ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Molecular Diversity Preservation International  (224,708)
  • Blackwell Publishing Ltd  (77,023)
  • American Meteorological Society
  • Geological Society of America
  • Institute of Electrical and Electronics Engineers
  • Springer Science + Business Media
  • 2020-2024  (1,594)
  • 2020-2022  (231,172)
  • 2000-2004  (28,890)
  • 1985-1989  (37,359)
  • 1975-1979  (21,568)
  • 1970-1974  (16,940)
  • 1960-1964  (9,197)
Collection
Publisher
Language
Years
Year
  • 11
    Publication Date: 2021-07-05
    Description: Sustainable arable cropping relies on repeated liming. Yet, the associated increase in soil pH can reduce the availability of iron (Fe) to plants. We hypothesized that repeated liming, but not pedogenic processes such as lessivage (i.e., translocation of clay particles), alters the Fe cycle in Luvisol soil, thereby affecting Fe isotope composition in soils and crops. Hence, we analysed Fe concentrations and isotope compositions in soil profiles and winter rye from the long‐term agricultural experimental site in Berlin‐Dahlem, Germany, where a controlled liming trial with three field replicates per treatment has been conducted on Albic Luvisols since 1923. Heterogeneity in subsoil was observed at this site for Fe concentration but not for Fe isotope composition. Lessivage had not affected Fe isotope composition in the soil profiles. The results also showed that almost 100 years of liming lowered the concentration of the HCl‐extractable Fe that was potentially available for plant uptake in the surface soil (0–15 cm) from 1.03 (standard error (SE) 0.03) to 0.94 (SE 0.01) g kg−1. This HCl‐extractable Fe pool contained isotopically lighter Fe (δ56Fe = −0.05 to −0.29‰) than the bulk soil (δ56Fe = −0.08 to 0.08‰). However, its Fe isotope composition was not altered by the long‐term lime application. Liming resulted in relatively lower Fe concentrations in the roots of winter rye. In addition, liming led to a heavier Fe isotope composition of the whole plants compared with those grown in the non‐limed plots (δ56FeWholePlant_ + Lime = −0.12‰, SE 0.03 vs. δ56FeWholePlant_‐Lime = −0.21‰, SE 0.01). This suggests that the elevated soil pH (increased by one unit due to liming) promoted the Fe uptake strategy through complexation of Fe(III) from the rhizosphere, which favoured heavier Fe isotopes. Overall, the present study showed that liming and a related increase in pH did not affect the Fe isotope compositions of the soil, but may influence the Fe isotope composition of plants grown in the soil if they alter their Fe uptake strategy upon the change of Fe availability. Highlights Fe concentrations and stocks, but not Fe isotope compositions, were more heterogeneous in subsoil than in topsoil. Translocation of clay minerals did not result in Fe isotope fractionation in the soil profile of a Luvisol. Liming decreased Fe availability in topsoil, but did not affect its δ56Fe values. Uptake of heavier Fe isotopes by graminaceous crops was more pronounced at elevated pH.
    Description: Bundesministerium für Bildung und Forschung http://dx.doi.org/10.13039/501100002347
    Keywords: 551.9 ; liming ; plant‐available Fe pool in soil ; winter rye ; δ56Fe
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2020-03-16
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 33(4), (2020): 1535-1545, doi:10.1175/JCLI-D-19-0547.1.
    Description: In a transient warming scenario, the North Atlantic is influenced by a complex pattern of surface buoyancy flux changes that ultimately weaken the Atlantic meridional overturning circulation (AMOC). Here we study the AMOC response in the CMIP5 experiment, using the near-geostrophic balance of the AMOC on interannual time scales to identify the role of temperature and salinity changes in altering the circulation. The thermal wind relationship is used to quantify changes in the zonal density gradients that control the strength of the flow. At 40°N, where the overturning cell is at its strongest, weakening of the AMOC is largely driven by warming between 1000- and 2000-m depth along the western margin. Despite significant subpolar surface freshening, salinity changes are small in the deep branch of the circulation. This is likely due to the influence of anomalously salty water in the subpolar intermediate layers, which is carried northward from the subtropics in the upper limb of the AMOC. In the upper 1000 m at 40°N, salty anomalies due to increased evaporation largely cancel the buoyancy increase due to warming. Therefore, in CMIP5, temperature dynamics are responsible for AMOC weakening, while freshwater forcing instead acts to strengthen the circulation in the net. These results indicate that past modeling studies of AMOC weakening, which rely on freshwater hosing in the subpolar gyre, may not be directly applicable to a more complex warming scenario.
