ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ocean  (20)
  • Eddies  (19)
  • American Meteorological Society  (32)
  • American Geophysical Union  (5)
  • Blackwell Publishing Ltd
  • Cambridge University Press
  • Cell Press
  • Institute of Physics
  • Nature Publishing Group
  • Springer Science + Business Media
  • 2020-2023  (37)
  • 2020-2022
  • 1975-1979
  • 1960-1964
Collection
Publisher
Years
Year
  • 1
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(2), (2020): 415-437, doi:10.1175/JPO-D-19-0019.1.
    Description: Results are presented from two dye release experiments conducted in the seasonal thermocline of the Sargasso Sea, one in a region of low horizontal strain rate (~10−6 s−1), the second in a region of intermediate horizontal strain rate (~10−5 s−1). Both experiments lasted ~6 days, covering spatial scales of 1–10 and 1–50 km for the low and intermediate strain rate regimes, respectively. Diapycnal diffusivities estimated from the two experiments were κz = (2–5) × 10−6 m2 s−1, while isopycnal diffusivities were κH = (0.2–3) m2 s−1, with the range in κH being less a reflection of site-to-site variability, and more due to uncertainties in the background strain rate acting on the patch combined with uncertain time dependence. The Site I (low strain) experiment exhibited minimal stretching, elongating to approximately 10 km over 6 days while maintaining a width of ~5 km, and with a notable vertical tilt in the meridional direction. By contrast, the Site II (intermediate strain) experiment exhibited significant stretching, elongating to more than 50 km in length and advecting more than 150 km while still maintaining a width of order 3–5 km. Early surveys from both experiments showed patchy distributions indicative of small-scale stirring at scales of order a few hundred meters. Later surveys show relatively smooth, coherent distributions with only occasional patchiness, suggestive of a diffusive rather than stirring process at the scales of the now larger patches. Together the two experiments provide important clues as to the rates and underlying processes driving diapycnal and isopycnal mixing at these scales.
    Description: Results are presented from two dye release experiments conducted in the seasonal thermocline of the Sargasso Sea, one in a region of low horizontal strain rate (~10−6 s−1), the second in a region of intermediate horizontal strain rate (~10−5 s−1). Both experiments lasted ~6 days, covering spatial scales of 1–10 and 1–50 km for the low and intermediate strain rate regimes, respectively. Diapycnal diffusivities estimated from the two experiments were κz = (2–5) × 10−6 m2 s−1, while isopycnal diffusivities were κH = (0.2–3) m2 s−1, with the range in κH being less a reflection of site-to-site variability, and more due to uncertainties in the background strain rate acting on the patch combined with uncertain time dependence. The Site I (low strain) experiment exhibited minimal stretching, elongating to approximately 10 km over 6 days while maintaining a width of ~5 km, and with a notable vertical tilt in the meridional direction. By contrast, the Site II (intermediate strain) experiment exhibited significant stretching, elongating to more than 50 km in length and advecting more than 150 km while still maintaining a width of order 3–5 km. Early surveys from both experiments showed patchy distributions indicative of small-scale stirring at scales of order a few hundred meters. Later surveys show relatively smooth, coherent distributions with only occasional patchiness, suggestive of a diffusive rather than stirring process at the scales of the now larger patches. Together the two experiments provide important clues as to the rates and underlying processes driving diapycnal and isopycnal mixing at these scales.
    Description: 2020-08-06
    Keywords: Ocean ; Atlantic Ocean ; Diapycnal mixing ; Diffusion ; Dispersion ; Mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 789-806, doi:10.1175/JTECH-D-18-0244.1.
    Description: Realistic ocean state prediction and its validation rely on the availability of high quality in situ observations. To detect data errors, adequate quality check procedures must be designed. This paper presents procedures that take advantage of the ever-growing observation databases that provide climatological knowledge of the ocean variability in the neighborhood of an observation location. Local validity intervals are used to estimate binarily whether the observed values are considered as good or erroneous. Whereas a classical approach estimates validity bounds from first- and second-order moments of the climatological parameter distribution, that is, mean and variance, this work proposes to infer them directly from minimum and maximum observed values. Such an approach avoids any assumption of the parameter distribution such as unimodality, symmetry around the mean, peakedness, or homogeneous distribution tail height relative to distribution peak. To reach adequate statistical robustness, an extensive manual quality control of the reference dataset is critical. Once the data have been quality checked, the local minima and maxima reference fields are derived and the method is compared with the classical mean/variance-based approach. Performance is assessed in terms of statistics of good and bad detections. It is shown that the present size of the reference datasets allows the parameter estimates to reach a satisfactory robustness level to always make the method more efficient than the classical one. As expected, insufficient robustness persists in areas with an especially low number of samples and high variability.
