ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lunar and Planetary Science and Exploration  (269)
  • 2005-2009  (269)
  • 1950-1954
  • 2007  (269)
Collection
Years
  • 2005-2009  (269)
  • 1950-1954
Year
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Description: The NASA STARDUST mission collected thousands of particles from Comet Wild 2 that are now being studied by two hundred scientists around the world. The spacecraft captured the samples during a close flyby of the comet in 2004 and returned them to Earth with a dramatic entry into the atmosphere early in 2006. The precious cargo of comet dust is being studied to determine new information about the origin of the Sun and planets. The comet formed at the edge of the solar system, beyond the orbit of Neptune, and is a sample of the material from which the solar system was formed. One of the most dramatic early findings from the mission was that a comet that formed in the coldest place in the solar system contained minerals that formed in the hottest place in the solar system. The comet samples are telling stories of fire and ice and they providing fascinating and unexpected information about our origins.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-04-04
    Description: The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar UV radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon s surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17, and Luna 24 missions, as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-11
    Description: The Martian ionosphere's local total electron content (TEC) and the neutral atmosphere scale height can be derived from radar echoes reflected from the surface of the planet. We report the global distribution of the TEC by analyzing more than 750,000 echoes of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS). This is the first direct measurement of the TEC of the Martian ionosphere. The technique used in this paper is a novel 'transmission-mode' sounding of the ionosphere of Mars in contrast to the Active Ionospheric Sounding experiment (AIS) on MARSIS, which generally operates in the reflection mode. This technique yields a global map of the TEC for the Martian ionosphere. The radar transmits a wideband chirp signal that travels through the ionosphere before and after being reflected from the surface. The received waves are attenuated, delayed and dispersed, depending on the electron density in the column directly below the spacecraft. In the process of correcting the radar signal, we are able to estimate the TEC and its global distribution with an unprecedented resolution of about 0.1 deg in latitude (5 km footprint). The mapping of the relative geographical variations in the estimated nightside TEC data reveals an intricate web of high electron density regions that correspond to regions where crustal magnetic field lines are connected to the solar wind. Our data demonstrates that these regions are generally but not exclusively associated with areas that have magnetic field lines perpendicular to the surface of Mars. As a result, the global TEC map provides a high-resolution view of where the Martian crustal magnetic field is connected to the solar wind. We also provide an estimate of the neutral atmospheric scale height near the ionospheric peak and observe temporal fluctuations in peak electron density related to solar activity.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geophysical Research Letters; Volume 34; 2007
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-11
    Description: Iapetus has preserved evidence that constrains the modeling of its geophysical history from the time of its accretion until now. The evidence is (a) its present 79.33-day rotation or spin rate, (b) its shape that corresponds to the equilibrium figure for a hydrostatic body rotating with a period of approximately 16 h, and (c) its high, equatorial ridge, which is unique in the Solar System. This paper reports the results of an investigation into the coupling between Iapetus' thermal and orbital evolution for a wide range of conditions including the spatial distributions with time of composition, porosity, short-lived radioactive isotopes (SLRI), and temperature. The thermal model uses conductive heat transfer with temperature-dependent conductivity. Only models with a thick lithosphere and an interior viscosity in the range of about the water ice melting point can explain the observed shape. Short-lived radioactive isotopes provide the heat needed to decrease porosity in Iapetus? early history. This increases thermal conductivity and allows the development of the strong lithosphere that is required to preserve the 16-h rotational shape and the high vertical relief of the topography. Long-lived radioactive isotopes and SLRI raise internal temperatures high enough that significant tidal dissipation can start, and despin Iapetus to synchronous rotation. This occurred several hundred million years after Iapetus formed. The models also constrain the time when Iapetus formed because the successful models are critically dependent upon having just the right amount of heat added by SLRI decay in this early period. The amount of heat available from short-lived radioactivity is not a free parameter but is fixed by the time when Iapetus accreted, by the canonical concentration of Al-26, and, to a lesser extent, by the concentration of Fe-60. The needed amount of heat is available only if Iapetus accreted between 2.5 and 5.0Myr after the formation of the calcium aluminum inclusions as found in meteorites. Models with these features allow us to explain Iapetus? present synchronous rotation, its fossil 16-h shape, and the context within which the equatorial ridge arose.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Icarus; Volume 190; 179-202
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-11
    Description: Shock recovery experiments to determine whether magnetite could be produced by the decomposition of iron-carbonate were initiated. Naturally occurring siderite was first characterized by electron microprobe (EMP), transmission electron microscopy (TEM), Mossbauer spectroscopy, and magnetic susceptibility measurements to be sure that the starting material did not contain detectable magnetite. Samples were shocked in tungsten-alloy holders (W=90%, Ni=6%, Cu=4%) to further insure that any iron phases in the shock products were contributed by the siderite rather than the sample holder. Each sample was shocked to a specific pressure between 30 to 49 GPa. Previously reported results of TEM analyses on 49 GPa experiments indicated the presence of nano-phase spinel-structured iron oxide. Transformation of siderite to magnetite as characterized by TEM was found in the 49 GPa shock experiment. Compositions of most magnetites are greater than 50% Fe sup(+2) in the octahedral site of the inverse spinel structure. Magnetites produced in shock experiments display the same range of single-domain, superparamagnetic sizes (approx. 50 100 nm), compositions (100% magnetite to 80% magnetite-20% magnesioferrite), and morphologies (equant, elongated, euhedral to subhedral) as magnetites synthesized by Golden et al. (2001) or magnetites grown naturally by MV1 magnetotactic bacteria, and as the magnetites in Martian meteorite ALH84001. Fritz et al. (2005) previously concluded that ALH84001 experienced approx. 32 GPa pressure and a resultant thermal pulse of approx. 100 - 110 C. However, ALH84001 contains evidence of local temperature excursions high enough to 1 melt feldspar, pyroxene, and a silica-rich phase. This 49 GPa experiment demonstrates that magnetite can be produced by the shock decomposition of siderite as a result of local heating to greater than 470 C. Therefore, magnetite in the rims of carbonates in Martian meteorite ALH84001 could be a product of shock devolatilization of siderite as well.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-11
    Description: The Imager for Mars Pathfinder (IMP) was a mast-mounted instrument on the Mars Pathfinder lander which landed on Mars Ares Vallis floodplain on July 4, 1997. During the 83 sols of Mars Pathfinders landed operations, the IMP collected over 16,600 images. Multispectral images were collected using twelve narrowband filters at wavelengths between 400 and 1000 nm in the visible and near infrared (VNIR) range. The IMP provided VNIR spectra of the materials surrounding the lander including rocks, bright soils, dark soils, and atmospheric observations. During the primary mission, only a single primary rock spectral class, Gray Rock, was recognized; since then, Black Rock, has been identified. The Black Rock spectra have a stronger absorption at longer wavelengths than do Gray Rock spectra. A number of coated rocks have also been described, the Red and Maroon Rock classes, and perhaps indurated soils in the form of the Pink Rock class. A number of different soil types were also recognized with the primary ones being Bright Red Drift, Dark Soil, Brown Soil, and Disturbed Soil. Examination of spectral parameter plots indicated two trends which were interpreted as representing alteration products formed in at least two different environmental epochs of the Ares Vallis area. Subsequent analysis of the data and comparison with terrestrial analogs have supported the interpretation that the rock coatings provide evidence of earlier martian environments. However, the presence of relatively uncoated examples of the Gray and Black rock classes indicate that relatively unweathered materials can persist on the martian surface.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-11
    Description: Multispectral imaging from the Panoramic Camera (Pancam) instruments on the Mars Exploration Rovers Spirit and Opportunity has provided important new insights about the geology and geologic history of the rover landing sites and traverse locations in Gusev crater and Meridiani Planum. Pancam observations from near-UV to near-IR wavelengths provide limited compositional and mineralogic constraints on the presence abundance, and physical properties of ferric- and ferrous-iron bearing minerals in rocks, soils, and dust at both sites. High resolution and stereo morphologic observations have also helped to infer some aspects of the composition of these materials at both sites. Perhaps most importantly, Pancam observations were often efficiently and effectively used to discover and select the relatively small number of places where in situ measurements were performed by the rover instruments, thus supporting and enabling the much more quantitative mineralogic discoveries made using elemental chemistry and mineralogy data. This chapter summarizes the major compositionally- and mineralogically-relevant results at Gusev and Meridiani derived from Pancam observations. Classes of materials encountered in Gusev crater include outcrop rocks, float rocks, cobbles, clasts, soils, dust, rock grindings, rock coatings, windblown drift deposits, and exhumed whitish/yellowish salty soils. Materials studied in Meridiani Planum include sedimentary outcrop rocks, rock rinds, fracture fills, hematite spherules, cobbles, rock fragments, meteorites, soils, and windblown drift deposits. This chapter also previews the results of a number of coordinated observations between Pancam and other rover-based and Mars-orbital instruments that were designed to provide complementary new information and constraints on the mineralogy and physical properties of martian surface materials.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-11
    Description: Home Plate is a layered plateau in Gusev crater on Mars. It is composed of clastic rocks of moderately altered alkali basalt composition, enriched in some highly volatile elements. A coarse-grained lower unit is overlain by a finer-grained upper unit. Textural observations indicate that the lower strata were emplaced in an explosive event, and geochemical considerations favor an explosive volcanic origin over an impact origin. The lower unit likely represents accumulation of pyroclastic materials, while the upper unit may represent eolian reworking of the same pyroclastic materials.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-11
    Description: Aluminium foils were used on Stardust to stabilize the aerogel specimens in the modular collector tray. Part of these foils were fully exposed to the flux of cometary grains emanating from Wild 2. Because the exposed part of these foils had to be harvested before extraction of the aerogel, numerous foil strips some 1.7 mm wide and 13 or 33 mm long were generated during Stardusts's Preliminary Examination (PE). These strips are readily accommodated in their entirety in the sample chambers of modern SEMs, thus providing the opportunity to characterize in situ the size distribution and residue composition - employing EDS methods - of statistically more significant numbers of cometary dust particles compared to aerogel, the latter mandating extensive sample preparation. We describe here the analysis of nearly 300 impact craters and their implications for Wild 2 dust.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-11
    Description: This paper describes our flight aboard NASA's C9 Weightless Wonder, more affectionately known as The Vomit Comet. The C9 is NASA's aircraft that creates multiple periods of microgravity by conducting a series of parabolic maneuvers over the Gulf of Mexico.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-06-11
    Description: Recent chondritic meteorite finds in Antarctica have included CB, CH, CK and R chondrites, the latter two of which are among the most oxidized materials found in meteorite collections. In this study we present petrographic and mineralogic data for a suite of CK and R chondrites, and compare to previous studies of CK and R, as well as some CV chondrites. In particular we focus on the opaque minerals magnetite, chromite, sulfides, and metal as well as unusual silicates hornblende, biotite, and plagioclase. Several mineral thermometers and oxy-barometers are utilized to calculate temperatures and oxygen fugacities for these unusual meteorites compared to other more common chondrite groups. R and CK chondrites show lower equilibrium temperatures than ordinary chondrites, even though they are at similar petrologic grades (e.g., thermal type 6). Oxygen fugacity calculated for CV and R chondrites ranges from values near the iron-wustite (IW) oxygen buffer to near the fayalite-magnetite-quartz (FMQ) buffer. In comparison, the fO2 recorded by ilmenite-magnetite pairs from CK chondrites are much higher, from FMQ+3.1 to FMQ+5.2. The latter values are the highest recorded for materials in meteorites, and place some constraints on the formation conditions of these magnetite-bearing chondrites. Differences between mineralogic and O isotopic compositions of CK and R chondrites suggest two different oxidation mechanisms, which may be due to high and low water: rock ratios during metamorphism, or to different fluid compositions, or both.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-06-11
    Description: SIMS U-Pb analyses show that zircons from breccias from Apollo 14 and Apollo 17 have essentially identical age distributions in the range 4350 to 4200 Ma but, whereas Apollo 14 zircons additionally show ages from 4200 to 3900 Ma, the Apollo 17 samples have no zircons with ages 〈4200 Ma. The zircon results also show an uneven distribution with distinct peaks of magmatic activity. In explaining these observations we propose that periodic episodes of KREEP magmatism were generated from a primary reservoir of KREEP magma, which contracted over time towards the centre of Procellarum KREEP terrane.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-06-11
    Description: A viewgraph describing the food system that NASA is developing for Manned Mars Missions is shown. The topics include: 1) The President's Vision for U.S. Space Exploration -January 14, 2004; 2) Introducing Orion (and Ares); 3) Mercury (1961-1963); 4) Gemini (1965-1966); 5) Apollo (1968-1972); 6) Skylab (1973-1974); 7) Shuttle/Mir (1995-1998); 8) Shuttle (1981-present) International Space Station (2000-present); 9) NASA Stored Food System; 10) Advanced Food Technology; 11) Orion Missions; 12) Orion Challenges; 13) Food Packaging; 14) Mars Mission Assumptions; 15) Planetary Food System Selected Crops; 16) Food Processing Equipment Constraints; 17) Crew Involvement Constraints; 18) Advanced Food Technology Integration; 19) Research Highlights Internal; and 20) Research Highlights External.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-06-11
    Description: Systematic in-situ FTIR heating experiments of Tagish Lake meteorite grains have been performed in order to study thermal stability of chondritic organics. Some aliphatic model organic substances have also been used to elucidate effects of hydrous phyllosilicate minerals on the thermal stability of organics. The experimental results indicated that organic matter in the Tagish Lake meteorite might contain oxygenated aliphatic hydrocarbons which are thermally stable carbonyls such as ester and/or C=O in ring compounds. The presence of hydrous phyllosilicate minerals has a pronounced effect on the increase of the thermal stability of aliphatic and oxygenated functions. These oxygenated aliphatic organics in Tagish Lake can be formed during the aqueous alteration in the parent body and the formation temperature condition might be less than 200 C, based especially on the thermal stability of C-O components. The hydrous phyllosilicates might provide sites for organic globule formation and protected some organic decomposition
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-06-11
    Description: CR carbonaceous chondrites are of the major interest since they contain one of the most primitive organic matters. However, aqueous alteration has more or less overprinted their original features in a way that needed to be assessed. That was done in the present study by comparing the mineralogy of the most altered CR1 chondrite, GRO 95577, to a less altered CR2, Renazzo. Their modal analyses were achieved thanks to a new method, based on X-ray elemental maps acquired on electron microprobe, and on IDL image treatment. It allowed the collection of new data on the composition of Renazzo and confirmed the classification of GRO 95577 as a CR1. New alteration products for CRs, vermiculite and clinochlore, were observed. The homogeneity of the Fe-poor clays in the CR1 and the distinctive matrix composition in the two chondrites suggest a wide-range of aqueous alteration on CRs. The preservation of the outlines of the chondrules in GRO 95577 and the elemental transfers of Al, Fe and Ca throughout the chondrule and of Fe and S from the matrix to the chondrule favor the idea of an asteroidal location of the aqueous alteration. From their mineralogical descriptions and modal abundances, the element repartitions in Renazzo and GRO 95577 were computed. It indicates a possible relationship between these two chondrites via an isochemical alteration process. Knowing the chemical reactions that occurred during the alteration, it was thus possible to decipher the mineralogical modal abundances in the unaltered CR body.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Meteoritics and Planetary Science, projected release date Jan. 1, 2007
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-06-12