    Description: We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model output. We also thank John Marshall for helpful discussions on the driving mechanisms of the AMOC, and three anonymous reviewers whose comments greatly improved the manuscript. This work was supported by NASA Headquarters under the NASA Earth and Space Science Fellowship Program Award 80NSSC17K0372, and by National Science Foundation Award OCE-1433132.
    Description: 2020-07-20
    Keywords: North Atlantic Ocean ; Thermohaline circulation ; Water masses/storage ; Climate change ; Climate prediction ; Climate models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-09-29
    Description: Coping with the growing impacts of flooding in EU countries, a paradigm shift in flood management can be observed, moving from safety‐based towards risk‐based approaches and holistic perspectives. Flood resilience is a common denominator of most of the approaches. In this article, we present the ‘Flood Resilience Rose’ (FRR), a management tool to promote harmonised action towards flood resilience in European regions and beyond. The FRR is a result of a two‐step process. First, based on scientific concepts as well as analysis of relevant policy documents, we identified three ‘levels of operation’. The first level refers to the EU Floods Directive and an extended multi‐layer safety approach, comprising the four different layers of protection, prevention, preparedness and recovery, and related measures to be taken. This level is not independent but depends both on the institutional (second level) and the wider (third level) context. Second, we used surveys, semi‐structured interviews and group discussions during workshops with experts from Belgium, Denmark, Germany, the Netherlands and the United Kingdom to validate the definitions and the FRR's practical relevance. The presented FRR is thus the result of rigorous theoretical and practical consideration and provides a tool capable to strengthen flood risk management practice.
    Description: European Regional Development Fund http://dx.doi.org/10.13039/501100008530
    Keywords: 551.48 ; flood defence measures ; governance and institutions ; integrated flood risk management ; resilience
    Type: map
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2023-01-20
    Description: Stable hydrogen isotope ratios (δ2H values) in structural hydroxyl groups of pedogenic clay minerals are inherited from the surrounding water at the time of their formation. Only non‐exchangeable H preserves the environmental forensic and paleoclimate information (δ2Hn value). To measure δ2Hn values in structural H of clay minerals and soil clay fractions, we adapted a steam equilibration method by accounting for high hygroscopicity. Our δ2Hn values for USGS57 biotite (−95.3 ± SD 0.9‰) and USGS58 muscovite (30.7 ± 1.4‰) differed slightly but significantly from the reported δ2H values (−91.5 ± 2.4‰ and −28.4 ± 1.6‰), because the minerals contained 1.1%–4.4% of exchangeable H. The low SD of replicate measurements (n = 3) confirmed a high precision. The clay separation method including destruction of Fe oxides, carbonates and soil organic matter, and dispersion did not significantly change the δ2Hn values of five different clay minerals. However, we were unable to remove all organic matter from the soil clay fractions resulting in an estimated bias of 1‰ in two samples and 15‰ in the carbon‐richest sample. Our results demonstrate that δ2Hn values of structural H of clay minerals and soil clay fractions can be reliably measured without interference from atmospheric water and the method used to separate the soil clay fraction. Highlights We tested steam equilibration to determine stable isotope ratios of structural H in clay. Gas‐tight capsule sealing in Ar atmosphere was necessary to avoid remoistening. Our steam equilibration method showed a high accuracy and precision. The clay separation method did not change stable isotope ratios of structural H in clay.