    Description: This study has been conducted using EU Copernicus Marine Service Information and was supported by the European Union within the EU Copernicus Marine Service In Situ phase-I and phase-II contracts led by Ifremer. The publication was also supported by SOERE CTDO2 in France. The Argo data were collected and made freely available by the International Argo Program and the national programs that contribute to it (see http://www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System (http://doi.org/10.17882/42182). The marine mammal data were collected and made freely available by the International MEOP Consortium and the national programs that contribute to it (see http://www.meop.net; https://doi.org/10.17882/45461). Aleix Gelabert and Dídac Costa were the skippers of the OPOO, sponsored by the Intergovernmental Oceanographic Commission (UNESCO) and Pharmaton. The BWR is a periodic oceanic race organized by the Fundació Navegació Oceànica de Barcelona (FNOB). Reviewer D. Briand provided some useful comments on the final version of the draft paper before submission.
    Description: 2020-11-04
    Keywords: Ocean ; Climatology ; Salinity ; Temperature ; Data quality control ; Oceanic variability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(5), (2020): 1245-1263, doi:10.1175/JPO-D-19-0213.1.
    Description: We use laboratory experiments and theoretical modeling to investigate the surface expression of a subglacial discharge plume, as occurs at many fjords around Greenland. The experiments consider a fountain that is released vertically into a homogeneous fluid, adjacent either to a vertical or a sloping wall, that then spreads horizontally at the free surface before sinking back to the bottom. We present a model that separates the fountain into two separate regions: a vertical fountain and a horizontal, negatively buoyant jet. The model is compared to laboratory experiments that are conducted over a range of volume fluxes, density differences, and ambient fluid depths. It is shown that the nondimensionalized length, width, and aspect ratio of the surface expression are dependent on the Froude number, calculated at the start of the negatively buoyant jet. The model is applied to observations of the surface expression from a Greenland subglacial discharge plume. In the case where the discharge plume reaches the surface with negative buoyancy the model can be used to estimate the discharge properties at the base of the glacier.
    Description: We gratefully acknowledge technical assistance from Anders Jensen and thank anonymous reviewers for improving the clarity of the manuscript. CM thanks the Weston Howard Jr. Scholarship for funding. Support to CC was given by NSF project OCE-1434041 and OCE-1658079.
    Description: 2020-10-27
    Keywords: Ocean ; Glaciers ; Ice sheets ; Convection ; Laboratory/physical models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9), (2020): 2491-2506, doi:10.1175/JPO-D-20-0056.1.
    Description: An idealized two-layer shallow water model is applied to the study of the dynamics of the Arctic Ocean halocline. The model is forced by a surface stress distribution reflective of the observed wind stress pattern and ice motion and by an inflow representing the flow of Pacific Water through Bering Strait. The model reproduces the main elements of the halocline circulation: an anticyclonic Beaufort Gyre in the western basin (representing the Canada Basin), a cyclonic circulation in the eastern basin (representing the Eurasian Basin), and a Transpolar Drift between the two gyres directed from the upwind side of the basin to the downwind side of the basin. Analysis of the potential vorticity budget shows a basin-averaged balance primarily between potential vorticity input at the surface and dissipation at the lateral boundaries. However, advection is a leading-order term not only within the anticyclonic and cyclonic gyres but also between the gyres. This means that the eastern and western basins are dynamically connected through the advection of potential vorticity. Both eddy and mean fluxes play a role in connecting the regions of potential vorticity input at the surface with the opposite gyre and with the viscous boundary layers. These conclusions are based on a series of model runs in which forcing, topography, straits, and the Coriolis parameter were varied.
    Description: This study was supported by National Science Foundation Grant OPP-1822334. Comments and suggestions from two anonymous referees greatly helped to improve the paper.
    Description: 2021-02-17
    Keywords: Eddies ; Ekman pumping/transport ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Shallow-water equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 1045-1064, doi:10.1175/JPO-D-19-0137.1.
    Description: Three simulations of the circulation in the Gulf of Mexico (the “Gulf”) using different numerical general circulation models are compared with results of recent large-scale observational campaigns conducted throughout the deep (〉1500 m) Gulf. Analyses of these observations have provided new understanding of large-scale mean circulation features and variability throughout the deep Gulf. Important features include cyclonic flow along the continental slope, deep cyclonic circulation in the western Gulf, a counterrotating pair of cells under the Loop Current region, and a cyclonic cell to the south of this pair. These dominant circulation features are represented in each of the ocean model simulations, although with some obvious differences. A striking difference between all the models and the observations is that the simulated deep eddy kinetic energy under the Loop Current region is generally less than one-half of that computed from observations. A multidecadal integration of one of these numerical simulations is used to evaluate the uncertainty of estimates of velocity statistics in the deep Gulf computed from limited-length (4 years) observational or model records. This analysis shows that the main deep circulation features identified from the observational studies appear to be robust and are not substantially impacted by variability on time scales longer than the observational records. Differences in strengths and structures of the circulation features are identified, however, and quantified through standard error analysis of the statistical estimates using the model solutions.
