ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Artikel  (95)
  • In situ oceanic observations  (45)
  • Diapycnal mixing  (20)
  • 04.08. Volcanology  (19)
  • Blocking
  • Upwelling/downwelling
  • American Meteorological Society  (75)
  • Springer  (16)
  • Blackwell Publishing Ltd
  • Società Italiana di Mineralogia e Petrologia
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2024  (16)
  • 2020-2023  (37)
  • 2020-2022  (5)
  • 2015-2019  (37)
  • 1935-1939
Sammlung
  • Artikel  (95)
Datenquelle
Schlagwörter
Verlag/Herausgeber
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2020-11-18
    Beschreibung: Volcanic crises are complex and especially challenging to manage. Volcanic unrest is characterised by uncertainty about whether an eruption will or will not take place, as well as its possible location, size and evolution. Planning is further complicated by the range of potential hazards and the variety of disciplines involved in forecasting and responding to volcanic emergencies. Effective management is favoured at frequently active volcanoes, owing to the experience gained through the repeated ‘testing’ of systems of communication. Even when plans have not been officially put in place, the groups involved tend to have an understanding of their roles and responsibilities and those of others. Such experience is rarely available at volcanoes that have been quiescent for several generations. Emergency responses are less effective, not only because of uncertainties about the volcanic system itself, but also because scientists, crisis directors, managers and the public are inexperienced in volcanic unrest. In such situations, tensions and misunderstandings result in poor communication and have the potential to affect decision making and delay vital operations. Here we compare experiences on communi- cating information during crises on volcanoes reawakening after long repose (El Hierro in the Canary Islands) and in frequent eruption (Etna and Stromboli in Sicily). The results provide a basis for enhancing commu- nication protocols during volcanic emergencies.
    Beschreibung: Published
    Beschreibung: 1-17
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: N/A or not JCR
    Schlagwort(e): Etna volcano ; Stromboli volcano ; Canary Islands ; volcanic emergencies ; communication ; volcanic crisis ; Procedures for Communications During Volcanic Emergencies ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-02-03
    Beschreibung: Ocean acidification is one of the most dramatic effects of the massive atmospheric release of anthropogenic carbon dioxide (CO2) that has occurred since the Industrial Revolution, although its effects on marine ecosystems are not well understood. Submarine volcanic hydrothermal fields have geochemical conditions that provide opportunities to characterise the effects of elevated levels of seawater CO2 on marine life in the field. Here, we review the geochemical aspects of shallow marine CO2-rich seeps worldwide, focusing on both gas composition and water chemistry. We then describe the geochemical effects of volcanic CO2 seepage on the overlying seawater column. We also present new geochemical data and the first synthesis of marine biological community changes from one of the best-studied marine CO2 seep sites in the world (off Vulcano Island, Sicily). In areas of intense bubbling, extremely high levels of pCO2 ([10,000 latm) result in low seawater pH (\6) and undersaturation of aragonite and calcite in an area devoid of calcified organisms such as shelled molluscs and hard corals. Around 100–400 m away from the Vulcano seeps the geochemistry of the seawater becomes analogous to future ocean acidification conditions with dissolved carbon dioxide levels falling from 900 to 420 latm as seawater pH rises from 7.6 to 8.0. Calcified species such as coralline algae and sea urchins fare increasingly well as sessile communities shift from domination by a few resilient species (such as uncalcified algae and polychaetes) to a diverse and complex community (including abundant calcified algae and sea urchins) as the seawater returns to ambient levels of CO2. Laboratory advances in our understanding of species sensitivity to high CO2 and low pH seawater, reveal how marine organisms react to simulated ocean acidification conditions (e.g., using energetic tradeoffs for calcification, reproduction, growth and survival). Research at volcanic marine seeps, such as those off Vulcano, highlight consistent ecosystem responses to rising levels of seawater CO2, with the simplification of food webs, losses in functional diversity and reduced provisioning of goods and services for humans.
    Beschreibung: Published
    Beschreibung: 93–115
    Beschreibung: 2IT. Laboratori analitici e sperimentali
    Beschreibung: JCR Journal
    Schlagwort(e): Calcifying species , Ecosystem effects, Natural analogues, Submarine hydrothermalism ; 03. Hydrosphere ; 03.04. Chemical and biological ; 03.02. Hydrology ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2021-06-14
    Beschreibung: Fumarolic gases and dissolved gases in some thermal waters of Ischia were analyzed.