    Description: The lunar surface is covered with a thick layer of sub-micron/micron size dust grains formed by meteoritic impact over billions of years. The fine dust grains are levitated and transported on the lunar surface, as indicated by the transient dust clouds observed over the lunar horizon during the Apollo 17 mission. Theoretical models suggest that the dust grains on the lunar surface are charged by the solar ultraviolet (UV) radiation as well as the solar wind. Even without any physical activity, the dust grains are levitated by electrostatic fields and transported away from the surface in the near vacuum environment of the Moon. The current dust charging and levitation models, however, do not fully explain the observed phenomena. Since the abundance of dust on the Moon's surface with its observed adhesive characteristics has the potential of severe impact on human habitat and operations and lifetime of a variety of equipment, it is necessary to investigate the charging properties and the lunar dust phenomena in order to develop appropriate mitigating strategies. Photoelectric emission induced by the solar UV radiation with photon energies higher than the work function (WF) of the grain materials is recognized to be the dominant process for charging of the lunar dust, and requires measurements of the photoelectric yields to determine the charging and equilibrium potentials of individual dust grains. In this paper, we present the first laboratory measurements of the photoelectric efficiencies and yields of individual sub-micron/micron size dust grains selected from sample returns of Apollo 17 and Luna-24 missions as well as similar size dust grains from the JSC-1 simulants. The measurements were made on a laboratory facility based on an electrodynamic balance that permits a variety of experiments to be conducted on individual sub-micron/micron size dust grains in simulated space environments. The photoelectric emission measurements indicate grain size dependence with the yield increasing by an order of magnitude for grains of sub-micron to several micron size radii, at which it reaches asymptotic values. The yield for large size grains is found to be more than an order of magnitude higher than the bulk measurements on lunar fines reported in the literature.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Planetary and Space Science; Volume 55; No. 7-8; 953-965
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-12
    Description: Presents a supplemental video supporting the original conference presentation under the same title. The conference presentation discussed NASA's preparation for its return to the moon with the Lunar CRater Observation and Sensing Satellite (LCROSS) mission which will robotically seek to determine the presence of water ice at the Moon's South Pole. This secondary payload spacecraft will travel with the Lunar Reconnaissance Orbiter (LRO) satellite to the Moon on the same Atlas-V 401 Centaur rocket launched from Cape Canaveral Air Force Station, Florida. The 1000kg Secondary Payload budget is efficiently used to provide a highly modular and reconfigurable LCROSS Spacecraft with extensive heritage to accurately guide the expended Centaur into the crater. Upon separation, LCROSS flies through the impact plume, telemetering real-time images and characterizing water ice in the plume with infrared cameras and spectrometers. LCROSS then becomes a 700kg impactor itself, to provide a second opportunity to study the nature of the Lunar Regolith. LCROSS provides a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory. The video contains an animated simulation of the Centaur launch, LRO separation, LRO high resolution lunar survey, LCROSS mission elements and LCROSS impactor separation and impact observations.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-06
    Description: Vision tasks include: a) Complete the International Space Station; b) Safely fly the Space Shuttle until 2010; c) Develop and fly the Crew Exploration Vehicle (by 2014); d) Return to the moon (by 2020); e) Sustained and affordable human and robotic program; f) Develop innovative technologies, knowledge, and infrastructures; and g) Promote international and commercial participation.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2006 NASA Seal/Secondary Air System Workshop; Volume 1; 39-57; NASA/CP-2007-214995/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-12
    Description: NASA is preparing for its return to the moon with the Lunar CRater Observation and Sensing Satellite (LCROSS) mission. This secondary payload spacecraft will travel with the Lunar Reconnaissance Orbiter (LRO) satellite to the Moon on the same Atlas-V 401 Centaur rocket launched from Cape Canaveral Air Force Station, Florida. The LCROSS mission will robotically seek to determine the presence of water ice at the Moon's South Pole. The 1000kg Secondary Payload budget is efficiently used to provide a highly modular and reconfigurable LCROSS Spacecraft with extensive heritage to accurately guide the expended Centaur into the crater. Upon separation, LCROSS flies through the impact plume, telemetering real-time images and characterizing water ice in the plume with infrared cameras and spectrometers. LCROSS then becomes a 700kg impactor itself, to provide a second opportunity to study the nature of the Lunar Regolith. LCROSS provides a critical ground-truth for Lunar Prospector and LRO neutron and radar maps, making it possible to assess the total lunar water inventory. This presentation contains a reference to video animation of the LCROSS mission that will be covered separately.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-06-12
    Description: In January 2004, President Bush announced a new vision for space exploration. This included retirement of the current Space Shuttle fleet by 2010 and the development of new set of launch vehicles. The President's vision did not include significant increases in the NASA budget, so these development programs need to be cost conscious. Current trade study procedures address factors such as performance, reliability, safety, manufacturing, maintainability, operations, and costs. It would be desirable, however, to have increased insight into the cost factors behind each of the proposed system architectures. This paper reports on a set of component trade studies completed on the upper stage engine for the new launch vehicles. Increased insight into architecture costs was developed by including a Net Present Value (NPV) method and applying a set of associated risks to the base parametric cost data. The use of the NPV method along with the risks was found to add fidelity to the trade study and provide additional information to support the selection of a more robust design architecture.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2018-06-06
    Description: In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-11
    Description: The Mars Reconnaissance Orbiter (MRO) is the latest addition to the suite of missions on or orbiting Mars as part of the NASA Mars Exploration Program. Launched on 12 August 2005, the orbiter successfully entered Mars orbit on 10 March 2006 and finished aerobraking on 30 August 2006. Now in its near-polar, near-circular, low-altitude (approximately 300 km), 3 p.m. orbit, the spacecraft is operating its payload of six scientific instruments throughout a one-Mars-year Primary Science Phase (PSP) of global mapping, regional survey, and targeted observations. Eight scientific investigations were chosen for MRO, two of which use either the spacecraft accelerometers or tracking of the spacecraft telecom signal to acquire data needed for analysis. Six instruments, including three imaging systems, a visible-near infrared spectrometer, a shallow-probing subsurface radar, and a thermal-infrared profiler, were selected to complement and extend the capabilities of current working spacecraft at Mars. Whether observing the atmosphere, surface, or subsurface, the MRO instruments are designed to achieve significantly higher resolution while maintaining coverage comparable to the current best observations. The requirements to return higher-resolution data, to target routinely from a low-altitude orbit, and to operate a complex suite of instruments were major challenges successfully met in the design and build of the spacecraft, as well as by the mission design. Calibration activities during the seven-month cruise to Mars and limited payload operations during a three-day checkout prior to the start of aerobraking demonstrated, where possible, that the spacecraft and payload still had the functions critical to the science mission. Two critical events, the deployment of the SHARAD radar antenna and the opening of the CRISM telescope cover, were successfully accomplished in September 2006. Normal data collection began 7 November 2006 after solar conjunction. As part of its science mission, MRO will also aid identification and characterization of the most promising sites for future landed missions, both in terms of safety and in terms of the scientific potential for future discovery. Ultimately, MRO data will advance our understanding of how Mars has evolved and by which processes that change occurs, all within a framework of identifying the presence, extent, and role of water in shaping the planet s climate over time.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal Of Geophysical Research; Volume 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-11
    Description: The aeroheating environment of the Mars Reconnaissance Orbiter (MRO) has been analyzed using the direct simulation Monte Carlo and free-molecular techniques. The results of these analyses were used to develop an aeroheating database to be used for the preflight planning and the in-flight operations support for the aerobraking phase of the MRO mission. The aeroheating predictions calculated for the MRO include the heat transfer coefficient (CH) over a range of angles-of-attack, sideslip angles, and number densities. The effects of flow chemistry, surface temperature, and surface grid resolution were also investigated to determine the aeroheating database uncertainties. Flight heat flux data has been calculated from surface temperature sensor data returned to Earth from the MRO in orbit around Mars during the aerobraking phase of its mission. The heat flux data have been compared to the aeroheating database and agree favorably.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-06-06
    Description: NASA is considering that its Mars Exploration Program (MEP) will launch an orbiter to Mars in the 2013 launch opportunity. To further explore this opportunity, NASA has formed a Science Definition Team (SDT) for this orbiter mission, provisionally called the Mars Science Orbiter (MSO). Membership and leadership of the SDT are given in Appendix 1. Dr. Michael D. Smith chaired the SDT. The purpose of the SDT was to define the: 1) Scientific objectives of an MSO mission to be launched to Mars no earlier than the 2013 launch opportunity, building on the findings for Plan A [Atmospheric Signatures and Near-Surface Change] of the Mars Exploration Program Analysis Group (MEPAG) Second Science Analysis Group (SAG-2); 2) Science requirements of instruments that are most likely to make high priority measurements from the MSO platform, giving due consideration to the likely mission, spacecraft and programmatic constraints. The possibilities and opportunities for international partners to provide the needed instrumentation should be considered; 3) Desired orbits and mission profile for optimal scientific return in support of the scientific objectives, and the likely practical capabilities and the potential constraints defined by the science requirements; and 4) Potential science synergies with, or support for, future missions, such as a Mars Sample Return. This shall include imaging for evaluation and certification of future landing sites. As a starting point, the SDT was charged to assume spacecraft capabilities similar to those of the Mars Reconnaissance Orbiter (MRO). The SDT was further charged to assume that MSO would be scoped to support telecommunications relay of data from, and commands to, landed assets, over a 10 Earth year period following orbit insertion. Missions supported by MSO may include planned international missions such as EXOMARS. The MSO SDT study was conducted during October - December 2007. The SDT was directed to complete its work by December 15, 2007. This rapid turn-around was required in order to allow time to prepare an Announcement of Opportunity (AO) for science investigations, to be released in early 2008.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-06-06
    Description: Water ices in surface crusts of Europa, Enceladus, Saturn's main rings, and Kuiper Belt Objects can become heavily oxidized from radiolytic chemical alteration of near-surface water ice by space environment irradiation. Oxidant accumulations and gas production are manifested in part through observed H2O2 on Europa. tentatively also on Enceladus, and found elsewhere in gaseous or condensed phases at moons and rings of Jupiter and Saturn. On subsequent chemical contact in sub-surface environments with significant concentrations of primordially abundant reductants such as NH3 and CH4, oxidants of radiolytic origin can react exothermically to power gas-driven cryovolcanism. The gas-piston effect enormously amplifies the mass flow output in the case of gas formation at basal thermal margins of incompressible fluid reservoirs. Surface irradiation, H2O2 production, NH3 oxidation, and resultant heat, gas, and gas-driven mass flow rates are computed in the fluid reservoir case for selected bodies. At Enceladus the oxidant power inputs are comparable to limits on nonthermal kinetic power for the south polar plumes. Total heat output and plume gas abundance may be accounted for at Enceladus if plume activity is cyclic in high and low "Old Faithful" phases, so that oxidants can accumulate during low activity phases. Interior upwelling of primordially abundant NH3 and CH4 hydrates is assumed to resupply the reductant fuels. Much lower irradiation fluxes on Kuiper Belt Objects require correspondingly larger times for accumulation of oxidants to produce comparable resurfacing, but brightness and surface composition of some objects suggest that such activity may be ongoing.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2018-06-11
    Description: North-West-Africa 3171 is a 506 g, relatively fresh appearing, basaltic shergottite with similarities to Zagami and Shergotty, but not obviously paired with any of the other known African basaltic shergottites. Its exposure age has the range of 2.5-3.1 Myr , similar to those of Zagami and Shergotty. We made AR-39-AR-40 analyses of a "plagioclase" (now shock-converted to maskelynite) separate and of a glass hand-picked from a vein connected to shock melt pockets.. Plagioclase was separated using its low magnetic susceptibility and then heavy liquid with density of 〈2.85 g/cm(exp 3). The AR-39-AR-40 age spectrum of NWA-317 1 plag displays a rise in age over 20-100% of the 39Ar release, from 0.24 Gyr to 0.27 Gy.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-06-11
    Description: NASA Johnson Space Center (JSC) personnel assisted Kennedy Space Center (KSC) inspection teams in the identification of 41 micrometeoroid/orbital debris (MMOD) impact sites on the OV-103 vehicle (Discovery) during STS-114 postflight inspections. There were 14 MMOD impacts reported on the crew module windows (Figure 1). The largest impact feature, a 6.6 mm x 5.8 mm crater on window #4, was caused by a particle with an estimated diameter of 0.22 mm (Figure 2). This impact was among the largest ever recorded on a crew module window. The window was removed and replaced. Scanning Electron Microscope/Energy Dispersive X-ray (SEM/EDX) analysis of dental mold samples from the impact site to determine particle origin was inconclusive, possibly due to contamination picked up on the ferry flight from Edwards Air Force Base to KSC. The radiators on the inside of the payload bay doors sustained 19 impacts (Figure 3) with one of the impacts causing a face sheet perforation. The 0.61 mm diameter hole was produced by a particle with an estimated diameter of 0.4 mm, which approaches the 0.5-mm critical particle diameter of the wing leading edge reinforced carbon-carbon (RCC) panel high-temperature regions (Zone 3, Figure 4) that was established during Return to Flight testing of the RCC panels. An inspection of the payload bay door exterior insulation (FRSI) revealed a 5.8 mm x 4.5 mm defect that was caused by an MMOD particle with unknown composition, as the sample obtained was contaminated. Figure 5 provides a summary of the exterior surface survey that was conducted following the STS-114 mission. Two windows were removed and replaced due to hypervelocity impact. Nineteen impacts were recorded on the payload bay door radiators, with one face sheet penetration. Three impact sites were identified on the FRSI. There were four hypervelocity impact sites detected on the wing leading edge RCC panels. One impact was detected on the top cover of the TPS sample box (TSB) payload that was mounted on a carrier in the aft portion of the payload bay.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Orbital Debris Quarterly News; 2-3
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-27
    Description: This paper will summarize the study that was conducted under the auspices of the National Aeronautics and Space Administration (NASA), lead by Johnson Space Center s Engineering Directorate in support of the Lunar Lander Preparatory Study (LLPS) as sponsored by the Constellation Program Office (CxPO), Advanced Projects Office (APO). The lunar lander conceptual design and analysis is intended to provide an understanding of requirements for human space exploration of the Moon using the Advanced Projects Office Pre-Lander Project Office selected "HabiTank" Lander concept. In addition, these analyses help identify system "drivers," or significant sources of cost, performance, risk, and schedule variation along with areas needing technology development. Recommendations, results, and conclusions in this paper do not reflect NASA policy or programmatic decisions. This paper is an executive summary of this study.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Rept-2007-01-3058 , International Conference on Environmental Systems; 9-12, 2007; Chicago, Il; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-27
    Description: The near-Earth orbital debris population will continue to increase in the future due to ongoing space activities, on-orbit explosions, and accidental collisions among resident space objects. Commonly adopted mitigation measures, such as limiting postmission orbital lifetimes of satellites to less than 25 years, will slow down the population growth, but may be insufficient to stabilize the environment. The nature of the growth, in the low Earth orbit (LEO) region, is further demonstrated by a recent study where no future space launches were conducted in the environment projection simulations. The results indicate that, even with no new launches, the LEO debris population would remain relatively constant for only the next 50 years. Beyond that, the debris population would begin to increase noticeably, due to the production of collisional debris. Therefore, to better limit the growth of future debris population to protect the environment, remediation option, i.e., removing existing large and massive objects from orbit, needs to be considered. This paper does not intend to address the technical or economical issues for active debris removal. Rather, the objective is to provide a sensitivity study to quantify the effectiveness of various remediation options. A removal criterion based upon mass and collision probability is developed to rank objects at the beginning of each projection year. This study includes simulations with removal rates ranging from 2 to 20 objects per year, starting in the year 2020. The outcome of each simulation is analyzed, and compared with others. The summary of the study serves as a general guideline for future debris removal consideration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 58th International Astronautical Congress; 24-28 Sept. 2007; Hyderabad; India