    Description: This work was supported by the Gulf Research Program of the National Academy of Sciences under Awards 2000006422 and 2000009966. The content is solely the responsibility of the authors and does not necessarily represent the official views of the Gulf Research Program or the National Academy of Sciences. The authors acknowledge the GLORYS project for providing the ocean reanalysis data used in the ROMS simulation. GLORYS is jointly conducted by MERCATOR OCEAN, CORIOLIS, and CNRS/INSU. Installation, recovery, data acquisition, and processing of the CANEK group current-meter moorings were possible because of CICESE-PetróleosMexicanos Grant PEP-CICESE 428229851 and the dedicated work of the crew of the B/O Justo Sierra and scientists of the CANEK group. The authors thank Dr. Aljaz Maslo, CICESE, for assistance with analysis of model data. The Bureau of Ocean Energy Management (BOEM), U.S. Dept. of the Interior, provided funding for the Lagrangian Study of the Deep Circulation in the Gulf of Mexico and the Observations and Dynamics of the Loop Current study. HYCOM simulation data are available from the HYCOM data server (https://www.hycom.org/data/goml0pt04/expt-02pt2), MITgcm data are available from the ECCO data server (http://ecco.ucsd.edu/gom_results2.html), and the ROMS simulation data are available from GRIIDC (NA.x837.000:0001).
    Keywords: Ocean circulation ; Abyssal circulation ; Bottom currents/bottom water ; Eddies ; Ocean models
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-10-27
    Description: Author Posting. © American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015989, doi:10.1029/2019JC015989.
    Description: Relatively minor amounts of methane, a potent greenhouse gas, are currently emitted from the oceans to the atmosphere, but such methane emissions have been hypothesized to increase as oceans warm. Here, we investigate the source, distribution, and fate of methane released from the upper continental slope of the U.S. Mid‐Atlantic Bight, where hundreds of gas seeps have been discovered between the shelf break and ~1,600 m water depth. Using physical, chemical, and isotopic analyses, we identify two main sources of methane in the water column: seafloor gas seeps and in situ aerobic methanogenesis which primarily occurs at 100–200 m depth in the water column. Stable isotopic analyses reveal that water samples collected at all depths were significantly impacted by aerobic methane oxidation, the dominant methane sink in this region, with the average fraction of methane oxidized being 50%. Due to methane oxidation in the deeper water column, below 200 m depth, surface concentrations of methane are influenced more by methane sources found near the surface (0–10 m depth) and in the subsurface (10–200 m depth), rather than seafloor emissions at greater depths.
    Description: This research was supported by DOE Grant (DE‐FE0028980) to J. K. and by DOE‐USGS Interagency Agreement DE‐FE0026195.
    Description: 2020-10-04
    Keywords: Methane ; Ocean ; Isotopes ; Gas seeps ; Mid Atlantic bight ; Oxidation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-10-20
    Description: Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(7), (2021): e2020JC016899, https://doi.org/10.1029/2020JC016899.
    Description: Circulation in the nearshore region, which is critical for material transport along the coast and between the surf zone and the inner shelf, includes strong vortical motions. The horizontal length scales and vertical structure associated with vortical motions are not well documented on alongshore-variable beaches. Here, a three-dimensional phase-resolving numerical model, Simulating WAves till SHore (SWASH), is compared with surfzone waves and flows on a barred beach, and is used to investigate surfzone eddies. Model simulations with measured bathymetry reproduce trends in the mean surfzone circulation patterns, including alongshore currents and rip current circulation cells observed for offshore wave heights from 0.5 to 2.0 m and incident wave directions from 0 to 15° relative to shore normal. The length scales of simulated eddies, quantified using the alongshore wavenumber spectra of vertical vorticity, suggest that increasing wave directional spread intensifies small-scale eddies ( (10) m). Simulations with bathymetric variability ranging from alongshore uniform to highly alongshore variable indicate that large-scale eddies ( (100) m) may be enhanced by surfzone bathymetric variability, whereas small-scale eddies ( (10) m) are less dependent on bathymetric variability. The simulated vertical dependence of the magnitude and mean length scale (centroid) of the alongshore wavenumber spectra of vertical vorticity and very low-frequency (f ≈ 0.005 Hz) currents is weak in the outer surf zone, and decreases toward the shoreline. The vertical dependence in the simulations may be affected by the vertical structure of turbulence, mean shear, and bottom boundary layer dynamics.
    Description: Support was provided by the University of Washington Royalty Research Fund, the National Science Foundation, the Office of Naval Research, a National Defense Science and Engineering Graduate Fellowship, a Vannevar Bush Faculty Fellowship, the United States Army Corps of Engineers, the United States Coastal Research Program, Sea Grant, and the WHOI Investment in Science Program.
