ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (16)
  • 04.08. Volcanology  (11)
  • 04.04. Geology  (5)
  • Frontiers  (9)
  • Wiley Agu  (6)
  • American Association for the Advancement of Science
  • American Meteorological Society
  • American Physical Society
  • Frontiers Media
  • Institute of Physics
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2022  (16)
  • 2005-2009
  • 1960-1964
  • 1950-1954
  • 1935-1939
Collection
  • Articles  (16)
Source
Publisher
Years
Year
  • 1
    Publication Date: 2021-01-04
    Description: The Calabrian Arc subduction, southern Italy, is a critical structural element in the geodynamic evolution of the central Mediterranean basin. It is a narrow, northwestdipping slab bordered to the southwest by the Alfeo Fault System (AFS) and to the northeast by a gradual transition to a collision. We used a dense set of two-dimensional high-penetration (up to 12 s) multichannel seismic reflection profiles to build a threedimensional model that spans the AFS for over 180 km of its length. We find that the AFS is made up of four deep-seated major blind segments that cut through the lower plate, offset the subduction interface, and only partially propagate upward across the accretionary wedge in the upper plate. These faults evolve with a scissor-like mechanism (mode III of rupture propagation). The shallow part of the accretionary wedge is affected by secondary deformation features well aligned with the AFS at depth but also mechanically decoupled from it. Despite the decoupling, the syn-tectonic Pliocene-Holocene deposits that fill in the accommodation space generated by the AFS activity at depth, constrain the age of inception of the AFS and allows us to estimate its throw and propagation rates. The maximum throw value is 6,000 m in the NW sector and decreases to the SE. Considering the age of faulting, the fault throw rate decreases accordingly from 2.31 mm/yr to 1 mm/yr. The propagation rate decreases from 62 mm/yr to 15 mm/yr during the Pliocene-Pleistocene, suggesting that also the Calabrian subduction process should have slowed down accordingly. The detailed spatial and temporal reconstruction of this type of faults can reveal necessary information about the evolution of subduction systems.
    Description: Published
    Description: id 107
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: tear fault ; fault propagation ; decoupling ; subduction ; Calabrian Arc ; Italy ; 04.04. Geology ; 04.02. Exploration geophysics ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-01-05
    Description: We present 4 years of continuous seafloor deformation measurements carried out in the Campi Flegrei caldera (Southern Italy), one of the most hazardous and populated volcanic areas in the world. The seafloor sector of the caldera has been monitored since early 2016 by the MEDUSA marine research infrastructure, consisting of four instrumented buoys installed where sea depth is less than 100 m. Each MEDUSA buoy is equipped with a cabled, seafloor module with geophysical and oceanographic sensors and a subaerial GPS station providing seafloor deformation and other environmental measures. Since April 2016, the GPS vertical displacements at the four buoys show a continuous uplift of the seafloor with cumulative measured uplift ranging between 8 and 20 cm. Despite the data being affected by environmental noise associated with sea and meteorological conditions, the horizontal GPS displacements on the buoys show a trend coherent with a radial deformation pattern. We use jointly the GPS horizontal and vertical velocities of seafloor and on-land deformations for modeling the volcanic source, finding that a spherical source fits best the GPS data. The geodetic data produced by MEDUSA has now been integrated with the data flow of other monitoring networks deployed on land at Campi Flegrei.
    Description: Published
    Description: 615178
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Seafloor geodesy, volcanic caldera ; 04.08. Volcanology ; 04.03. Geodesy ; 05.04. Instrumentation and techniques of general interest
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-05-12
    Description: Speleoseismological research carried out in the Central Apennines (Italy) contributed to understanding the behavior of active normal faults that are potentially able to generate Mw 6.5–7 earthquakes documented by paleoseismology and by historical and instrumental seismology. Radiometric (U‐Th, AMS‐14C, and bulk‐14C) dating of predeformation and postdeformation layers from collapsed speleothems found in Cola Cave indicates that at least three speleoseismic events occurred in the cave during the last ~12.5 ka and were ostensibly caused by seismic slip on one or more of the active faults located in the region surrounding the cave. We modeled the collapse of a tall (173 cm high) stalagmite to find a causative association of this event with one among the potential seismogenic sources. We defined the uniform hazard spectrum (UHS) for each seismogenic source at the site, and we used the calculated spectra in a deterministic approach to study the behavior of the speleothem, through a numerical finite element modeling (FEM). Although our analysis suggests the “Liri” fault as the most likely source responsible for the ground shaking recorded in the cave, the “Fucino” fault system, responsible for a Mw 7 earthquake in 1915, cannot be excluded as a potential source of speleoseismic damage. Results of this work provide new constraints on the seismotectonic history of this sector of Central Apennines and highlight the performance of integrated speleoseismological, seismic hazard, and numerical studies.