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-27
    Description: A viewgraph presentation exploring Earth and its analogues is shown. The topics include: 1) ESMD Goals for the Use of Earth Analogues; 2) Stakeholders Summary; 3) Issues with Current Analogue Situation; 4) Current state of Analogues; 5) External Implementation Plan (Second Step); 6) Recent Progress in Utilizing Analogues; 7) Website Layout Example-Home Page; 8) Website Layout Example-Analogue Site; 9) Website Layout Example-Analogue Mission; 10) Objectives of ARDIG Analog Initiatives; 11) Future Plans; 12) Example: Cold-Trap Sample Return; 13) Example: Site Characterization Matrix; 14) Integrated Analogue Studies-Prerequisites for Human Exploration; and 15) Rating Scale Definitions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2nd International WOrkshop: Exploring Mars and Its Earth Analogues; 1923 June 2007; Trento; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: In-Situ Resource Utilization (ISRU) seeks to make human space exploration feasible; by using available resources from a planet or the moon to produce consumables, parts, and structures that otherwise would be brought from Earth. Producing these in situ reduces the mass of such that must be launched and doing so allows more payload mass' for each mission. The production of oxygen from lunar regolith, for life support and propellant, is one of the tasks being studied under ISRU. NASA is currently funding three processes that have shown technical merit for the production of oxygen from regolith: Molten Salt Electrolysis, Hydrogen Reduction of Ilmenite, and Carbothermal Reduction. The ISRU program is currently developing system models of, the , abovementioned processes to: (1) help NASA in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the oxygen production process, (4) provide estimates on energy and power requirements, mass and volume.of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters, and (5) integrate into the overall end-to-end ISRU system model, which could be integrated with mission architecture models. The oxygen production system model is divided into modules that represent unit operations (e.g., reactor, water electrolyzer, heat exchanger). Each module is modeled theoretically using Excel and Visual Basic for Applications (VBA), and will be validated using experimental data from on-going laboratory work. This modularity (plug-n-play) feature of each unit operation allows the use of the same model on different oxygen production systems simulations resulting in comparable results. In this presentation, preliminary results for mass, power, volume will be presented along with brief description of the oxygen production system model.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-002 , Space Technology and Applications International Forum (STAIF); Feb 12, 2007 - Feb 15, 2007; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: In 2010 the Mars Science Laboratory (MSL) mission will deliver NASA's largest and most capable rover to the surface of Mars. MSL will explore previously unattainable landing sites due to the implementation of a high precision Entry, Descent, and Landing (EDL) system. The parachute decelerator subsystem (PDS) is an integral prat of the EDL system, providing a mass and volume efficient some of aerodynamic drag to decelerate the entry vehicle from Mach 2 to subsonic speeds prior to final propulsive descent to the sutface. The PDS for MSL is a mortar deployed 19.7m Viking type Disk-Gap-Band (DGB) parachute; chosen to meet the EDL timeline requirements and to utilize the heritage parachute systems from Viking, Mars Pathfinder, Mars Exploration Rover, and Phoenix NASA Mars Lander Programs. The preliminary design of the parachute soft goods including materials selection, stress analysis, fabrication approach, and development testing will be discussed. The preliminary design of mortar deployment system including mortar system sizing and performance predictions, gas generator design, and development mortar testing will also be presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: A robotic vehicle called ATHLETE - the All-Terrain Hex-Limbed, Extra-Terrestrial Explorer is described, along with initial results of Field tests of two prototype vehicles. This vehicle concept is capable of efficient rolling mobility on moderate terrain and walking mobility on extreme terrain. Each limb has a quick-disconnect tool adapter so that it can perform general purpose handling, assembly, maintenance, and servicing tasks using any or all of the limbs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: IEEEAC Paper 1294
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: Several physical mechanisms are involved in excavating granular materials beneath a vertical jet of gas. These occur, for example, beneath the exhaust plume of a rocket landing on the soil of the Moon or Mars. A series of experiments and simulations have been performed to provide a detailed view of the complex gas/soil interactions. Measurements have also been taken from the Apollo lunar landing videos and from photographs of the resulting terrain, and these help to demonstrate how the interactions extrapolate into the lunar environment. It is important to understand these processes at a fundamental level to support the ongoing design of higher-fidelity numerical simulations and larger-scale experiments. These are needed to enable future lunar exploration wherein multiple hardware assets will be placed on the Moon within short distances of one another. The high-velocity spray of soil from landing spacecraft must be accurately predicted and controlled lest it erosively damage the surrounding hardware.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-064 , 18th Engineering Mechanics Division Conference (EMD2007); Jun 03, 2007 - Jun 06, 2007; Blacksburg, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: This paper serves to illustrate the testing methods necessary to classify the electrostatic properties of lunar dust using in situ instrumentation and the required techniques therein. A review of electrostatic classification of lunar simulant materials is provided as is its relevance to the success of future human lunar missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-029 , IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Any future lunar base needs materials to provide thermal and radiation protection. Many factors point to the use of lunar materials as industrial feedstocks. Sintering of full-scale bricks using whole lunar dust has been accomplished. Refinement of soil beneficial before processing means less energy. Triboelectric separation of coal from minerals, quartz from feldspar, and phosphorous from silica and iron ore successively achieved. The Lunar environment ideal for electrostatic separation (1) lack of moisture (2) lower gravitational pull (3) higher voltages in vacuum
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-014 , Florida AVS Symposium; Mar 13, 2007; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: Regolith & Environment Science and Oxygen & Lunar Volatile Extraction (RESOLVE) incorporates 5 modules: (1) EBRC (Excavation and Bulk Regolith Characterization) (2) ERPC (Environment and Regolith Physical Characterization) ROE (Regolith Oxygen Extraction) (3) RVC (Regolith Volatile Characterization) (5) LWRD (Lunar Water Resource Demonstration). The goal of this work is to identify and quantify volatiles, demonstrate ISRU, engage the public interest in 'living off the land' technology
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-020 , Space Technology and Applications International Forum (STAIF) 2007; Feb 11, 2007 - Feb 15, 2007; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: In the late 80's, conceptual designs for an in situ oxygen production plant were documented in a study by Eagle Engineering [1]. In the "Summary of Findings" of this study, it is clearly pointed out that: "reported process mass and power estimates lack a consistent basis to allow comparison." The study goes on to say: "A study to produce a set of process mass, power, and volume requirements on a consistent basis is recommended." Today, approximately twenty years later, as humans plan to return to the moon and venture beyond, the need for flexible up-to-date models of the oxygen extraction production process has become even more clear. Multiple processes for the production of oxygen from lunar regolith are being investigated by NASA, academia, and industry. Three processes that have shown technical merit are molten regolith electrolysis, hydrogen reduction, and carbothermal reduction. These processes have been selected by NASA as the basis for the development of the ISRU System Model Tool (ISMT). In working to develop up-to-date system models for these processes NASA hopes to accomplish the following: (1) help in the evaluation process to select the most cost-effective and efficient process for further prototype development, (2) identify key parameters, (3) optimize the excavation and oxygen production processes, and (4) provide estimates on energy and power requirements, mass and volume of the system, oxygen production rate, mass of regolith required, mass of consumables, and other important parameters. Also, as confidence and high fidelity is achieved with each component's model, new techniques and processes can be introduced and analyzed at a fraction of the cost of traditional hardware development and test approaches. A first generation ISRU System Model Tool has been used to provide inputs to the Lunar Architecture Team studies.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-193R , Space Resources Roundtable 2007; Oct 25, 2007 - Oct 27, 2007; Golden, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: The sessions in the conference include: Titan, Mars Volcanism, Mars Polar Layered Deposits, Early Solar System Isotopes, SPECIAL SESSION: Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Achondrites: Exploring Oxygen Isotopes and Parent-Body Processes, Solar System Formation and Evolution, SPECIAL SESSION: SMART-1, . Impact Cratering: Observations and Experiments, SPECIAL SESSION: Volcanism and Tectonism on Saturnian Satellites, Solar Nebula Composition, Mars Fluvial Geomorphology, Asteroid Observations: Spectra, Mostly, Mars Sediments and Geochemistry: View from the Surface, Mars Tectonics and Crustal Dichotomy, Stardust: Wild-2 Revealed, Impact Cratering from Observations and Interpretations, Mars Sediments and Geochemistry: The Map View, Chondrules and Their Formation, Enceladus, Asteroids and Deep Impact: Structure, Dynamics, and Experiments, Mars Surface Process and Evolution, Martian Meteorites: Nakhlites, Experiments, and the Great Shergottite Age Debate, Stardust: Mainly Mineralogy, Astrobiology, Wind-Surface Interactions on Mars and Earth, Icy Satellite Surfaces, Venus, Lunar Remote Sensing, Space Weathering, and Impact Effects, Interplanetary Dust/Genesis, Mars Cratering: Counts and Catastrophes?, Chondrites: Secondary Processes, Mars Sediments and Geochemistry: Atmosphere, Soils, Brines, and Minerals, Lunar Interior and Differentiation, Mars Magnetics and Atmosphere: Core to Ionosphere, Metal-rich Chondrites, Organics in Chondrites, Lunar Impacts and Meteorites, Presolar/Solar Grains, Topics for Print Only papers are: Outer Planets/Satellites, Early Solar System, Interplanetary Dust, Comets and Kuiper Belt Objects, Asteroids and Meteoroids, Chondrites, Achondrites, Meteorite Related, Mars Reconnaissance Orbiter, Mars, Astrobiology, Planetary Differentiation, Impacts, Mercury, Lunar Samples and Modeling, Venus, Missions and Instruments, Global Warming, Education and Public Outreach, Poster sessions are: Asteroids/Kuiper Belt Objects, Galilean Satellites: Geology and Mapping, Titan, Volcanism and Tectonism on Saturnian Satellites, Early Solar System, Achondrite Hodgepodge, Ordinary Chondrites, Carbonaceous Chondrites, Impact Cratering from Observations and Interpretations, Impact Cratering from Experiments and Modeling, SMART-1, Planetary Differentiation, Mars Geology, Mars Volcanism, Mars Tectonics, Mars: Polar, Glacial, and Near-Surface Ice, Mars Valley Networks, Mars Gullies, Mars Outflow Channels, Mars Sediments and Geochemistry: Spirit and Opportunity, Mars Reconnaissance Orbiter: New Ways of Studying the Red Planet, Mars Reconnaissance Orbiter: Geology, Layers, and Landforms, Oh, My!, Mars Reconnaissance Orbiter: Viewing Mars Through Multicolored Glasses; Mars Science Laboratory, Phoenix, and ExoMars: Science, Instruments, and Landing Sites; Planetary Analogs: Chemical and Mineral, Planetary Analogs: Physical, Planetary Analogs: Operations, Future Mission Concepts, Planetary Data, Imaging, and Cartography, Outer Solar System, Presolar/Solar Grains, Stardust Mission; Interplanetary Dust, Genesis, Asteroids and Comets: Models, Dynamics, and Experiments, Venus, Mercury, Laboratory Instruments, Methods, and Techniques to Support Planetary Exploration; Instruments, Techniques, and Enabling Techologies for Planetary Exploration; Lunar Missions and Instruments, Living and Working on the Moon, Meteoroid Impacts on the Moon, Lunar Remote Sensing, Lunar Samples and Experiments, Lunar Atmosphere, Moon: Soils, Poles, and Volatiles, Lunar Topography and Geophysics, Lunar Meteorites, Chondrites: Secondary Processes, Chondrites, Martian Meteorites, Mars Cratering, Mars Surface Processes and Evolution, Mars Sediments and Geochemistry: Regolith, Spectroscopy, and Imaging, Mars Sediments and Geochemistry: Analogs and Mineralogy, Mars: Magnetics and Atmosphere, Mars Aeolian Geomorphology, Mars Data Processing and Analyses, Astrobiology, Engaging Student Educators and the Public in Planetary Science,
    Keywords: Lunar and Planetary Science and Exploration
    Type: LPI-Contrib-1338 , 38th Lunar and Planetary Science Conference; Mar 12, 2007 - Mar 16, 2007; Houston, TX; United States|(ISSN 1540-7845)
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-245
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-12
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-154
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-12
    Description: To set lower and upper limits on the overall amounts and types of volatiles released during heating of polar regolith, we examined the data for equatorial lunar regolith and for the compositions of comets. The purpose, specifically, was to answer these questions: 1. Upper/Lower limits and 'best guess' for total amount of volatiles (by weight %) released from lunar regolith up to 150C 2. Upper/Lower limit and 'best guess' for composition of the volatiles released from the lunar regolith by weight %
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-12
    Description: The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-139
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-12
    Description: The Vision for Space Exploration has set the nation on a course to have humans on Mars as early as 2030. To reduce the cost and risk associated with human Mars exploration, NASA is planning for the Mars architecture to leverage the lunar architecture as fully as possible. This study takes the defined launch vehicles and system capabilities from ESAS and extends their application to DRM 3.0 to design an Earth Departure Stage suitable for the cargo and crew missions to Mars. The impact of a propellant depot in LEO was assessed and sLzed for use with the EDS. To quantitatively assess and compare the effectiveness of alternative designs, an initial baseline architecture was defined using the ESAS launch vehicles and DRM 3.0. The baseline architecture uses three NTR engines, LH2 propellant, no propellant depot in LEO, and launches on the Ares I and Ares V. The Mars transfer and surface elements from DRM 3.0 were considered to be fixed payloads in the design of the EDS. Feasible architecture alternatives were identified from previous architecture studies and anticipated capabilities and compiled in a morphological matrix. ESAS FOMs were used to determine the most critical design attributes for the effectiveness of the EDS. The ESAS-derived FOMs used in this study to assess alternative designs are effectiveness and performance, affordability, reliability, and risk. The individual FOMs were prioritized using the AHP, a method for pairwise comparison. All trades performed were evaluated with respect to the weighted FOMs, creating a Pareto frontier of equivalently ideal solutions. Additionally, each design on the frontier was evaluated based on its fulfillment of the weighted FOMs using TOPSIS, a quantitative method for ordinal ranking of the alternatives. The designs were assessed in an integrated environment using physics-based models for subsystem analysis where possible. However, for certain attributes such as engine type, historical, performance-based mass estimating relations were more easily employed. The elements from the design process were integrated into a single loop, allowing for rapid iteration of subsystem analyses and compilation of resulting designs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-181
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-12
    Description: The blast of lunar soil represents a problem for the future missions planned for the moon. When the lander approached the ground during the Apollo missions, huge showers of dust particles were sent in all directions at extremely high velocities - including upwards towards the landing spacecraft. This represents a clear danger to the lander because the loss of visibility and the damage that can be produced to the vehicle itself. If there had been equipment on the ground, these showers of particles would have created a sand blasting effect over the equipment, possibly damaging optics and contaminating the equipment and depending on the size and velocity of the particles maybe even more extensive damage as the particles penetrated the outer surface of the equipment. Since the there is no air on the moon to slow down the particles, they can travel large distances at high speeds, in fact in some instances they can reach near escape velocity and go into an orbit around the moon and come all the way back to almost the same point where they were at the beginning; meaning that some of the lunar dust that came up during landing will shower back over the site. Once on the surface, the extremely fine dust had a habit of getting itself everywhere. During the Apollo missions it not only covered the astronauts' suits, but managed to work its way inside, damaging airtight joints and scratching up glass visors. The dust found its way inside the spacecraft, contaminating the floor and electronic systems inside, clogging air filters in the process. This is due to the fact that the lunar soil is extremely cohesive. The Lunar soil causes all of the same problems as sand does on Earth but unlike sand particles on Earth, which have smooth spherical shapes, the dust on the Moon is more like small particles of glass with sharper edges since there is no erosion on the lunar surface. During the Apollo missions the dust problem did not cause a big problem due to the fact of the length of duration of the missions. But as NASA plans to have long term missions to the moon the dust problem becomes an issue, due to multiple landings and the equipment that will be accumulated on the site. In order to mitigate these problems it is needed first to understand the physics of the problem in order to find the most suitable solution to protect equipment and vehicles during the next lunar missions..