    Beschreibung: GNV-CNR
    Beschreibung: Published
    Beschreibung: 967-973
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: N/A or not JCR
    Schlagwort(e): Gas geochemistry, fumarolic gas, Ischia ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2021-01-22
    Beschreibung: Numerical models of pyroclastic currents are widely used for fundamental research and for hazard and risk modeling that supports decision-making and crisis management. Because of their potential high impact, the credibility and adequacy of models and simulations needs to be assessed by means of an established, consensual validation process. To define a general validation framework for pyroclastic current models, we propose to follow a similar terminology and the same methodology that was put forward by Oberkampf and Trucano (Prog Aerosp Sci, 38, 2002) for the validation of computational fluid dynamics (CFD) codes designed to simulate complex engineering systems. In this framework, the term validation is distinguished from verification (i.e., the assessment of numerical solution quality), and it is used to indicate a continuous process, in which the credibility of a model with respect to its intended use(s) is progressively improved by comparisons with a suite of ad hoc experiments. The method- ology is based on a hierarchical process of comparing computational solutions with experimental datasets at different levels of complexity, from unit problems (well-known, simple CFD problems), through benchmark cases (complex setups having well constrained initial and boundary conditions) and subsystems (decoupled processes at the full scale), up to the fully coupled natural system. Among validation tests, we also further distinguish between confirmation (comparison of model results with a single, well-constrained dataset) and benchmarking (inter-comparison among different models of complex experimental cases). The latter is of particular interest in volcanology, where different modeling approaches and approximations can be adopted to deal with the large epistemic uncertainty of the natural system.
    Beschreibung: Published
    Beschreibung: 51
    Beschreibung: 5V. Processi eruttivi e post-eruttivi
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: JCR Journal
    Schlagwort(e): pyroclastic currents, benchmark, validation ; 04.08. Volcanology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2020-11-12
    Beschreibung: Slope dynamics in volcanic environments comprise a wide spectrum of phenomena, from large lateral collapse to shallow debris remobilization, which may represent a major threat for human communities and infrastructures. Many volcanos built up from the ocean floor and large portions of the volcano edifice are submerged. In these settings, only the edifice’s summit can be investigated by terrestrial remote sensing and in-situ approaches. Growth and destruction, including tectonics and gravitational phenomena, affect entire volcano flanks and are not limited to the physical boundary of the sea level but could comprise their subaqueous parts.
    Beschreibung: Published
    Beschreibung: 2615–2618
    Beschreibung: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Beschreibung: JCR Journal
    Schlagwort(e): volcanoes ; flanks ; volcano-tectonics ; structure ; collapse ; stability ; 04.08. Volcanology ; 05.08. Risk
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2021-01-22
    Beschreibung: We have used a three-dimensional, non-equilibrium multiphase flow numerical model to simulate subplinian eruption scenarios at La Soufrière de Guadeloupe (Lesser Antilles, France). Initial and boundary conditions for computer simulations were set on the basis of independent estimates of eruption source parameters (i.e. mass eruption rate, volatile content, temperature, grain size distribution) from a field reconstruction of the 1530 CE subplinian eruption. This event is here taken as a reference scenario for hazard assessment at La Soufrière de Guadeloupe. A parametric study on eruption source parameters allowed us to quantify their influence on the simulated dynamics and, in particular, the increase of the percentage of column collapse and pyroclastic density current (PDC) intensity, at constant mass eruption rate, with variable vent diameter. Numerical results enabled us to quantify the effects of the proximal morphology on distributing the collapsing mass around the volcano and into deep and long valleys and to estimate the areas invaded by PDCs, their associated temperature and dynamic pressure. Significant impact (temperature 〉 300 °C and dynamic pressure 〉 1 kPa) in the inhabited region around the volcano is expected for fully collapsing conditions and mass eruption rates 〉 2 × 107 kg/s. We thus combine this spatial distribution of temperature and dynamic pressure with an objective consideration of model-related uncertainty to produce preliminary PDC hazard maps for the reference scenario. In such a representation, we identify three areas of varying degree of susceptibility to invasion by PDCs-very likely to be invaded (and highly impacted), susceptible to invasion (and moderately impacted), and unlikely to be invaded (or marginally impacted). The study also raises some key questions about the use of deterministic scenario simulations for hazard assessment, where probability distributions and uncertainties are difficult to estimate. Use of high-performance computing techniques will in part allow us to overcome such difficulties, but the problem remains open in a scientific context where validation of numerical models is still, necessarily, an incomplete and ongoing process. Nevertheless, our findings provide an important contribution to the quantitative assessment of volcanic hazard and risk at La Soufrière de Guadeloupe particularly in the context of the current unrest of the volcano and the need to prepare for a possible future reawakening of the volcano that could culminate in a magmatic explosive eruption.