    Description: Published
    Description: e2020TC006289
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Keywords: Speleoseismology ; Central Apennines ; seismic hazard ; finite element modeling ; 04.04. Geology ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Frontiers
    In:  Argnani, A. (2020). Commentary: deformation and fault propagation at the lateral termination of a subduction zone: the Alfeo Fault system in the calabrian Arc, southern Italy. Front. Earth Sci. 8, 602506. doi:10.3389/feart.2020.602506
    Publication Date: 2021-05-12
    Description: Argnani (2020) raised concerns about our interpretation of the Alfeo Fault System (AFS) as a lithospheric tear bounding the Calabrian Arc (Maesano et al., 2020). Some of these concerns arise from elements overlooked by Argnani (2020); others are marginally related to our work; none of them implies possible changes in our results in the absence of newer data. We briefly discuss these issues in the following.
    Description: Published
    Description: 644544
    Description: 2T. Deformazione crostale attiva
    Description: 2TR. Ricostruzione e modellazione della struttura crostale
    Description: JCR Journal
    Keywords: lithospheric tear fault ; seismic stratigraphy ; Calabrian subduction ; Ionian Sea ; Italy ; decoupling ; fault propagation ; Calabrian Arc ; 04.04. Geology ; 04.07. Tectonophysics ; 04.02. Exploration geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-07
    Description: Understanding the complexity of future volcanic impacts that can be potentially induced by the large variability of volcanic hazards and the multiple dimensions of vulnerability of the increasingly interdependent and interconnected societies, requires an in-depth analysis of past events. A structured and inclusive post-event impact assessment framework is proposed and applied for the evaluation of damage and disruption on critical infrastructures caused by the eruption of the Cordón Caulle volcano (Chile) in 2011–2012. This framework is built on the forensic analysis of disasters combined with the techniques of the root cause analysis that converge in a bow-tie tool. It consists of a fault tree connected to subsequent event trees to describe the causal order of impacts. Considering the physical and systemic dimensions of vulnerability, four orders of impact have been identified: i) the first order refers to the physical damage or the primary impact on a component of the critical infrastructure; ii) the second order refers to the loss of functionality in the system due to a physical damage on key components of the system; iii) the third order refers to the systemic impact due to the interdependency and connectivity among different critical infrastructures; and iv) a higher order is related to the consequences on the main economic sectors and to social disruption that can activate an overall damage to the economy of the country or countries affected. Our study in the Argentinian Patagonia shows that the long-lasting impact of the 2011–2012 Cordón Caulle eruption is mostly due to a secondary hazard (i.e., wind remobilisation of ash), which exacerbated the primary impact affecting significantly larger areas and for longer time with respect to primary tephra deposition. In addition, systemic vulnerability, particularly the intrinsic dependencies within and among systems, played a major role in the cascading impact of the analysed communities.
    Description: This study was supported by the Swiss National Science Foundation (200021–163152).
    Description: Published
    Description: 645945
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: impact assessment ; volcanic eruptions ; forensic analysis ; systemic vulnerability ; cascading effects ; bow-tie approach ; 04.08. Volcanology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-10-16
    Description: The temporal evolution of effusion rate is the main controlling factor of lava spreading and emplacement conditions. Therefore, it represents the most relevant parameter for characterizing the dynamics of effusive eruptions and thus for assessing the volcanic hazard associated with this type of volcanism. Since the effusion rate curves can provide important insights into the properties of the magma feeding system, several efforts have been performed for their classification and interpretation. Here, a recently published numerical model is employed for studying the effects of magma source and feeding dike properties on the main characteristics (e.g., duration, erupted mass, and effusion rate trend) of small‐volume effusive eruptions, in the absence of syn‐eruptive magma injection from deeper storages. We show that the total erupted mass is mainly controlled by magma reservoir conditions (i.e., dimensions and overpressure) prior to the eruption, whereas conduit processes along with reservoir properties can significantly affect mean effusion rate, and thus, they dramatically influence eruption duration. Simulations reproduce a wide variety of effusion rate trends, whose occurrence is controlled by the complex competition between conduit enlargement and overpressure decrease due to magma withdrawal. These effusion rate curves were classified in four groups, which were associated with the different types described in the literature. Results agree with the traditional explanation of effusion rate curves and provide new insights for interpreting them, highlighting the importance of magma reservoir size, initial overpressure, and initial width of the feeding dike in controlling the nature of the resulting effusion rate curve.
    Description: Published
    Description: e2019JB01930
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: effusive eruption ; basaltic eruptions ; numerical modeling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-16
    Description: Kinetic energy models, also called kinetic models, are simple tools able to provide a fast estimate of the inundation area of pyroclastic density currents (PDCs). They are based on the calculation of the PDC front kinetic energy as a function of the distance from a source point. On a three‐dimensional topography, the PDC runout distance is estimated by comparing the flow kinetic energy with the potential energy associated with the topographic obstacles encountered by the PDC. Since kinetic models do not consider the occurrence of channelization processes, the modeled inundation areas can be significantly different from those observed in real deposits. To address this point, we present a new strategy that allows improving kinetic models by considering flow channelization processes, and consists in the inclusion of secondary source points in the expected channelization zones, adopting a tree branch‐like structure. This strategy is based on the redistribution of a key physical variable, such as the flow energy or mass depending on the considered kinetic model, and requires the adoption of appropriate equations for setting the characteristics of the secondary sources. Two models were modified by applying this strategy: the energy cone and the box model. We tested these branching models by comparing their results with those derived from their traditional formulations and from a two‐dimensional depth‐averaged model, considering two specific volcanoes (Chaitén and Citlaltépetl). Thereby, we show the capability of this strategy of improving the accuracy of kinetic models and considering flow channelization processes without including additional, unconstrained input parameters.