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-171
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-19
    Description: NASA is embarking on a grand journey of exploration that naturally integrates the past successes of the Apollo missions to the Moon, as well as robotic science missions to Mars, to Planet Earth, and to the broader Universe. The US Vision for Space Exporation (VSE) boldly lays out a plan for human and robotic reconnaissance of the accessible Universe, starting with the surface of the Moon, and later embracing the surface of Mars. Sustained human and robotic access to the Moon and Mars will enable a new era of scientific investigation of our planetary neighbors, tied to driving scientific questions that pertain to the evolution and destiny of our home planet, but which also can be related to the search habitable worlds across the nearby Universe. The Apollo missions provide a vital legacy for what can be learned from the Moon, and NASA is now poised to recapture the lunar frontier starting with the flight of the Lunar Reconnaissance Orbiter (LRO) in late 2008. LRO will provide a new scientific context from which joint human and robotic exploration will ensue, guided by objectives some of which are focused on the grandest scientific challenges imaginable : Where did we come from? Are we alone? and Where are we going? The Moon will serve as an essential stepping stone for sustained human access and exploration of deep space and as a training ground while robotic missions with ever increasing complexity probe the wonders of Mars. As we speak, an armada of spacecraft are actively investigating the red planet both from orbit (NASA's Mars Reconnaissance Orbiter and Mars Odyssey Orbiter, plus ESA's Mars Express) and from the surface (NASA's twin Mars Exploration Rovers, and in 2008 NASA's Phoenix polar lander). The dramatically changing views of Mars as a potentially habitable world, with its own flavor of global climate change and unique climate records, provides a new vantage point from which to observe and question the workings of our own planet Earth. By 2010 NASA will have its first mobile analytical laboratory operating on the surface of Mars (Mars Science Laboratory) in search of potentially subtle expressions of past life or at least of life-hospitable environments. Meanwhile back here on Planet Earth, NASA will be continuing to implement an increasingly comprehensive program of robotic missions that address major issues associated with global climate variability, and the "state variables" that affect the quality of human life on our home planet. Ultimately, the fmits of NASA's emergent program of Exploration (VSE) will provide never-beforepossible opportunities for scientific leadership and advancement, culminating in a new state of awareness from which to better plan for the sustainability of life on Earth and for extending Earth life to the Moon and eventually to Mars. As NASA nears its 50th anniversary, the unimaginable and unexpected wealth of strategic knowledge its missions have generated about Earth, the Universe, and our local Solar System boggles the mind and serves as a legacy of knowledge for Educators to inspire future generations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: STS-118 Pre-Launch Education Conference; Aug 05, 2007 - Aug 07, 2007; Orlando, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-19
    Description: Future long-duration human exploration missions will be challenged by resupply limitations and mass and volume constraints. Consequently, it will be essential that the logistics footprint required to support these missions be minimized and that capabilities be provided to make them highly autonomous from a logistics perspective. Strategies to achieve these objectives include broad implementation of commonality and standardization at all hardware levels and across all systems, repair of failed hardware at the lowest possible hardware level, and manufacture of structural and mechanical replacement components as needed. Repair at the lowest hardware levels will require the availability of compact, portable systems for diagnosis of failures in electronic systems and verification of system functionality following repair. Rework systems will be required that enable the removal and replacement of microelectronic components with minimal human intervention to minimize skill requirements and training demand for crews. Materials used in the assembly of electronic systems (e.g. solders, fluxes, conformal coatings) must be compatible with the available repair methods and the spacecraft environment. Manufacturing of replacement parts for structural and mechanical applications will require additive manufacturing systems that can generate near-net-shape parts from the range of engineering alloys employed in the spacecraft structure and in the parts utilized in other surface systems. These additive manufacturing processes will need to be supported by real-time non-destructive evaluation during layer-additive processing for on-the-fly quality control. This will provide capabilities for quality control and may serve as an input for closed-loop process control. Additionally, non-destructive methods should be available for material property determination. These nondestructive evaluation processes should be incorporated with the additive manufacturing process - providing an in-process capability to ensure that material deposited during layer-additive processing meets required material property criteria.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-180
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-19
    Description: An overview is presented of the Mars-Global Reference Atmospheric Model (Mars-GRAM 2005) and its new features. One important new feature is the "auxiliary profile" option, whereby a simple input file is used to replace mean atmospheric values from Mars-GRAM's conventional (General Circulation Model) climatology. An auxiliary profile can be generated from any source of data or alternate model output. Results are presented using auxiliary profiles produced from mesoscale model output (Southwest Research Institute's Mars Regional Atmospheric Modeling System (MRAMS) model and Oregon State University's Mars mesoscale model (MMM5) model) for three candidate Mars Science Laboratory (MSL) landing sites (Terby Crater, Melas Chasma, and Gale Crater). A global Thermal Emission Spectrometer (TES) database has also been generated for purposes of making 'Mars-GRAM auxiliary profiles. This data base contains averages and standard deviations of temperature, density, and thermal wind components, averaged over 5-by-5 degree latitude bins and 15 degree L(sub S) bins, for each of three Mars years of TES nadir data. Comparisons show reasonably good consistency between Mars-GRAM with low dust optical depth and both TES observed and mesoscale model simulated density at the three study sites. Mean winds differ by a more significant degree. Comparisons of mesoscale and TES standard deviations' with conventional Mars-GRAM values, show that Mars-GRAM density perturbations are somewhat conservative (larger than observed variability), while mesoscale-modeled wind variations are larger than Mars-GRAM model estimates. Input parameters rpscale (for density perturbations) and rwscale (for wind perturbations) can be used to "recalibrate" Mars-GRAM perturbation magnitudes to better replicate observed or mesoscale model variability.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-356 , Seventh International Conference on Mars; Jul 09, 2007 - Jul 13, 2007; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-19
    Description: Both Terra and Aqua MODIS have been making periodic lunar observations since their launch in December 1999 and May 2002, respectively. The primary objective of the MODIS lunar observations is to monitor on-orbit response changes for the reflective solar bands (RSB) and to track long-term radiometric calibration stability. The Moon is an extremely stable surface reflectance reference and, together with the lunar radiometric model developed recently by the US Geological Survey (USGS), the applications of lunar observations for Earth remote sensing missions have been greatly enhanced and expanded. In particular, calibration inter-comparisons among sensors on different platforms and operated in different time frames have been enabled in the VIS/NIR/SWIR spectral regions. In this paper, we discuss various applications of MODIS lunar observations, such as monitoring the RSB radiometric stability and calibration consistency between the two sensors, evaluating the calibration differences among detectors within the same spectral band, and tracking the on-orbit changes of band-to-band registration (BBR). Other applications designed for the thermal emissive bands (TEB) and special sensor characterization purposes are also illustrated. Results from multi-year Terra and Aqua MODIS lunar observations demonstrate clearly that the two sensors have been calibrated consistently to within 1% for most RSB compared to the 2% radiometric calibration requirement. In addition the spatial characterization results derived from lunar observations are in good agreement with those derived from the instrument's on-board calibrator. The applications and results of MODIS lunar observations presented in this paper provide useful references for other sensors that also make use of lunar surface observations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: SPIE Europe Remote Sensing 2007; Sep 17, 2007 - Sep 20, 2007; Florence; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-19
    Description: Probing the atmospheres and surfaces of the planets and their moons with fast moving entry probes has been a very useful and essential technique to obtain in situ or quasi in situ scientific data (ground truth) which could not otherwise be obtained from fly by or orbiter only missions and where balloon, aircraft or lander missions are too complex and costly. Planetary entry probe missions have been conducted successfully on Venus, Mars, Jupiter and Titan after having been first demonstrated in the Earth's atmosphere. Future missions will hopefully also include more entry probe missions back to Venus and to the outer planets. 1 he success of and science returns from past missions, the need for more and better data, and a continuously advancing technology generate confidence that future missions will be even more successful with respect to science return and technical performance. I'he pioneering and tireless work of Al Seiff and his collaborators at the NASA Ames Research Center had provided convincing evidence of the value of entry probe science and how to practically implement flight missions. Even in the most recent missions involving entry probes i.e. Galileo and Cassini/Huygens A1 contributed uniquely to the science results on atmospheric structure, turbulence and temperature on Jupiter and Titan.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 5th International Planetary Probe Workshop; Jun 25, 2007 - Jun 29, 2007; Bordeaux; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-19
    Description: It is well recognized that the charging properties of individual micron/sub-micron size dust grains by various processes are expected to be substantially different from the currently available measurements made on bulk materials. Solar UV radiation and the solar wind plasma charge micron size dust grains on the lunar surface with virtually no atmosphere. The electrostatically charged dust grains are believed to be levitated and transported long distances over the lunar terminator from the day to the night side. The current models do not fully explain the lunar dust phenomena and laboratory measurements are needed to experimentally determine the charging properties of lunar dust grains. An experimental facility has been developed in the Dusty Plasma Laboratory at NASA Marshall Space Flight Center MSFC for investigating the charging properties of individual micron/sub-micron size positively or negatively charged dust grains by levitating them in an electrodynamic balance in simulated space environments. In this paper, we present laboratory measurements on charging of Apollo 17 individual lunar dust grains by low energy electron beams in the 5-100 eV energy range. The measurements are made by levitating Apollo 17 dust grains of 0.2 to 10 micrometer diameters, in an electrodynamic balance and exposing them to mono-energetic electron beams. The charging rates and the equilibrium potentials produced by direct electron impact and by secondary electron emission processes are discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2007 Fall Meeting of the American Geophysical Union; Dec 10, 2007 - Dec 14, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-19
    Description: The atmosphere of the volcanically active moon Io is continuously stripped away through interactions with Jupiter's magnetic field and replenished by volcanically supplied gas. Io's exosphere, the low density region consisting of bound and escaping, non-interacting neutrals, is dominated by oxygen and sulfur atoms formed from the dissociation of SO2. The radial distributions of oxygen and sulfur emissions exhibit an asymmetry between the intensity over Io's leading and trailing hemispheres (Wolven et al. 2001). Sodium, a minor but well studied exospheric component, shows a different asymmetry: the sub-Jupiter exosphere is denser than the anti-Jupiter exosphere (Burger et al. 2001). In addition, the sodium density decreases much faster with distance than the intensities of the oxygen and sulfur emissions. We explore possible sources for these. One possibility is the dependence of the observed emissions lines on plasma flowing through the exosphere. Variations in the electrons affect the excitation rates of the transitions, while leaving the resonantly scattered sodium emission unaffected. The observations may also point to differences in the loss mechanisms from Io's atmosphere: sodium is believed to be sputtered from the atmosphere and surface by high energy ions in the magnetosphere (reviewed Johnson et al 2004; Thomas et al. 2004). It is unclear whether oxygen and sulfur are lost in the same manner, or instead by the dissociation of SO2 near or above the exobase, which would produce a significantly different energy distribution than sputtering, producing the observed differences.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Presentation 03.03
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: In order to identify a detected exoplanet as an Earth-like (habitable) planet, we must obtain its spectrum to verify that its atmosphere shows evidence of water vapor. We argue that a regular, optical telescope combined with a large occulter to block light from the star offers the most promising, cost-effective way to detect and characterize exoplanets.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Spirit of Lyot; Jun 04, 2007 - Jun 08, 2007; Berkeley, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-19
    Description: In polar regions of the Moon, some areas within craters are permanently shadowed from solar illumination and can reach temperatures of 100 K or less. These regions could serve as cold traps, capturing ice and other volatile compounds. These potential ice stores have many applications for lunar exploration. Within double-shaded craters, even colder regions exist, with temperatures never exceeding 50 K in many cases. Observed temperatures suggest that these regions could enable equivalent liquid nitrogen cryogenic functions. These permanently shaded polar craters also offer unprecedented high-vacuum cryogenic environments, which in their current state could support cryogenic applications. Besides ice stores, the unique conditions at the lunar poles harbor an environment that provides an opportunity to reduce the power, weight, and total mass that needs to be carried from the Earth to the Moon for lunar exploration and research. Reducing the heat flux of geothermal, black body radiation can have significant impacts on the achievable temperature. With a few manmade augmentations, permanently shaded craters located near the lunar poles achieve temperatures even lower than those that naturally exist. Our analysis reveals that lightweight thermal shielding within shaded craters could create an environment several Kelvin above absolute zero. The temperature ranges of both naturally shaded and thermally augmented craters could enable the long-term storage of most gases, low-temperature superconductors for large magnetic fields, devices and advanced high-speed computing instruments. Augmenting thermal conditions in these craters could then be used as a basis for the development of an advanced thermal management architecture that would support a wide variety of cryogenically based applications. Lunar exploration and habitation capabilities would significantly benefit if permanently shaded craters, augmented with thermal shielding, were used to facilitate the operation of near absolute zero instruments, including a wide variety of cryogenically based propulsion, energy, communication, sensing, and computing devices. The required burden of carrying massive life-supporting components from the Earth to the Moon for lunar exploration and research potentially could be reduced.