    Beschreibung: Published
    Beschreibung: 76
    Beschreibung: 5V. Processi eruttivi e post-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): Hazard assessment; La Soufrière de Guadeloupe; Numerical simulation; Pyroclastic density currents; Subplinian eruption ; 04.08. Volcanology ; 05.01. Computational geophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2019-03-26
    Beschreibung: The shallow vertical temperature profile has been measured in the proximity of an eruptive fissure far about 4 km north-northeast from Mt. Etna central craters. The monitoring site was a steam-heated soil lying between a group of flank fractures on the upper northeast flank of Mt. Etna (Italy), i.e., on the northeast rift. We chose this area because it was close to an eruptive fissure, that opened in 2002 and extended from about 2500 to about 1500 m a.s.l., with our aim being to determine a connection between this fracture system and the ongoing volcanic activity. Heat flux anomalies from the ground from September 2009 to September 2012 were evaluated. Changes in the hydrothermal release—which can be related to variations in volcanic activity—are discussed and compared to the published geophysical data. The heat flux ranges varied during the pre-eruptive (from about 7 to 38 W×m−2), syn-eruptive (from about 3 to 49W×m−2), and post-eruptive phases, with the heat released being lowest at the latter phase (from about 1 to 20 W×m−2). Moreover, the heat flux time variation was strongly correlated with the eruption rate from the new southeast crater between January 2011 and April 2012. The migration of magma through active conduits acts as a changing heating source for steam-heated soils located above the active fractures. Our findings suggest that tracking the heat flux above active fractures constitutes a useful investigation field for low-cost thermal monitoring of volcanic activity. Time variations in their emissions could highlight the relationship between a hydrothermal circuit and the local network of fractures, possibly indicating variation in the structural weakness of a volcanic edifice. Continuous monitoring of heat flux, combined with a realistic model, would contribute to multidisciplinary investigations aimed at evaluating changes in volcano dynamics.
    Beschreibung: National Department of Civil Protection
    Beschreibung: Published
    Beschreibung: 31
    Beschreibung: 5V. Processi eruttivi e post-eruttivi
    Beschreibung: JCR Journal
    Schlagwort(e): Volcanic activity ; Ground temperature ; Heat flux ; Continuous monitoring ; 04.08. Volcanology ; 05.04. Instrumentation and techniques of general interest
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 32 (2015): 842–854, doi:10.1175/JTECH-D-14-00215.1.
    Beschreibung: The time and space variability of wave transformation through a tidal inlet is investigated with radar remote sensing. The frequency of wave breaking and the net wave breaking dissipation at high spatial resolution is estimated using image sequences acquired with a land-based X-band marine radar. Using the radar intensity data, transformed to normalized radar cross section σ0, the temporal and spatial distributions of wave breaking are identified using a threshold developed via the data probability density function. In addition, the inlet bathymetry is determined via depth inversion of the radar-derived frequencies and wavenumbers of the surface waves using a preexisting algorithm (cBathy). Wave height transformation is calculated through the 1D cross-shore energy flux equation incorporating the radar-estimated breaking distribution and bathymetry. The accuracy of the methodology is tested by comparison with in situ wave height observations over a 9-day period, obtaining correlation values R = 0.68 to 0.96, and root-mean-square errors from 0.05 to 0.19 m. Predicted wave forcing, computed as the along-inlet gradient of the cross-shore radiation stress was onshore during high-wave conditions, in good agreement (R = 0.95) with observations.
    Beschreibung: These data were collected as part of a joint field program, Data Assimilation and Remote Sensing for Littoral Applications (DARLA) and Rivers and Inlets (RIVET-1), both funded by the Office of Naval Research. The authors were funded through the Office of Naval Research Grant N00014-10-1-0932 and the Office of the Assistant Secretary of Defense for Research and Engineering.
    Beschreibung: 2015-10-01
    Schlagwort(e): Wave breaking ; Waves, oceanic ; Wind waves ; In situ oceanic observations ; Radars/Radar observations ; Remote sensing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2018. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 35 (2018): 893-910, doi:10.1175/JTECH-D-17-0102.1.