    Description: Published
    Description: e2019JB019271
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Pyroclastic Density Currents ; Numerical Modeling ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-01-07
    Description: Radon (222Rn) activity in air was measured for about 6 months at the summit of Mt. Etna Central Crater (Sicily) by integrative radon dosimetry at two different heights above ground level (5 cm and 1 m). This technique for air radon monitoring proved operational in the harsh volcanic environment of Mt. Etna summit with a 94% recovery rate of dosimeters. In the southeast sector exposed to the main gas plume, mean radon activity in free air (height 1 m) is significantly higher than the local background and the ground level activity (height 5 cm). The results strongly suggest that the plume is enriched in radon by ≈550 Bq/m3, which has never been evidenced before. Radon activities also reflect soil degassing occurring in the proximity of the crater, with increased ground level activities in zones of enhanced soil fracturing and degassing. Radon measurements also revealed a hot spot in front of the Voragine vent with extraordinary high levels of air activities (26 kBq/m3 at ground level and 8 kBq/m3 in free air). The temporal variation of radon activity was investigated by replacing a few stations half way through the exposure period. The only significant increase was associated with the site located under the main gas plume and correlated with eruptive unrest within the crater. Finally, air radon levels higher than the recommended threshold of 300 Bq/m3 were detected in several zones on the rim and could generate a nonnegligible radiologic dose for workers on the volcano.
    Description: Published
    Description: e2019JB019149
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-05
    Description: In December 2018, Etna volcano experienced one of the largest episodes of unrest since the installation of geophysical monitoring networks in 1970. The unrest culminated in a short eruption with a small volume of lava erupted, a significant seismic crisis and deformation of the entire volcanic edifice of magnitude never recorded before at Mount Etna. Here we describe the evolution of the 2018 eruptive cycle from the analysis of seismic and geodetic data collected in the months preceding, during, and following the intrusion. We model the space‐time evolution of high‐rate deformation data starting from the active source previously identified from deformation data and the propagation of seismicity in a 3‐D velocity model. The intrusion model suggests emplacement of two dikes: a smaller dike located beneath the eruptive fissure and a second, deeper dike between 1 and 5 kmbelow sea level that opened ~2 m. The rise and eruption of magma from the shallower dike did not interrupt the pressurization of a long‐lasting deeper reservoir (~6 km) that induced continuous inflation and intense deformation of the eastern flank. Shortly after the intrusion, on 26 December 2018, aML4.8 earthquake occurred near Pisano, destroying buildings and roads in two villages. We propose a time‐dependent intrusion model that supports the hypothesis of the inflation inducing flank deformation and that this process has been active since September 2018.
    Description: Published
    Description: e2020GC009218
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: 2018 Mount Etna Eruption, time‐dependent intrusion model, modelling of high‐rate deformations ; 04.08. Volcanology ; 04.03. Geodesy ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-01-12
    Description: Long-range, high-altitude Unoccupied Aerial System (UAS) operations now enable in-situ measurements of volcanic gas chemistry at globally-significant active volcanoes. However, the extreme environments encountered within volcanic plumes present significant challenges for both air frame development and in-flight control. As part of a multi-disciplinary field deployment in May 2019, we flew fixed wing UAS Beyond Visual Line of Sight (BVLOS) over Manam volcano, Papua New Guinea, to measure real-time gas concentrations within the volcanic plume. By integrating aerial gas measurements with ground- and satellite-based sensors, our aim was to collect data that would constrain the emission rate of environmentally-important volcanic gases, such as carbon dioxide, whilst providing critical insight into the state of the subsurface volcanic system. Here, we present a detailed analysis of three BVLOS flights into the plume of Manam volcano and discuss the challenges involved in operating in highly turbulent volcanic plumes. Specifically, we report a detailed description of the system, including ground and air components, and flight plans. We present logged flight data for two successful flights to evaluate the aircraft performance under the atmospheric conditions experienced during plume traverses. Further, by reconstructing the sequence of events that led to the failure of the third flight, we identify a number of lessons learned and propose appropriate recommendations to reduce risk in future flight operations.
    Description: This research was enabled through the Alfred P. Sloan Foundation's support of the Deep Carbon Observatory Deep Earth Carbon Degassing program (DECADE). Part funding also came from the EPSRC CASCADE programme grant (EP/R009953/1). EJL was supported by a Leverhulme Trust Early Career Fellowship. KW was supported by the National Center for Nuclear Robotics (NCNR) EPSRC grant (EP/R02572X/1)
    Description: Published
    Description: 549716
    Description: 4V. Processi pre-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: 1IT. Reti di monitoraggio e sorveglianza
    Description: JCR Journal
    Keywords: unmanned aircraft system (UAS) ; aerial robotic ; volcano ; plume ; Manam ; gas sensing ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...