    Keywords: Lunar and Planetary Science and Exploration
    Type: SSTI-2220-0121 , AGU 2007 Winter Meeting; Dec 10, 2007 - Dec 14, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: One option under current study for the Terrestrial Planet Finder-Occulter (TPF-O) observatory shares some key features of the Hubble Space Telescope (HST). Both are space telescopes with a primary mirror aperture of around 2.4 meters and designed to observe in the visible to near infrared range of wavelengths, with the major difference in science capability being that TPF-O has an areal FOV on the order of 100 times larger than that of HST. This larger FOV, whose science camera is also expected to provide fine guidance, and other mission differences, mean that most TPF-O SC bus subsystems will have very different requirements than those of HST. Unlike HST in LEO, TPF-O is designed to operate in an orbit around the Sun-Earth lagrange 2 (SEL2) point. The longer communications range to SEL2 and the large FOV require much higher performance data processing and communications than HST. Maintaining a SEL2 orbit requires TPF-O, unlike HST, to have a propulsion system. TPF-O will have a specialized tracking system that allows the formation flying occulter to maintain its required position. However, despite these additional features, the velocity required for reaching SEL2 and the limited capabilities of affordable launch vehicles require TPF-O to have a compact and low-mass design relative to HST. Finally, TPF-O may utilize a modular design to reduce development cost and, if it required, allow servicing using approaches different from those of HST.
    Keywords: Lunar and Planetary Science and Exploration
    Type: SPIE International Symposium on Optics and Photonics; Aug 26, 2007 - Aug 30, 2007; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-19
    Description: We are undertaking a detailed study of surface deposits on lunar volcanic glass beads. These tiny deposits formed by vapor condensation during cooling of the gases that drove the fire fountain eruptions responsible for the formation of the beads. Volcanic glass beads are present in most lunar soil samples in the returned lunar collection. The mare-composition beads formed as a result of fire-fountaining approx.3.4-3.7 Ga ago, within the age range of large-scale mare volcanism. Some samples from the Apollo 15 and Apollo 17 landing sites are enriched in volcanic spherules. Three major types of volcanic glass bead have been identified: Apollo 15 green glass, Apollo 17 orange glass, and Apollo 17 "black" glass. The Apollo 15 green glass has a primitive composition with low Ti. The high-Ti compositions of the orange and black glasses are essentially identical to each other but the black glasses are opaque because of quench crystallization. A poorly understood feature common to the Apollo 15 and 17 volcanic glasses is the presence of small deposits of unusual materials on their exterior surfaces. For example, early studies indicated that the Apollo 17 orange glasses had surface enrichments of In, Cd, Zn, Ga, Ge, Au, and Na, and possible Pb- and Zn-sulfides, but it was not possible to characterize the surface features in detail. Technological advances now permit us to examine such features in detail. Preliminary FE-TEM/X-ray studies of ultramicrotome sections of Apollo 15 green glass indicate that the surface deposits are heterogeneous and layered, with an inner layer consisting of Fe with minor S and an outer layer of Fe and no S, and scattered Zn enrichments. Layering in surface deposits has not been identified previously; it will be key to defining the history of lunar fire fountaining.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geological Society of America Annual Meeting; Oct 28, 2007 - Oct 31, 2007; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-19
    Description: The Constellation Program Mission Operations Project Office (CxP MOP) at Johnson Space Center in Houston Texas is preparing to support the CxP mission operations objectives for the CEV/Orion flights, the Lunar Lander, and and Lunar surface operations. Initially the CEV will provide access to the International Space Station, then progress to the Lunar missions. Initial CEV mission operations support will be conceptually similar to the Apollo missions, and we have set a challenge to support the CEV mission with 50% of the mission operations support currently required for Shuttle missions. Therefore, we are assessing more efficient way to organize the support and new technologies which will enhance our operations support. This paper will address the status of our preparation for these CxP missions, our philosophical approach to CxP operations support, and some of the technologies we are assessing to streamline our mission operations infrastructure.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: An underlying tension has existed throughout the history of NASA between the human spaceflight programs and the external scientific constituencies of the robotic exploration programs. The large human space projects have been perceived as squandering resources that might otherwise be utilized for scientific discoveries. In particular, the history of the relationship of science to the International Space Station Program has not been a happy one. The leadership of the Constellation Program Office, created in NASA in October, 2005, asked me to serve on the Program Manager s staff as a liaison to the science community. Through the creation of my position, the Program Manager wanted to communicate and elucidate decisions inside the program to the scientific community and, conversely, ensure that the community had a voice at the highest levels within the program. Almost all of my technical contributions at NASA, dating back to the Apollo Program, has been within the auspices of what is now known as the Science Mission Directorate. However, working at the Johnson Space Center, where human spaceflight is the principal activity, has given me a good deal of incidental contact and some more direct exposure through management positions to the structures and culture of human spaceflight programs. I entered the Constellation family somewhat naive but not uninformed. In addition to my background in NASA science, I have also written extensively over the past 25 years on the topic of human exploration of the Moon and Mars. (See, for example, Mendell, 1985). I have found that my scientific colleagues generally have little understanding of the structure and processes of a NASA program office; and many of them do not recognize the name, Constellation. In many respects, the international ILEWG community is better informed. Nevertheless, some NASA decision processes on the role of science, particularly with respect to the formulation of a lunar surface architecture, are not well known, even in ILEWG. At the recent annual Lunar and Planetary Science Conference, I reviewed the evolution of the program as a function of Agency leadership and the constraints put on NASA by the President in his 2004 announcement. I plan to continue my long-time ILEWG tradition of reporting a personal view of the state of development of human exploration of the solar system, this time coming from within the program office tasked to implement the vision for the United States. The current NASA implementation of the Vision for Space Exploration is consistent with certain classical scenarios that have been discussed extensively in the literature. I will discuss the role of science within the Vision, both from official policy and from a de facto interaction. While science goals are not officially driving the implementation of the Vision, the tools of scientific exploration are integral to defining the extraterrestrial design environments. In this respect the sharing of results from international missions to the Moon can make significant contributions to the success of the future human activities.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 9th ILEWG International Conference on Exploration and Utilisation of the Moon; Oct 22, 2007 - Oct 26, 2007; Sorrento; Italy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-19
    Description: Beginning with the launch of the European Columbus module planned for December 2007, we approach a transition in the assembly of the International Space Station (ISS) that is of great importance for the sciences. During the following 18 months, we will operate the first experiments in Columbus physical science resource facilities and also launch and commission the Japanese Kibo module. In addition, two Multi-purpose Logistics Module (MPLM) flights will deliver the U.S. Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR) along with their first science experiments. These facilities provide significant new capabilities for basic and applied physical science research in microgravity. New life support technologies will come online throughout 2008, and we will reach the milestone of a 6-person crew planned for April 2009. A larger crew enables significant more scientific use of all the facilities for the life of ISS. Planning for the use of the International Space Station as a national laboratory is also maturing as we near the completion of assembly, enabling access to ISS as a research platform for other government agencies and the private sector. The latest updates on National Laboratory implementation will also be provided in this presentation. At the same time as these significant increases in scientific capability, there have been significant ongoing accomplishments in NASA's early ISS research both exploration related and fundamental research. These accomplishments will be reviewed in context as harbingers of the capabilities of the International Space Station when assembly is complete. The Vision for Space Exploration serves to focus NASA's applied investigations in the physical sciences. However, the broader capability of the space station as a National Laboratory and as a nexus for international collaboration will also influence the study of gravity-dependent processes by researchers around the world.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AIAA Aerospace Sciences Meeting to be held on Jan. 7-10, 2008 in Reno, NV
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-19
    Description: We report on the results of a preliminary study of the GCR-induced photon luminescence of the Moon using the Monte Carlo program FLUKA. The model of the lunar surface is taken to be the chemical composition of soils found at various landing sites during the Apollo and Luna programs, averaged over all such sites to define a generic regolith for the present analysis. This then becomes the target that is bombarded by Galactic Cosmic Rays (GCRs) in FLUKA to determine the photon fluence when there is no sunshine or Earthshine. From the photon fluence we derive the energy spectrum which can be utilized to design an orbiting optical instrument for measuring the GCR-induced luminescence. This is to be distinguished from the gamma-ray spectrum produced by the radioactive decay of its radiogenic constituents lying in the surface and interior. Also, we investigate transient optical flashes from high-energy CRs impacting the lunar surface (boulders and regolith). The goal is to determine to what extent the Moon could be used as a rudimentary CR detector. Meteor impacts on the Moon have been observed for centuries to generate such flashes, so why not CRs?
    Keywords: Lunar and Planetary Science and Exploration
    Type: 30th International Cosmic Ray Conference; Jul 03, 2007 - Jul 08, 2007; Merida, Yucatan; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-19
    Description: The sample return capsule of the Stardust spacecraft was successfully recovered in northern Utah on January 15, 2006, and its cargo of coma grains from Comet Wild-2 has now been the subject of intense investigation by approximately 200 scientists scattered across five continents. We can now perform mineralogical and petrographic analyses of particles derived directly from the Jupiter-family Comet Wild-2
    Keywords: Lunar and Planetary Science and Exploration
    Type: Japan Geoscience Union Meeting; May 19, 2007 - May 24, 2007; Tokyo; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-19
    Description: Desert RATS (Research and Technology Studies) is a combined group of inter-NASA center scientists and engineers, collaborating with representatives of industry and academia, for the purpose of conducting remote field exercises. These exercises provide the capability to validate experimental hardware and software, to evaluate and develop mission operational techniques, and to identify and establish technical requirements applicable for future planetary exploration. D-RATS completed its ninth year of field testing in September 2006. Dry run test activities prior to testing at designated remote field site locations are initially conducted at the Johnson Space Center (JSC) Remote Field Demonstration Test Site. This is a multi-acre external test site located at JSC and has detailed representative terrain features simulating both Lunar and Mars surface characteristics. The majority of the remote field tests have been subsequently conducted in various high desert areas adjacent to Flagstaff, Arizona. Both the local JSC and remote field test sites have terrain conditions that are representative of both the Moon and Mars, such as strewn rock and volcanic ash fields, meteorite crater ejecta blankets, rolling plains, hills, gullies, slopes, and outcrops. Flagstaff is the preferred remote test site location for many reasons. First, there are nine potential test sites with representative terrain features within a 75-mile radius. Second, Flagstaff is the location of the United States Geologic Survey (USGS)/Astrogeology Branch, which historically supported Apollo astronaut geologic training and currently supports and provides host accommodations to the D-RATS team. Finally, in considering the importance of logistics in regard to providing the necessary level of support capabilities, the Flagstaff area provides substantial logistics support and lodging accommodations to take care of team members during long hours of field operations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International; Feb 11, 2007 - Feb 15, 2007; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-19
    Description: The Exploration Life Support project is developing technologies to address the needs for life support during NASA s exploration missions. The focus of development is Air Revitalization, Water Recovery, and Waste Management Systems (ARS, WRS, and WMS). The approach to meeting exploration needs for life support intrinsically involves processing mixtures of gases, liquids and solids; thus the effects of micro or hypo gravity must be considered in developing and verifying the technologies. This paper provides an overview of the ELS project, how ELS technologies are planned to be used in exploration vehicles and the challenges being addressed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 45th AIAA Aerospace Sciences Meeting and Exhibit; Jan 08, 2007 - Jan 11, 2007; Reno, NV; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-19
    Description: In light of the President s Moon/Mars initiative, lunar exploration has once again become a priority for NASA. In order to establish permanent bases on the Moon and proceed with human exploration of Mars, two key problems will be addressed: first, the production of O2 and second, the production of methane (CH4). While O2 is required for life support systems (LSS), both liquid O2 and CH4 are needed as an oxidizer and a propellant, respectively for the Lunar Surface Access Module (LSAM) and the Crew Exploration Vehicle (CEV). Unlike previous propulsion systems, the new CEV will use liquid oxygen (LO2) as an oxidizer and liquid methane (LCH4) as a propellant. Existing technology (e.g. hydrogen reduction) for the production of liquid oxygen from lunar regolith is very energy intensive and requires high temperature reactors. We propose an alternative approach using iron-tolerant cyanobacteria. We have found that iron-tolerant cyanobacteria (IT CB) are capable of etching iron-bearing minerals, which may lead to bonds breaking between Fe and O of common lunar mare basalt Fe-oxides including ilmenite, pseudobrookite, ferropseudobrookite, and armalcolite with the subsequent release of both Fe, Ti and oxygen as byproducts. We also propose to use CB biomass for CH4 production as carbon stock and a propellant. Both processes can be accomplished in an energy and cost effective manner because sunlight will be used as an energy source and allows the reactions at ambient temperatures between 10-60 C. Current evaluations include assessing the thermodynamics of such biogenic reactions using a variety of nutrients and atmospheric parameters, as well as assessing the rates and species variation effects of the driving reactions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 7th European Workshop on Microalgal Biotechnology; Jun 11, 2007 - Jun 13, 2007; Potsdam; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-19
    Description: The large differences between the Moon's three principal moments of inertia have been mystery since Laplace considered them in 1799. Here we present calculations that show how past high eccentricity orbits can account for the moment differences, represented by the low-order lunar gravity field and libration parameters. One of our solutions is that the Moon may have once been in a 3:2 resonance of the orbit period to spin-period, similar to Mercury's present state. The possibility of past high-eccentricity orbits suggests a rich dynamical history and may influence our understanding of the early thermal evolution of the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science; 313; 5787; 62-655