    Description: Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659
    Keywords: ddc:549 ; controlled isotope exchange technique ; deuterium ; montmorillonite ; soil clay separation ; soil organic matter removal ; steam equilibration ; structural H ; USGS57 biotite ; vermiculite ; δ2H
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, 35(23), pp. 7811-7831, ISSN: 0894-8755
    Publication Date: 2023-06-23
    Description: Numerical simulations allow us to gain a comprehensive understanding of the underlying mechanisms of past, present, and future climate changes. The mid-Holocene (MH) and the last interglacial (LIG) were the two most recent warm episodes of Earth’s climate history and are the focus of paleoclimate research. Here, we present results of MH and LIG simulations with two versions of the state-of-the-art Earth system model AWI-ESM. Most of the climate changes in MH and LIG compared to the preindustrial era are agreed upon by the two model versions, including 1) enhanced seasonality in surface temperature that is driven by the redistribution of seasonal insolation; 2) a northward shift of the intertropical convergence zone (ITCZ) and tropical rain belt; 3) a reduction in annual mean Arctic sea ice concentration; 4) weakening and northward displacement of the Northern Hemisphere Hadley circulation, which is related to the decrease and poleward shift of the temperature gradient from the subtropical to the equator in the Northern Hemisphere; 5) a westward shift of the Indo-Pacific Walker circulation due to anomalous warming over the Eurasia and North Africa during boreal summer; and 6) an expansion and intensification of Northern Hemisphere summer monsoon rainfall, with the latter being dominated by the dynamic component of moisture budget (i.e., the strengthening of wind circulation). However, the simulated responses of the Atlantic meridional overturning circulation (AMOC) in the two models yield different results for both the LIG and the MH. AMOC anomalies between the warm interglacial and preindustrial periods are associated with changes in North Atlantic westerly winds and stratification of the water column at the North Atlantic due to changes in ocean temperature, salinity, and density.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    facet.materialart.
    Unknown
    Geological Society of America
    In:  EPIC3Geology, Geological Society of America, 48(5), pp. e501-e501, ISSN: 0091-7613
    Publication Date: 2023-06-13
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(11), (2022): 2841–2852, https://doi.org/10.1175/jpo-d-22-0025.1.
    Description: Prediction of rapid intensification in tropical cyclones prior to landfall is a major societal issue. While air–sea interactions are clearly linked to storm intensity, the connections between the underlying thermal conditions over continental shelves and rapid intensification are limited. Here, an exceptional set of in situ and satellite data are used to identify spatial heterogeneity in sea surface temperatures across the inner core of Hurricane Sally (2020), a storm that rapidly intensified over the shelf. A leftward shift in the region of maximum cooling was observed as the hurricane transited from the open gulf to the shelf. This shift was generated, in part, by the surface heat flux in conjunction with the along- and across-shelf transport of heat from storm-generated coastal circulation. The spatial differences in the sea surface temperatures were large enough to potentially influence rapid intensification processes suggesting that coastal thermal features need to be accounted for to improve storm forecasting as well as to better understand how climate change will modify interactions between tropical cyclones and the coastal ocean.
    Description: This research was made possible by the NOAA RESTORE Science Program (NA17NOS4510101 and NA19NOS4510194) and the NASA Physical Oceanography program (80NSSC21K0553 and WBS 281945.02.25.04.67) and NOAA IOOS program via GCOOS (NA16NOS0120018). The authors declare that they have no competing interests.
    Keywords: Seas/gulfs/bays ; Atmosphere–ocean interaction ; Currents ; Tropical cyclones ; Buoy observations ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2023-02-25
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(8), (2022): 1797–1815, https://doi.org/10.1175/JPO-D-21-0288.1.
