six decades by warm water discharge from power plants. Their temperature elevation of 3–4°C corresponds with climate change forecasts for the end of the 21st century. We compared body size and reproduction of Daphnia longispina complex communities inhabiting heated and non‐heated (control) lakes nearby. No difference in body size was found, but Daphnia communities from heated lakes had a wider thermal breadth for reproduction. The two lake groups varied in the taxonomic composition of Daphnia communities. Thus, to disentangle inter‐ and intraspecific sources of variation, and to examine evolution vs. phenotypic plasticity of investigated traits, we performed two life history experiments: (1) a between‐species experiment compared D. galeata inhabiting heated lakes with D. longispina typical of nearby control lakes, under three temperature regimes; (2) a within‐species experiment compared D. galeata from heated lakes with conspecifics from high latitude (cold control) and low latitude (warm control) lakes, under two temperature regimes. The experiments revealed countergradient variation: environmental constraints on body size in situ concealed evolution of larger potential body size in Daphnia from heated lakes. In turn, evolution of increased body size plasticity resulted in an efficient resource allocation trade‐off: more effective reproduction at high temperature, at the cost of size reduction. We suggest that large size is adaptive during active overwintering, while plastic size reduction is a coping strategy for high temperatures.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Description: Deutscher Akademischer Austauschdienst http://dx.doi.org/10.13039/501100001655
    Description: Ministerstwo Nauki i Szkolnictwa Wyższego http://dx.doi.org/10.13039/501100004569
    Description: Narodowe Centrum Nauki http://dx.doi.org/10.13039/501100004281
    Keywords: 591 ; Daphnia ; aquatic organism ; body size reduction ; global warming
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-07-05
    Description: We compared stable isotopes of water in plant stem (xylem) water and soil collected over a complete growing season from five well‐known long‐term study sites in northern/cold regions. These spanned a decreasing temperature gradient from Bruntland Burn (Scotland), Dorset (Canadian Shield), Dry Creek (USA), Krycklan (Sweden), to Wolf Creek (northern Canada). Xylem water was isotopically depleted compared to soil waters, most notably for deuterium. The degree to which potential soil water sources could explain the isotopic composition of xylem water was assessed quantitatively using overlapping polygons to enclose respective data sets when plotted in dual isotope space. At most sites isotopes in xylem water from angiosperms showed a strong overlap with soil water; this was not the case for gymnosperms. In most cases, xylem water composition on a given sampling day could be better explained if soil water composition was considered over longer antecedent periods spanning many months. Xylem water at most sites was usually most dissimilar to soil water in drier summer months, although sites differed in the sequence of change. Open questions remain on why a significant proportion of isotopically depleted water in plant xylem cannot be explained by soil water sources, particularly for gymnosperms. It is recommended that future research focuses on the potential for fractionation to affect water uptake at the soil‐root interface, both through effects of exchange between the vapour and liquid phases of soil water and the effects of mycorrhizal interactions. Additionally, in cold regions, evaporation and diffusion of xylem water in winter may be an important process.
    Description: We compared stable isotopes of water in plant stem (xylem) water and soil collected over a complete growing season from five well‐known long‐term study sites in northern/cold regions. Xylem water was isotopically depleted compared to soil waters, most notably for deuterium. At all sites except one, water sources of angiosperms could be associated with soil water, while the sources of water uptake by gymnosperms were much less easily explained.
    Description: FP7 Ideas: European Research Council http://dx.doi.org/10.13039/100011199
    Description: KAW Branch‐Point project
    Description: SITES (VR)
    Description: Boise State University http://dx.doi.org/10.13039/100007233
    Description: US National Science Foundation
    Description: Leverhulme Trust through the ISO‐LAND project
    Keywords: 551.9 ; cold regions ; critical zone ; northern environments ; stable isotopes ; soil isotopes ; xylem isotopes
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...