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-07-19
    Description: A study of lunar rover options for exploring the permanently shadowed regions of the lunar environment is presented. The potential for nearly continuous solar illumination coupled with the potential for water ice, focus exploration planner's attention on the polar regions of the moon. These regions feature craters that scientists have reason to believe may contain water ice. Water ice can be easily converted to fuel cell reactants, breathing oxygen, potable water, and rocket propellant. For these reasons, the NASA Robotic Lunar Exploration Program (RLEP) sponsored a study of potential prospecting rover concepts as one part of the RLEP-2 Pre-Phase A. Numerous vehicle configurations and power, thermal, and communication options are investigated. Rover options in the 400kg to 530kg class are developed which are capable of either confirming the presence of water ice at the poles, or conclusively demonstrating its absence.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2007 IEEE Aerospace Conference; Mar 03, 2007 - Mar 10, 2007; Big Sky, MT
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Throughout my career, I have observed many launch vehicle efforts come and go. Although it may appear on the surface that those were dead-end streets, the knowledge we gained through them actually informs the work in progress. Following the tragic loss of the Space Shuttle Columbia's crew, the administration took the Columbia Accident Investigation Board's findings to heart and united the Agency behind the Vision for Space Exploration, with clear goals and objectives, including fielding a new generation of safe, reliable, and affordable space transportation. The genesis of the Ares I Crew Launch Vehicle and Ares V Cargo Launch Vehicle activities now under way by a nationwide Government and industry team was the confirmation of the current NASA Administrator in April 2005. Shortly thereafter, he commissioned a team of aerospace experts to conduct the Exploration Systems Architecture Study (ESAS), which gave shape to launch vehicles that will empower America's resurgence in scientific discovery through human and robotic space exploration. In October 2005, I was asked to lead this effort, building the team and forming the partnerships that will, in turn, build America's next human-rated space transportation system. In November 2006, the Ares I team began conducting the System Requirements Review milestone, just 1 year after its formation. We are gaining momentum toward the first test flight of the integrated vehicle system in 2009, just a few short years away. The Agency is now poised to deliver on the commitment this nation has made to advance our interests in space. In its inaugural year, the Ares team has conducted the first human-rated launch vehicle major milestone in over 30 years. Using the Exploration Systems Architecture Study recommendations as a starting point, the vehicle designs have been evolved to best meet customer and stakeholder requirements to fulfill the strategic goals outlined in the Vision for Space Exploration.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-19
    Description: The Crew Exploration Vehicle (CEV) that will travel to the moon and Mars, and all future Exploration vehicles and habitats will be highly computerized, necessitating an accurate method of interaction with the computers. The design of a cursor control device will have to take into consideration g-forces, vibration, gloved operations, and the specific types of tasks to be performed. The study described here is being undertaken to begin identifying characteristics of cursor control devices that will work well for the unique Exploration mission environments. The objective of the study is not to identify a particular device, but to begin identifying design characteristics that are usable and desirable for space missions. Most cursor control devices have strengths and weaknesses; they are more appropriate for some tasks and less suitable for others. The purpose of this study is to collect some initial usability data on a large number of commercially available and proprietary cursor control devices. A software test battery was developed for this purpose. Once data has been collected using these low-level, basic point/click/drag tasks, higher fidelity, scenario-driven evaluations will be conducted with a reduced set of devices. The standard tasks used for testing cursor control devices are based on a model of human movement known as Fitts law. Fitts law predicts that the time to acquire a target is logarithmically related to the distance over the target size. To gather data for analysis with this law, fundamental, low-level tasks are used such as dragging or pointing at various targets of different sizes from various distances. The first four core tasks for the study were based on the ISO 9241-9:(2000) document from the International Organization for Standardization that contains the requirements for non-keyboard input devices. These include two pointing tasks, one dragging and one tracking task. The fifth task from ISO 9241-9, the circular tracking task was not used because it is a movement that is not applicable to most of the applications used on aviation displays. Additionally, we opted to add a multi-size and multi-distance pointing task, and two ecologically more valid tasks which included text selection, and interaction with drop down menus, sliders, and checkboxes. The Visual Basic test battery tracks the task and trial numbers, measures the pointing, tracking or dragging time, as well as the number and types of errors. The testing session includes a practice set for each input device, then the randomized 7 tasks, and finally a questionnaire about the device. This is repeated for all the devices tested within a session. The experiment is a within-subjects design, with participants returning for multiple sessions to test additional devices. The input devices will be compared based on objective performance data from the tasks, as well as subjective feedback and ratings on the questionnaire.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Human Factors and Ergonomics Society; May 04, 2007; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-19
    Description: In September 2007, a team of scientists and engineers from several NASA centers participated in a field exercise at Meteor Crater, Arizona. The tests in this field exercise utilized recently developed robots of varying scales and capabilities and humans in pressurized space suits. Two examples of operations performed in the field are presented: a surface operations scenario involving suited crew supported by a number of mobile robots and setup operations for accessing a crater. The surface operations scenario simulated the end of a crew sortie and involved the following agents: 1) Suit subjects from Johnson Space Center s (JSC) advanced spacesuit laboratory 2) JSC's unpressurized crewed rover testbed, SCOUT 3) The Jet Propulsion Laboratory s (JPL) rough terrain, payload carrying robot, ATHLETE 4) JSC's Astronaut assist robot, Robonaut 5) Ames Research Center's (ARC) inspection robot, K-10. Operations began with ATHLETE positioning a pressurized rover compartment (PRC) as two crew members drove the SCOUT unpressurized rover from the field. The crew dismounted SCOUT, walked to the PRC for recharging. Robonaut then removed a sample box from the SCOUT equipment tray. K-10 then performed a drive around inspection of SCOUT, assembling a mosaic image. Lastly, the SCOUT vehicle was remotely driven to the next site. The setup operations for crater access scenario involved ATHLETE and Robonaut. This scenario began with Robonaut approaching ATHLETE and extracting a tether line. ATHLETE then extracted a drill and drilled an anchor into the surface. Robonaut then reconnected the tether to the anchor and backed away. ATHLETE is then ready to descend into the crater. This descending into the crater step is currently in the planning phase.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Technology and Applications International Forum; Feb 11, 2007 - Feb 15, 2007; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-19
    Description: We calculate the flux of neutral solar wind observed on the lunar surface at the terminator due to solar wind protons penetrating exospheric dust with: (1) grains larger that 0.1 microns and (2) grains larger than 0.01 microns. For grains larger than 0.1 microns, the ratio of the neutral solar wind to solar wind flux is estimated to be approx.10(exp -4)-10(exp -3) at solar wind speeds in excess of 800 km/s, but much lower (less than 10(exp -5) at average to low solar wind speeds. However, when the smaller grain sizes are considered, the ratio of the neutral solar wind flux to solar wind flux is estimated to be greater than or equal to 10(exp -5) at all speeds and at speeds in excess of 700 km/s reaches 10(exp -3)-10(exp -2). These neutral solar wind fluxes are easily measurable with current low energy neutral atom instrumentation. Observations of neutral solar wind from the surface of the Moon could provide a very sensitive determination of the distribution of very small dust grains in the lunar exosphere and would provide data complementary to optical measurements at ultraviolet and visible wavelengths. Furthermore, neutral solar wind, unlike its ionized counterpart, is .not held-off by magnetic anomalies, and may contribute to greater space weathering than expected in certain lunar locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: American Geophysical Union Fall Meeting; Dec 10, 2007 - Dec 14, 2007; San Francisco; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-19
    Description: Cassini and Huygens have made exciting discoveries at Titan and Enceladus, and at the same time made us aware of how little we understand about these bodies. For example, the source, and/or recycling mechanism, of methane in Titan's atmosphere is still puzzling. Indeed, river beds (mostly dry) and lakes have been spotted, and occasional clouds have been seen, but the physics to explain the observations is still mostly lacking, since our "image" of Titan is still sketchy and quite incomplete. Enceladus, only -500 km in extent, is even more puzzling, with its fiery plumes of vapor, dust and ice emanating from its south polar region, "feeding" Saturn's E ring. Long term variability of magnetospheric plasma, neutral gas, E-ring ice grain density, radio emissions, and corotation of Saturn's planetary magnetic field in response to Enceladus plume activity are of great interest for Saturn system science. Both Titan and Enceladus are bodies of considerable astrobiological interest in view of high organic abundances at Titan and potential subsurface liquid water at Enceladus. We propose to develop a new mission to Titan and Enceladus, the Titan Orbiter Aerorover Mission with Enceladus Science (TOAMES), to address these questions using novel new technologies. TOAMES is a multi-faceted mission that starts with orbit insertion around Saturn using aerobraking with Titan's extended atmosphere. We then have an orbital tour around Saturn (for 1-2 years) and close encounters with Enceladus, before it goes into orbit around Titan (via aerocapture). During the early reconnaissance phase around Titan, perhaps 6 months long, the orbiter will use altimetry, radio science and remote sensing instruments to measure Titan's global topography, subsurface structure and atmospheric winds. This information will be used to determine where and when to release the Aerorover, so that it can navigate safely around Titan and identify prime sites for surface sampling and analysis. In situ instruments will sample the upper atmosphere which may provide the seed population for the complex organic chemistry on the surface. The Aerorover will probably use a "hot air" Montgolfier balloon concept using the waste heat from the MMRTG 1-2 kwatts. New technologies will need to be developed and miniaturization will be required to maintain functionality while controlling mass, power and cost. Duty cycling will be used. The Aerorover will have all the instruments needed to sample Titan's atmosphere and surface with possible methane lakes-rivers. It will e.g., use multi-spectral imagers and for last 6 months of mission, balloon payload will land on surface at predetermined site to take core samples of the surface and use seismometers to help probe the interior. All remote (and active) sensors on the orbiter will share a - 1 meter telescope, called MIDAS (Multiple Instrument Distributed Aperture Sensor). MIDAS observations in stable orbit at Titan can provide full global maps of Titan's surface and could additionally provide long term observations of the Saturn system including Enceladus for extended mission phases over many years, potentially for decades. Experience from the Hubble Space Telescope has shown strong public interest and commitment to exciting generational missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: EPSC2007-A-00429 , European Planetary (Europlanet) Science Congress 2007; Aug 20, 2007 - Aug 24, 2007; Potsdam; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Space exploration is an endeavor that has universal appeal, is far reaching in its consequences, crossing borders and spanning intellectual disciplines from art to literature to mathematics, with a purpose and reach that can potentially unite. To enhance awareness and strengthen cooperation within the space community, and provide inspiration for new activities, Dr. McGrath will provide a brief glimpse into a few of the exciting space exploration activities currently being undertaken by NASA.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Space Forum 2007; 9-14 Sep. 207; Kiruna; Sweden
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: Venus has almost no intrinsic magnetic field to shield itself from its surrounding environment. The solar wind thus directly interacts with the planetary ionosphere and atmosphere. One of the by-products of this close encounter is the production of energetic neutral atom (ENA) emissions. Theoretical studies have shown that significant amount of ENAs are emanated from the planet. The launch of the Venus Express (VEX) in 2005 provided the first light ever of the Venus ENA emissions. The observed ENA flux level and structure are in pretty good agreement with the theoretical studies. In this paper, we present VEX ENA data and the comparison with numerical simulations. We seek to understand the solar wind interaction with the planet and the impacts on its atmospheres.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2007 American Geophysical Union (AGU) Fall Meeting; Dec 10, 2007 - Dec 14, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-19
    Description: New high-precision Nd isotope measurements have shown that the present-day Nd-142/Nd-144 for average chondrites is approximately 20 ppm lower than that for the terrestrial standard and all recent mantle-derived samples measured to date. One explanation for these differences is that an enriched missing reservoir with lower Nd-142/Nd-144 resides in the mantle to balance the bulk Earth to chondritic. Data from Archean Greenland rocks show anomalies in Nd-142/Nd-144 of up to 40 ppm higher than the proposed average for chondrites. This difference between the Archean Greenland rocks and present-day mantle-derived samples has been interpreted to result from remixing of an early-formed enriched reservoir into the convecting mantle during the Archean. If so, the implication from this is that remixing of the enriched reservoir largely shut down some time in the past such that it must at present reside in a region in the mantle that infrequently participates dynamically and leading to volcanism at the surface. Several studies have suggested that the missing reservoir may be present just above the coremantle boundary (CMB). Depending on the size of this reservoir it could potentially make up all of D or exist as distinct domains within it. If such a reservoir does exist, then mantle-derived samples from plume systems that are thought to come from the CMB may be the best opportunity to identify this component using high-precision Nd isotope measurements. To test this, picrites from Hawaii with coupled enrichments in Os-186-Os-187 that has been proposed to be a signature of core-mantle interaction were measured on the JSC Triton for high-precision Nd-142/Nd-144. For comparison, picrites from Hawaii and Iceland that do not show coupled enrichments in Os-186-Os-187 were measured. We have established an external precision for Nd-142/Nd-144 of 3.6 ppm (2 sigma) during the analytical campaign. The Iceland (n=5) and Hawaiian data (n=9) have Nd-142 ranging from -0.01 plus or minus 0.03 to +0.03 plus or minus 0.03 (2 sigma) and there is no resolvable difference between samples with Os isotope enrichments versus those without. The average epsilon Nd-142 of +0.011 plus or minus 0.034 (2 sigma ) for all of the samples (n=14) is not resolvable from the Ames and La Jolla standards with epsilon Nd-142 of +0.000 plus or minus 0.036 (n=16, 2 sigma). These data confirm recent measurements on lavas for the absence of an ancient enriched Nd-142 isotopic signature in plume systems likely derived from D and indicates that such a reservoir, if existing, must now reside in areas of the deep mantle that plumes do not sample.