    Description: 2021-12-26
    Keywords: Surf zone ; Eddies ; Circulation ; Vorticity ; Wave breaking ; Modeling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-10-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Gehrels, W. R., Dangendorf, S., Barlow, N. L. M., Saher, M. H., Long, A. J., Woodworth, P. L., Piecuch, C. G., & Berk, K. A preindustrial sea-level rise hotspot along the Atlantic Coast of North America. Geophysical Research Letters, 47(4), (2020): e2019GL085814, doi:10.1029/2019GL085814.
    Description: The Atlantic coast of North America north of Cape Hatteras has been proposed as a “hotspot” of late 20th century sea‐level rise. Here we test, using salt‐marsh proxy sea‐level records, if this coast experienced enhanced sea‐level rise over earlier multidecadal‐centennial periods. While we find in agreement with previous studies that 20th century rates of sea‐level change were higher compared to rates during preceding centuries, rates of 18th century sea‐level rise were only slightly lower, suggesting that the “hotspot” is a reoccurring feature for at least three centuries. Proxy sea‐level records from North America (Iceland) are negatively (positively) correlated with centennial changes in the North Atlantic Oscillation. They are consistent with sea‐level “fingerprints” of Arctic ice melt, and we therefore hypothesize that sea‐level fluctuations are related to changes in Arctic land‐ice mass. Predictions of future sea‐level rise should take into account these long‐term fluctuating rates of natural sea‐level change.
    Description: This work is funded by the Natural Environment Research Council (grant NE/G003440/1). All radiocarbon dating was supported by the Natural Environment Research Council Radiocarbon Facility (allocations 1490.0810, 1566.0511, 1604.0112). Mark Wood assisted with fieldwork. Rob Scaife analyzed pollen data for core SN‐3.3. Sönke Dangendorf and Kevin Berk acknowledge the University of Siegen for their support within the PEPSEA project. Christopher Piecuch was supported by National Science Foundation awards OCE‐1558966 and OCE‐1834739. We thank project members Miguel Ángel Morales Maqueda, Chris Hughes, Vassil Roussenov and Ric Williams for valuable discussions. We are grateful to the International Space Science Institute (ISSI; Bern, Switzerland) for support of the International Team “Towards a unified Sea Level Record”. Data used in this paper are freely available online (https://www.doi.org/10/dgvq).
    Keywords: Sea level ; Late Holocene ; Common Era ; Climate ; Ocean
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-10-26
    Description: © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Peña‐Molino, B., Sloyan, B., Nikurashin, M., Richet, O., & Wijffels, S. Revisiting the seasonal cycle of the Timor throughflow: impacts of winds, waves and eddies. Journal of Geophysical Research: Oceans, 127, (2022): e2021JC018133, https://doi.org/10.1029/2021jc018133.
    Description: The tropical Pacific and Indian Oceans are connected via a complex system of currents known as the Indonesian Throughflow (ITF). More than 30% of the variability in the ITF is linked to the seasonal cycle, influenced by the Monsoon winds. Despite previous efforts, a detailed knowledge of the ITF response to the components of the seasonal forcing is still lacking. Here, we describe the seasonal cycle of the ITF based on new observations of velocity and properties in Timor Passage, satellite altimetry and a high-resolution regional model. These new observations reveal a complex mean and seasonally varying flow field. The amplitude of the seasonal cycle in volume transport is approximately 6 Sv. The timing of the seasonal cycle, with semi-annual maxima (minima) in May and December (February and September), is controlled by the flow below 600 m associated with semi-annual Kelvin waves. The transport of thermocline waters (〈300 m) is less variable than the deep flow but larger in magnitude. This top layer is modulated remotely by cycles of divergence in the Banda Sea, and locally through Ekman transport, coastal upwelling, and non-linearities of the flow. The latter manifests through the formation of eddies that reduce the throughflow during the Southeast Monsoon, when is expected to be maximum. While the reduction in transport associated with the eddies is small, its impact on heat transport is large. These non-linear dynamics develop over small scales (〈10 km), and without high enough resolution, both observations and models will fail to capture them adequately.
    Description: B. Peña-Molino, B. M. Sloyan, M. Nikurashin, and O. Richet were supported by the Centre for Southern Hemisphere Oceans Research (CSHOR). CSHOR is a joint research Centre for Southern Hemisphere Ocean Research between QNLM and CSIRO. S. E. Wijffels was supported by the US National Science Foundation Grant No. OCE-1851333.
    Keywords: Indonesian Throughflow ; Timor Passage ; Seasonal cycle ; Moorings ; Transport ; Eddies
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.
    Description: In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.
    Description: This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112.
    Keywords: Ocean ; Arctic ; Internal waves ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...