    Description: Intruding slope water is a major source of nutrients to sustain the high biological productivity in the Gulf of Maine (GoM). Slope water intrusion into the GoM is affected by Gulf Stream warm-core rings (WCRs) impinging onto the nearby shelf edge. This study combines long-term mooring measurements, satellite remote sensing data, an idealized numerical ocean model, and a linear coastal-trapped wave (CTW) model to examine the impact of WCRs on slope water intrusion into the GoM through the Northeast Channel. Analysis of satellite sea surface height and temperature data shows that the slope sea region off the GoM is a hotspot of ring activities. A significant linear relationship is found between interannual variations of ring activities in the slope sea region off the GoM and bottom salinity at the Northeast Channel, suggesting the importance of WCRs in modulating variability of intruding slope water. Analysis of the mooring data reveals enhanced slope water intrusion through bottom-intensified along-channel flow following impingements of WCRs on the nearby shelf edge. Numerical simulations qualitatively reproduce the observed WCR impingement processes and associated episodic enhancement of slope water intrusion in the Northeast Channel. Diagnosis of the model result indicates that baroclinic CTWs excited by the ring–topography interaction are responsible for the episodically intensified subsurface along-channel inflow, which carries more slope water into the GoM. A WCR that impinges onto the shelf edge to the northeast of the Northeast Channel tends to generate stronger CTWs and cause stronger enhancement of the slope water intrusion into the GoM.
    Description: This study is supported by the National Science Foundation through Grant OCE-1634965.
    Keywords: Continental shelf/slope ; Channel flows ; Mesoscale processes ; In situ oceanic observations ; Satellite observations ; Numerical analysis/modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    American Meteorological Society
    In:  EPIC3Journal of Climate, American Meteorological Society, pp. 1-40, ISSN: 0894-8755
    Publication Date: 2023-09-04
    Description: 〈jats:title〉Abstract〈/jats:title〉 〈jats:p〉Tipping points in the Earth system describe critical thresholds beyond which a single component, part of the system, or the system as a whole changes from one stable state to another. In the present-day Southern Ocean, the Weddell Sea constitutes an important dense-water formation site, associated with efficient deep-ocean carbon and oxygen transfer and low ice-shelf basal melt rates. Here, a regime shift will occur when continental shelves are continuously flushed with warm, oxygen-poor offshore waters from intermediate depth, leading to less efficient deep-ocean carbon and oxygen transfer and higher ice-shelf basal melt rates. We use a global ocean–biogeochemistry model including ice-shelf cavities and an eddy-permitting grid in the southern Weddell Sea to address the susceptibility of this region to such a system change for four 21〈jats:sup〉st〈/jats:sup〉-century emission scenarios. Assessing the projected changes in shelf–open ocean density gradients, bottom-water properties, and on-shelf heat transport, our results indicate that the Weddell Sea undergoes a regime shift by 2100 in the highest-emission scenario SSP5-8.5, but not yet in the lower-emission scenarios. The regime shift is imminent by 2100 in the scenarios SSP3-7.0 and SSP2-4.5, but avoidable under the lowest-emission scenario SSP1-2.6. While shelf-bottom waters freshen and acidify everywhere, bottom waters in the Filchner Trough undergo accelerated warming and deoxygenation following the system change, with implications for local ecosystems and ice-shelf basal melt. Additionally, deep-ocean carbon and oxygen transfer decline, implying that the local changes ultimately affect ocean circulation, climate, and ecosystems globally.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2023-08-31
    Description: Large calderas are among the main emitters of volcanic CO2, which is mainly supplied by the deep degassing of magmatic fluids. However, other sources of non-magmatic CO2 can also occur due to the intense interaction among magmatic fluids, wide hydrothermal systems, and their host rocks. In particular, massive amounts of CO2 are released by calderas during unrest phases and have been often detected before eruptions. An accurate assessment of CO2 sources is thus fundamental to properly understand gas monitoring signals during volcanic crises. We focused on the restless Campi Flegrei caldera, in southern Italy, where CO2 fluxes at the Solfatara-Pisciarelli hydrothermal site have been progressively increasing up to 4000–5000 t/d during the ongoing unrest that started in 2005. Theoretical models of magma degassing have been able to reproduce the CO2-N2-He variations at the Solfatara fumaroles. However, a time-dependent deviation between measured and modeled N2/CO2 and He/CO2, well correlated with the temporal evolution of ground uplift and temperature of the hydrothermal system, has been observed since 2005. We show that these variations are controlled by intense physical-chemical perturbation of the hydrothermal system, which is driving the decarbonation of hydrothermal calcite stored in reservoir rocks. This process is providing large volumes of non-magmatic CO2 during the current unrest, contributing up to 20%–40% of the total fumarolic CO2.
    Description: Published
    Description: 397-401
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...