    Keywords: Lunar and Planetary Science and Exploration
    Type: American Geophysical Union Meeting; Dec 10, 2007 - Dec 14, 2007; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: Surface coatings on Gusev Plains basalt have been observed and may contain hematite and nanophase Fe-oxides along with enrichments in P, S, Cl, and K relative to the underlying rock. The Gusev coatings may be derived from the dissolution of adhering soil and/or parent rock along with the addition of S and Cl from outside sources. Transient water for dissolution could be sourced from melting snow during periods of high obliquity, acid fog, and/or ground water (Haskin et al., 2005). Coatings on basalt in the hyper-arid (less than 2mm y(sup -1)) Atacama Desert may assist in understanding the chemistry, mineralogy and formation mechanisms of the Gusev basalt coatings. The Atacama Desert climate is proposed to be analogous to a paleo-Mars climate that was characterized by limited aqueous activity when the Gusev coatings could have formed. The objectives of this work are to (i) determine the chemical nature and extent of surface coatings on Atacama Desert basalt, and (ii) assess coating formation mechanisms in the Atacama Desert. Preliminary backscattered electron imaging of Atacama basalt thin-sections indicated that the coatings are as thick as 20 m. The boundary between the coating and the basalt labradorite, ilmenite, and augite grains was abrupt indicating that the basalt minerals underwent no chemical dissolution. The Atacama coatings have been added to the basalt instead of being derived from basalt chemical weathering. Semi-quantitative energy dispersive spectroscopy shows the coatings to be chemically homogeneous. The coating is depleted in Ca (0.9 wt% CaO) and enriched in K (1.3 wt.% K2O) and Si (69.1 wt.% SiO2) relative to the augite and labradorite grains. A dust source enriched in Si (e.g., poorly crystalline silica) and K and depleted in Ca appears to have been added to the basalt surface. Unlike the Gusev coatings, no P, S, and Cl enrichment was observed. However, Fe (3.2 wt.% FeO) was present in the Atacama coatings suggesting the present of Fe-oxides. While the chemistry of Atacama coating does not mirror the Gusev coating, the coating formation mechanism may be similar. The Atacama coatings of surface basalt are derived completely from exogenous sources. If surface Mars rocks have experienced limited wetting conditions as in the Atacama, then Mars coatings may be derived only from dissolution of material adhering to rock.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Geological Society America; Oct 29, 2007 - Oct 31, 2007; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: Nitrogen, together with carbon, hydrogen, oxygen, phosphorus and sulfur (CHNOPS), plays a central role in life as we know it. Indeed, molecular nitrogen is the most abundant component of the terrestrial atmosphere, and second only to carbon dioxide on Mars and Venus. The Voyager and Cassini-Huygens observations show that copious nitrogen is present on Titan also, comprising some 95% by volume of this moon's 1500 millibar atmosphere. After water vapor, it may be the most abundant (4%) of the gases around tiny Enceladus, as revealed by the recent Cassini observations. A thin nitrogen atmosphere is found even on the coldest of the solar system bodies, Triton and Pluto. The available evidence on nitrogen isotopes and the heavy noble gases suggests that Titan acquired its nitrogen largely in the form of ammonia. Subsequent chemical evolution, beginning with the photolysis of NH3 on primordial Titan, led to the nitrogen atmosphere we see on Titan today. This is also the scenario for the origin of nitrogen on the terrestrial planets. Contrary to Titan, the colder outer solar system objects, Triton and Pluto, neither had the luxury of receiving much arnmonia in the first place, nor of photolyzing whatever little ammonia they did receive in the planetesimals that formed them. On the other hand, it is plausible the planetesimals were capable of trapping and delivering molecular nitrogen directly to Triton and Pluto, unlike Titan. The origin of nitrogen on Enceladus is somewhat enigmatic. A scenario similar to Titan's, but with a role for the interior processes, may be at work. In this paper, we will discuss the source and loss of nitrogen for the above objects, and why Ganymede, the largest moon in the solar system, is nitrogen starved.
    Keywords: Lunar and Planetary Science and Exploration
    Type: European Planetary Science Congress 2006; 16-23 Sept. 2006; Berlin; Germany
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-19
    Description: The high-energy physics community has been discussing for years the need to bring together the three principal disciplines that study hadron cross-section physics - ground-based accelerators, cosmic-ray experiments in space, and air shower research. Only recently have NASA investigators begun discussing the use of space-borne cosmic-ray payloads to bridge the gap between accelerator physics and air shower work using cosmic-ray measurements. The common tool used in these three realms of high-energy hadron physics is the Monte Carlo (MC). Yet the obvious has not been considered - using a single MC for simulating the entire relativistic energy range (GeV to EeV). The task is daunting due to large uncertainties in accelerator, space, and atmospheric cascade measurements. These include inclusive versus exclusive cross-section measurements, primary composition, interaction dynamics, and possible new physics beyond the standard model. However, the discussion of a common tool or ultimate MC might be the very thing that could begin to unify these independent groups into a common purpose. The Offline ALICE concept of a Virtual MC at CERN s Large Hadron Collider (LHC) will be discussed as a rudimentary beginning of this idea, and as a possible forum for carrying it forward in the future as LHC data emerges.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 30th International Cosmic Ray Conference; Jul 03, 2007 - Jul 11, 2007; Merida, Yucatan; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: The study of cosmic rays (CRs) is a very mature subject developed around the concept of radiative particle flux phi as a mono-variant function of energy E, that is phi = phi(E). This is based on the notion of the cosmos as being filled with cosmic radiation in the form of a collisionless exosphere of plasma. Neutrals, however, are likewise ubiquitous in space and planetary trapped-radiation belts. It will be shown that in the presence of a neutral background of density rho, flux phi is actually bivariant in energy E and rho, creating a surface phi(E,rho). This is an intrinsic property of charged-particle flux, that flux is not merely a function of E but is dependent upon density rho when a background of neutrals is present. The effect is produced by multiple scattering of charged particles off neutral and ionized atoms along with ionization loss where charged and neutral populations interact. For the harder portion of CR spectra, flux is mono-variant but at nonrelativistic energies (below approx, 350 MeV) it becomes sensitive to the presence of neutral backgrounds. The dependence of phi(E,rho) upon background neutrals is helpful in discussing the anomalous CR (ACR) flux made up of ionized components of the heliospheric neutral atmosphere.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 30th International Cosmic Ray Conference; Jul 03, 2007 - Jul 11, 2007; Merida, Yucatan; Mexico
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: Potentially habitable bodies beyond the Earth are expected at minimum to have organics, liquid water, and oxidants. Simple hydrocarbon organics, potentially from breakdown of more complex molecules, have been measured in the plume gas of Enceladus, and a subsurface liquid reservoir may account in some models for the plume activity. Spectroscopic surface remote sensing measurements from other icy moons, and laboratory investigations of oxidant production in irradiated ices, all suggest that radiolytic oxidants should be abundantly produced in the upper ice crust of Enceladus from surface irradiation by magnetospheric energetic particles of Saturn. Potential oxidant inputs to astrobiology on Enceladus are compared to those at Europa, for which there is more definitive evidence for subsurface water but the presence of organics at significant abundances has yet to be established.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Enceladus Focus Group meeting; Aug 12, 2007; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: The Huygens Probe executed a successful entry, descent and impact on the Saturnian moon of Titan on January 14, 2005. The Gas Chromatograph Mass Spectrometer (GCMS) instrument conducted isotopic and compositional measurements throughout the two and one half hour descent from 146 km altitude, and on the surface for 69 minutes until loss of signal from the orbiting Cassini spacecraft. The GCMS incorporated a quadrupole mass filter with a secondary electron multiplier detection system. The gas sampling system provided continuous direct atmospheric composition measurements and batch sampling through three gas chromatographic (GC) columns, a chemical scrubber and a hydrocarbon enrichment cell. The GCMS gas inlet was heated to prevent condensation, and to evaporate volatiles from the surface after impact. Data products from the GCMS included altitude profiles of the major atmospheric constituents dinitrogen (N2) and methane (CH4), isotope ratios of 14N/15N, 12C/13C, and D/H, mole fractions of radiogenic argon (40Ar) and primordial argon (36Ar), and upper limits on the mole fractions of neon, krypton and xenon, which were found to be absent. Surface measurements confirmed the presence of ethane (C2H6) and cyanogen (C2N2). Later data products expanded atmospheric profiles to include the surface response of C2N2. C2H6, acetylene (C2H2), and carbon dioxide (CO2). More recent results include the profiles of benzene (C6H6) and molecular hydrogen (H2). The GCMS data are being further analyzed to obtain higher precision results and to identify other trace species ion the atmosphere and evaporating from the surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: AOGS 2007 4th Annual Meeting; Jul 30, 2007 - Aug 04, 2007; Bangkok; Thailand
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: Upcoming Mars missions (e.g., Mars Science Laboratory, ExoMars, Astrobiology Field Laboratory, and Mars Sample Return) will search for evidence of extant and fossil microbial habitats and the potential for future habitation. Understanding the distribution and composition of reduced carbon (or organic carbon) is critical for unraveling the Martian carbon cycle, potential for life, and possible biosignature record. Reduced carbon may be produced from biological, geochemical, or interstellar processes; however, evidence for reduced carbon on Mars is lacking with the exception of parts per billion of atmospheric methane. In contrast, abundant atmospheric carbon dioxide may reflect surface oxidation of reduced carbon and accumulation over geological timescales. This suggests that there is an undetected or lost pool of reduced carbon - a pool that may host molecular biosignatures, a characteristic of extant or extinct habitability. In this presentation, we will evaluate factors influencing the preservation potential for organic molecules in rocks on Earth and Martian. We,draw examples from organic molecules in sulfates, basalts, and ancient shales from Mars-analog settings to show how the distribution of organics and their structural patterns will aid Mars habitability studies.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Astrobiology Science Conference (AbSciCon); Apr 14, 2008 - Apr 17, 2008; California; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-08-26
    Description: Visible and near-IR observations of the Kuiper Belt Object (136472) 2005 FY(9) have indicated the presence of unusually long (1 cm or more) optical path lengths in a layer of methane ice. Using microphysical and radiative transfer modeling, we show that even at the frigid temperatures in the outer reaches of the solar system, a slab of low porosity methane ice can indeed form by pressureless sintering of micron-sized grains, and it can qualitatively reproduce the salient features of the measured spectra. A good semiquantitative match with the near-IR spectra can be obtained with a realistic slab model, provided the spectra are scaled to a visible albedo of 0.6, at the low end of the values currently estimated from Spitzer thermal measurements. Consistent with previous modeling studies, matching spectra scaled to higher albedos requires the incorporation of strong backscattering effects. The albedo may become better constrained through an iterative application of the slab model to the analysis of the thermal measurements from Spitzer and the visible/near-IR reflectance spectra. The slab interpretation offers two falsifiable predictions (1) Absence of an opposition surge, which is commonly attributed to the fluffiness of the optical surface. This prediction is best testable with a spacecraft, as Earth-based observations at true opposition will not be possible until early next century. (2) Unlikelihood of the simultaneous occurrence of very long spectroscopic path lengths in both methane and nitrogen ice on the surface of any Kuiper Belt Object, as the more volatile nitrogen would hinder densification in methane ice.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Journal of Geophysical Research - Planets (ISSN 0148-0227); 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: The cratering of sand under gas jets is observed to further understanding of soil in hopes to further understand lunar soil. Lunar soil is important to understand because it is causing problems with the materials taken into space including the shuttle. Lunar soil is not rounded like beach sand. Lunar soil is sharp like little particles of glass, and some times when blown they can hook on to one another and become bigger particles. The experiments are designed to help to understand some of the basic physics in how the shuttle jets will interact with lunar soil and how to control the lunar soil. These experiments investigate the diameter of the gas jet and the size of the sand grains to determine how these parameters affect the erosion rate and the cratering processes. Therefore, the experiments preformed will point out what is dependent and what is independent.
    Keywords: Lunar and Planetary Science and Exploration
    Type: KSC-2007-167
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: It has been proposed to fabricate polymer/ soil composites primarily from extraterrestrial resources, using relatively low-energy processes, with the original intended application being that habitat structures constructed from such composites would have sufficient structural integrity and also provide adequate radiation shielding for humans and sensitive electronic equipment against the radiation environment on the Moon and Mars. The proposal is a response to the fact that it would be much less expensive to fabricate such structures in situ as opposed to transporting them from Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: MFS-32340-1 , NASA Tech Briefs, May 2007; 25
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: During 2003 and 2004, the Johnson Space Center's White Sands Testing Facility in Las Cruces, New Mexico conducted hypervelocity impact tests on the space shuttle wing leading edge. Hypervelocity impact tests were conducted to determine if Micro-Meteoroid/Orbital Debris impacts could be reliably detected and located using simple passive ultrasonic methods. The objective of Targets A-1, Ag-1, B-1, and Bg-1 was to study hypervelocity impacts on the reinforced Shuttle Heat Shield Tiles of the Wing. Impact damage was detected using lightweight, low power instrumentation capable of being used in flight.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/CR-2007-214885/VOL8
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-12
    Description: NASA is planning to build a habitat on the Moon and use the Moon as a stepping stone to Mars. JSC-1, an Arizona volcanic ash that has mineral properties similar to lunar soil, is used to produce lunar environments for instrument and equipment testing. NASA is concerned about potential health risks to workers exposed to these fine dusts in test facilities. The potential toxicity of JSC-1 and a Martian soil simulant (JSC-Mars-1, a Hawaiian volcanic ash) was evaluated using human alveolar macrophages (HAM) isolated from volunteers; titanium dioxide and quartz were used as reference dusts. This investigation is a prerequisite to studies of actual lunar dust. HAM were treated in vitro with these test dusts for 24 h; assays of cell viability and apoptosis showed that JSC-1 and TiO2 were comparable, and more toxic than saline control, but less toxic than quartz. HAM treated with JSC-1 or JSC-Mars 1 showed a dose-dependent increase in cytotoxicity. To elucidate the mechanism by which these dusts induce apoptosis, we investigated the involvement of the scavenger receptor (SR). Pretreatment of cells with polyinosinic acid, an SR blocker, significantly inhibited both apoptosis and necrosis. These results suggest HAM cytotoxicity may be initiated by interaction of the dust particles with SR. Besides being cytotoxic, silica is known to induce shifting of HAM phenotypes to an immune active status. The immunomodulatory effect of the simulants was investigated. Treatment of HAM with either simulant caused preferential damage to the suppressor macrophage subpopulation, leading to a net increase in the ratio of activator (RFD1+) to suppressor (RFD1+7+) macrophages, a result similar to treatment with silica. It is recommended that appropriate precautions be used to minimize exposure to these fine dusts in large-scale engineering applications.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-12
    Description: We report the first quantitative measurements of the ultrafine (20 to 100 nm) and fine (100 nm to 20 m) particulate components of Lunar surface regolith. The measurements were performed by gas-phase dispersal of the samples, and analysis using aerosol diagnostic techniques. This approach makes no a priori assumptions about the particle size distribution function as required by ensemble optical scattering methods, and is independent of refractive index and density. The method provides direct evaluation of effective transport diameters, in contrast to indirect scattering techniques or size information derived from two-dimensional projections of high magnification-images. The results demonstrate considerable populations in these size regimes. In light of the numerous difficulties attributed to dust exposure during the Apollo program, this outcome is of significant importance to the design of mitigation technologies for future Lunar exploration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: NASA/TM-2007-214956 , E-16109-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-12
    Description: Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, however, it is recommended that EVA suits be decontaminated when astronauts enter surface habitats when returning from field activity and that biosafety protocol approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human Mars mission and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning.