    Beschreibung: Rotary sidescan sonars are widely used to image the seabed given their high temporal and spatial resolution. This high resolution is necessary to resolve bedform dynamics and evolution; however, sidescan sonars do not directly measure bathymetry, limiting their utility. When sidescan sonars are mounted close to the seabed, bedforms may create acoustical “shadows” that render previous methods that invert the backscatter intensity to estimate bathymetry and are based on the assumption of a fully insonified seabed ineffective. This is especially true in coastal regions, where bedforms are common features whose large height relative to the water depth may significantly influence the surrounding flow. A method is described that utilizes sonar shadows to estimate bedform height and asymmetry. The method accounts for the periodic structure of bedform fields and the projection of the shadows onto adjacent bedforms. It is validated with bathymetric observations of wave-orbital ripples, with wavelengths ranging from 0.3 to 0.8 m, and tidally reversing megaripples, with wavelengths from 5 to 8 m. In both cases, bathymetric-measuring sonars were deployed in addition to a rotary sidescan sonar to provide a ground truth; however, the bathymetric sonars typically measure different and smaller areas than the rotary sidescan sonar. The shadow-based method and bathymetric-measuring sonar data produce estimates of bedform height that agree by 34.0% ± 27.2% for wave-orbital ripples and 16.6% ± 14.7% for megaripples. Errors for estimates of asymmetry are 1.9% ± 2.1% for wave-orbital ripples and 11.2% ± 9.6% for megaripples.
    Beschreibung: This project is partially supported by the National Science Foundation through a Graduate Research Fellowship and a Massachusetts Institute of Technology Energy Initiative Fellowship. Additionally, funding used in developing the method was obtained from NSF Grants OCE-1634481 and OCE-1635151. Field work was funded under ONR Grants N00014-06-10329 and N00014-13-1-0364.
    Schlagwort(e): Ocean ; Acoustic measurements/effects ; Algorithms ; In situ oceanic observations ; Instrumentation/sensors
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2022-05-25
    Beschreibung: Author Posting. © American Meteorological Society, 2015. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 45 (2015): 966–987, doi:10.1175/JPO-D-14-0110.1.
    Beschreibung: A key remaining challenge in oceanography is the understanding and parameterization of small-scale mixing. Evidence suggests that topographic features play a significant role in enhancing mixing in the Southern Ocean. This study uses 914 high-resolution hydrographic profiles from novel EM-APEX profiling floats to investigate turbulent mixing north of the Kerguelen Plateau, a major topographic feature in the Southern Ocean. A shear–strain finescale parameterization is applied to estimate diapycnal diffusivity in the upper 1600 m of the ocean. The indirect estimates of mixing match direct microstructure profiler observations made simultaneously. It is found that mixing intensities have strong spatial and temporal variability, ranging from O(10−6) to O(10−3) m2 s−1. This study identifies topographic roughness, current speed, and wind speed as the main factors controlling mixing intensity. Additionally, the authors find strong regional variability in mixing dynamics and enhanced mixing in the Antarctic Circumpolar Current frontal region. This enhanced mixing is attributed to dissipating internal waves generated by the interaction of the Antarctic Circumpolar Current and the topography of the Kerguelen Plateau. Extending the mixing observations from the Kerguelen region to the entire Southern Ocean, this study infers a large water mass transformation rate of 17 Sverdrups (Sv; 1 Sv ≡ 106 m3 s−1) across the boundary of Antarctic Intermediate Water and Upper Circumpolar Deep Water in the Antarctic Circumpolar Current. This work suggests that the contribution of mixing to the Southern Ocean overturning circulation budget is particularly significant in fronts.
    Beschreibung: AM was supported by the joint CSIRO–University of Tasmania Quantitative Marine Science (QMS) program and the 2009 CSIRO Wealth from Ocean Flagship Collaborative Fund. BMS was supported by the Australian Climate Change Science Program, jointly funded by the Department of the Environment and CSIRO. KLPs salary support was provided by Woods Hole Oceanographic Institution bridge support funds.
    Beschreibung: 2015-10-01
    Schlagwort(e): Geographic location/entity ; Southern Ocean ; Circulation/ Dynamics ; Diapycnal mixing ; Fronts ; Ocean circulation ; Topographic effects ; Atm/Ocean Structure/ Phenomena ; Mixing
    Repository-Name: Woods Hole Open Access Server
    Materialart: Article
    Format: application/pdf
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...