    Keywords: Lunar and Planetary Science and Exploration
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-13
    Description: The oral and poster sessions of the SEVENTH INTERNATIONAL CONFERENCE ON MARS included; The Distribution and Context of Water-related Minerals on Mars; Poster Session: Mars Geology; Geology of the Martian Surface: Lithologic Variation, Composition, and Structure; Water Through Mars' Geologic History; Poster Session: Mars Water and the Martian Interior; Volatiles and Interior Evolution; The Martian Climate and Atmosphere: Variations in Time and Space; Poster Session: The Martian Climate and Current Processes; Modern Mars: Weather, Atmospheric Chemistry, Geologic Processes, and Water Cycle; Public Lecture: Mars Reconnaissance Orbiter's New View of the Red Planet; The North and South Polar Layered Deposits, Circumpolar Regions, and Changes with Time; Poster Session: Mars Polar Science, Astrobiology, Future Missions/Instruments, and Other Mars Science; Mars Astrobiology and Upcoming Missions; and Martian Stratigraphy and Sedimentology: Reading the Sedimentary Record.
    Keywords: Lunar and Planetary Science and Exploration
    Type: LPI-Contrib-1353 , (ISSN 1540-7845)|Seventh International Conference on Mars; Jul 09, 2007 - Jul 13, 2007; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-08-13
    Description: The U.S. Vision for Space Exploration directs NASA to retire the Space Shuttle in 2010 and replace it with safe, reliable, and cost-effective space transportation systems for crew and cargo travel to the Moon, Mars, and beyond. Such emerging space transportation initiatives face massive organizational challenges, including building and nurturing an experienced, dedicated team with the right skills for the required tasks; allocating and tracking the fiscal capital invested in achieving technical progress against an integrated master schedule; and turning generated data into useful knowledge that equips the team to design and develop superior products for customers and stakeholders. It has been more than 30 years since the Space Shuttle was designed; therefore, the current aerospace workforce has limited experience with developing new designs for human-rated spaceflight hardware. To accomplish these activities, NASA is using a wide range of state-of-the-art information technology tools that connect its diverse, decentralized teams and provide timely, accurate information for decision makers. In addition, business professionals are assisting technical managers with planning, tracking, and forecasting resource use against an integrated master schedule that horizontally and vertically interlinks hardware elements and milestone events. Furthermore, NASA is employing a wide variety of strategies to ensure that it has the motivated and qualified staff it needs for the tasks ahead. This paper discusses how NASA's Exploration Launch Projects Office, which is responsible for delivering these new launch vehicles, integrates its resources to create an engineering business environment that promotes mission success, which is defined by replacing the Space Shuttle by 2014 and returning to the Moon by 2020.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 54th JANNAF SPS Meeting; May 14, 2007 - May 17, 2007; Denver, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-28
    Description: The Constellation concept was first proposed during a discussion at the 19th CEOS Plenary, in London, in November 2005. The first Paper of the Constellation Concept was presented at the CEOS Strategic Implementation Team meeting (SIT-18), in Frascati, in March 2006, and strongly endorsed by the CEOS Principals. The concept attempts to provide agencies with tools for implementation of the elements that have been previously discussed in international forums (GEO Work Plan, GCOS Implementation Plan). This provides a solid foundation from the community providing requirements. Though agency spending is governed by national requirements, CEOS seeks synergies among member agency programs to fulfil GEOSS requirements, defining guidelines and standards to help agencies to determine from the outset what can be achieved. The constellations concept will allow the development of a commonalties approach among different agencies. At the heart of the application of the Constellations concept is the definition of a series of standards (specific to each Constellation) - required to be satisfied for any mission to be included in the constellation - and a process of recognition/acceptance, whereby an agency applies to SIT to have one or more of its missions (ideally from the outset of planning) recognised as meeting the constellation standards and thereby satisfying the relevant user community needs.
    Keywords: Lunar and Planetary Science and Exploration
    Type: International Geoscience and Remote Sensing Symposium (IGARRS); Jul 23, 2007 - Jul 27, 2007; Barcelona; Spain
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: This paper presents a brief overview of propellant gauging needs and requirements in the context of lunar exploration missions defined by the Exploration Systems Architecture Study (ESAS) report. A timeline for the development and testing of gauging technologies, and a few key design review dates are presented. A lunar exploration mission scenario is discussed which aids in defining the propellant gauging needs. The fleet of new exploration vehicles includes the Ares I and Ares V launch vehicles, Earth Departure Stage (EDS), Lunar Surface Access Module (LSAM) ascent and descent stages, and the Orion Crew Exploration Vehicle (CEV). The liquid propellant choices are currently oxygen - hydrogen for the launch vehicles, the EDS, and LSAM descent module; oxygen - methane for LSAM ascent module; and monomethylhydrazine nitrogen tetroxide (MMH-NTO) for the CEV. Estimated tank sizes, temperatures, pressures, and storage durations are presented. A baseline propellant gauging system is proposed that is based on high Technology Readiness Level (TRL) gauging technologies. In order to be considered for use on the new exploration vehicles, any new gauging technologies will have to show a clear benefit over the baseline methods in terms of performance and/or cost.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 54th JANNAF Propulsion Meeting; May 14, 2007 - May 19, 2007; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-13
    Description: A primary goal of geomorphological enquiry is to make genetic associations between process and form. In rock breakdown studies, the links between process, inheritance and lithology are not well constrained. In particular, there is a need to establish an understanding of feature persistence. That is, to determine the extent to which in situ rock breakdown (e.g., aeolian abrasion or salt weathering) masks signatures of earlier geomorphic transport processes (e.g., fluvial transport or crater ejecta). Equally important is the extent to which breakdown during geomorphic transport masks the imprint of past weathering. The use of rock features in this way raises the important question: Can features on the surface of a rock reliably indicate its geomorphic history? This has not been determined for rock surfaces on Earth or other planets. A first step towards constraining the links between process, inheritance, and morphology is to identify pristine features produced by different process regimes. The purpose of this atlas is to provide a comprehensive image collection of breakdown features commonly observed on boulders in different geomorphic environments. The atlas is intended as a tool for planetary geoscientists and their students to assist in identifying features found on rocks on planetary surfaces. In compiling this atlas, we have attempted to include features that have formed 'recently' and where the potential for modification by another geomorphic process is low. However, we acknowledge that this is, in fact, difficult to achieve when selecting rocks in their natural environment. We group breakdown features according to their formative environment and process. In selecting images for inclusion in the atlas we were mindful to cover a wide range of climatic zones. For example, in the weathering chapter, clast features are shown from locations such as the hyper-arid polar desert of Antarctica and the semi-arid canyons of central Australia. This is important as some features (e.g., alveoli) occur across climate regimes. We have drawn on the published geomorphological literature and our own field experience. We use, where possible, images of extrusive igneous rocks as the data returned from Mars, Venus and the Moon indicates that this is the predominant rock type. One of the purposes of this atlas is to expand the range of surface features that are known to indicate a particular geomorphic environment or process history. The surface features on boulders in some environments such as aeolian and weathering are well understood. In contrast, those in fluvial or ejecta environments are not. Therefore we have presented a comprehensive assemblage of features that are likely to be produced in each of the geomorphic environments. We hope that this atlas will trigger more research on diagnostic features, particularly their morphometry and detailed morphology, their persistence and rates of formation. In this first edition of the atlas we detail the features found on clasts in three geomorphic environments: aeolian, fluvial and weathering. Future editions of the atlas will include chapters on ejecta, micro-impacts, coastal, colluvial, glacial and structural features.
    Keywords: Lunar and Planetary Science and Exploration
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration (NASA) vision has as a cornerstone, the establishment of an Outpost on the Moon. This Lunar Outpost will eventually provide the necessary planning, technology development, and training for a manned mission to Mars in the future. As part of the overall activity, NASA is conducting Earth-based research and advancing technologies to a Technology Readiness Level (TRL) 6 maturity under the Exploration Technology Development Program that will be incorporated into the Constellation Project as well as other projects. All aspects of the Lunar environment, including the Lunar regolith and its properties, are important in understanding the long-term impacts to hardware, scientific instruments, and humans prior to returning to the Moon and living on the Moon. With the goal of reducing risk to humans and hardware and increasing mission success on the Lunar surface, it is vital that terrestrial investigations including both development and verification testing have access to Lunar-like environments. The Marshall Space Flight Center (MSFC) is supporting this endeavor by developing, characterizing, and producing Lunar simulants in addition to analyzing existing simulants for appropriate applications. A Lunar Regolith Simulant Workshop was conducted by MSFC in Huntsville, Alabama, in October 2007. The purpose of the Workshop was to bring together simulant developers, simulant users, and program and project managers from ETDP and Constellation with the goals of understanding users' simulant needs and their applications. A status of current simulant developments such as the JSC-1A (Mare Type Simulant) and the NASA/U.S. Geological Survey Lunar Highlands-Type Pilot Simulant (NU-LHT-1M) was provided. The method for evaluating simulants, performed via Figures of Merit (FoMs) algorithms, was presented and a demonstration was provided. The four FoM properties currently being assessed are: size, shape, density, and composition. Some of the Workshop findings include: simulant developers must understand simulant users' needs and applications; higher fidelity simulants are needed and needed in larger quantities now; simulants must be characterized to allow "apples-to-apples" comparison of test results; simulant users should confer with simulant experts to assist them in the selection of simulants; safety precautions should be taken in the handling and use of simulants; shipping, storing, and preparation of simulants have important implications; and most importantly, close communications among the simulant community must be maintained and will be continued via telecoms, meetings, and an annual Lunar Regolith Simulant Workshop.
    Keywords: Lunar and Planetary Science and Exploration
    Type: 2007 Lunar Regolith Simulant Workshop Overview; Oct 10, 2007 - Oct 12, 2007; Huntsville, AL; United States|2007 PISCES Conference; Nov 07, 2007 - Nov 10, 2007; Hilo, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-13
    Description: A major issue that we managed to successfully address for the Stardust Mission was the magnitude and manner of preliminary examination (PET) of the returned samples, which totaled much less than 1 mg. Not since Apollo and Luna days had anyone faced this issue, and the lessons of Apollo PET were not extremely useful because of the very different sample masses in this case, and the incredible advances in analytical capabilities since the 1960s. This paper reviews some of the techniques for examination of small very rare samples that would be returned from Mars missions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Ground Truth from Mars: Science Payoff from Sample Return Mission; Apr 20, 2008 - Apr 23, 2008; Albuquerque, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-13
    Description: Both Rovers have celebrated 3-year anniversaries on surface of Mars: a) More than ten times design life; b) Planned and implemented rigorous assembly and system level test programs; c) Demonstrated robust thermal margins; d)Tested both in vacuum and Mars atmosphere; e) Planned and implemented thermal cycling life qualification program; f) Demonstrated survival in deep thermal diurnal cycling and seasonal temperature variations; and g) Both Rovers continue to explore and return valuable science data
    Keywords: Lunar and Planetary Science and Exploration
    Type: IMAP 2nd Advanced Technology Workshop on Reliability of Advanced Packages and Devices in Extreme Cold Environments; Feb 27, 2007; Arcadia, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-13
    Description: As NASA implements the nation's Vision for Space Exploration to return to the moon and travel to Mars, new considerations will be be given to the processes governing design and operations of manned spaceflight. New objectives bring new technical challenges; Safety will drive many of these decisions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Microsymposium on Comparative Planetology; Oct 02, 2007 - Oct 03, 2007; Moscow; Russia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-07-13
    Description: A test battery was developed for cursor control device evaluation: four tasks were taken from ISO 9241-9, and three from previous studies conducted at NASA. The tasks focused on basic movements such as pointing, clicking, and dragging. Four cursor control devices were evaluated with and without Extravehicular Activity (EVA) gloves to identify desirable cursor control device characteristics for NASA missions: 1) the Kensington Expert Mouse, 2) the Hulapoint mouse, 3) the Logitech Marble Mouse, and 4) the Honeywell trackball. Results showed that: 1) the test battery is an efficient tool for differentiating among input devices, 2) gloved operations were about 1 second slower and had at least 15% more errors; 3) devices used with gloves have to be larger, and should allow good hand positioning to counteract the lack of tactile feedback, 4) none of the devices, as designed, were ideal for operation with EVA gloves.
    Keywords: Lunar and Planetary Science and Exploration
    Type: CHI 2008; Apr 05, 2008; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-07-13
    Description: The President's Vision for Space Exploration calls for the return of human exploration of the Moon. The plans are ambitious and call for the creation of a lunar outpost. Lunar Landers will therefore be required to land near predeployed hardware, and the dust storm created by the Lunar Lander's plume impingement to the lunar surface presents a hazard. Knowledge of the number density, size distribution, and velocity of the grains in the dust cloud entrained into the flow is needing to develop mitigation strategies. An initial step to acquire such knowledge is simulating the associated plume impingement flow field. The following paper presents results from a loosely coupled continuum flow solver/Direct Simulation Monte Carlo (DSMC) technique for simulating the plume impingement of the Apollo Lunar module on the lunar surface. These cases were chosen for initial study to allow for comparison with available Apollo video. The relatively high engine thrust and the desire to simulate interesting cases near touchdown result in flow that is nearly entirely continuum. The DSMC region of the flow field was simulated using NASA's DSMC Analysis Code (DAC) and must begin upstream of the impingement shock for the loosely coupled technique to succeed. It was therefore impossible to achieve mean free path resolution with a reasonable number of molecules (say 100 million) as is shown. In order to mitigate accuracy and performance issues when using such large cells, advanced techniques such as collision limiting and nearest neighbor collisions were employed. The final paper will assess the benefits and shortcomings of such techniques. In addition, the effects of plume orientation, plume altitude, and lunar topography, such as craters, on the flow field, the surface pressure distribution, and the surface shear stress distribution are presented.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Direct Simulation Monte Carlo: Theory, Methods and Applications; Sep 30, 2007 - Oct 03, 2007; Santa Fe, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-07-13
    Description: Dust particles released from comet 81P/Wild-2 were captured in silica aerogel on-board the STARDUST spacecraft and returned to Earth on January 15, 2006. STARDUST recovered thousands of particles ranging in size from 1 to 100 micrometers. During the six month Preliminary Examination period an international consortium of 180 scientists investigated their mineralogy/petrology, organic/inorganic chemistry, optical properties and isotopic compositions. Stardust samples are now available for research by the entire research community.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Discovery@15 Conference; Sep 19, 2007 - Sep 20, 2007; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...