ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Aircraft Propulsion and Power
  • 2000-2004  (57)
  • 1950-1954
  • 2000  (57)
  • 1
    Publication Date: 2011-08-23
    Description: The total temperatures (enthalpies) required to ground-test air-breathing (aero-propulsion) engines at high Mach number flight conditions can be achieved in a number of ways. Among these are: 1. Heat exchangers, including pre-heated ceramic beds. 2. direct electrical heating, e.g., arc discharge and resistance heaters. 3. Compression heating. 4. Shock heating, and 5. In-stream combustion, with oxygen replenishment to match air content. Each method has distinct advantages, disadvantages and limitations. All have a common characteristic of being designed for intermittent flow, due to the extreme energy required for continuous operation at simulated Mach numbers above about 3. All also distort the composition of atmospheric air to some degree, due to the high temperatures that occur in the plenum section prior to expansion of the flow to simulated flight conditions. In the case of in-stream combustion, the resulting test medium is commonly referred to as "vitiated air", being composed of oxygen, nitrogen and some fraction of combustion products.
    Keywords: Aircraft Propulsion and Power
    Type: JANNAF 25th Airbreathing Propulsion Subcommittee, 37th Combustion Subcommittee and 1st Modeling and Simultation Subcommittee Joint Meeting; Volume 1; 243-271; CPIA-Publ-703-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The purpose of this presentation is to show flight demonstrations, complete preflight ground tests, and the assembling of the first QRT 4 engine.
    Keywords: Aircraft Propulsion and Power
    Type: 1999 NASA Seal/Secondary Air System Workshop; Volume 1; 61-78; NASA/CP-2000-210472/VOL1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-05
    Description: Typical installed separate-flow exhaust nozzle system. The jet noise from modern turbofan engines is a major contributor to the overall noise from commercial aircraft. Many of these engines use separate nozzles for exhausting core and fan streams. As a part of NASA s Advanced Subsonic Technology (AST) program, the NASA Glenn Research Center at Lewis Field led an experimental investigation using model-scale nozzles in Glenn s Aero-Acoustic Propulsion Laboratory. The goal of the investigation was to develop technology for reducing the jet noise by 3 EPNdB. Teams of engineers from Glenn, the NASA Langley Research Center, Pratt & Whitney, United Technologies Research Corporation, the Boeing Company, GE Aircraft Engines, Allison Engine Company, and Aero Systems Engineering contributed to the planning and implementation of the test.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: The NASA Glenn Research Center at Lewis Field develops new technologies to increase the fuel efficiency of aircraft engines, improve the safety of engine operation, reduce emissions, and reduce engine noise. With the development of new designs for fans, compressors, and turbines to achieve these goals, the basic aeroelastic requirements are that there should be no flutter (self-excited vibrations) or high resonant blade stresses (due to forced response) in the operating regime. Therefore, an accurate prediction and analysis capability is required to verify the aeroelastic soundness of the designs. Such a three-dimensional viscous propulsion aeroelastic analysis capability has been developed at Glenn with support from the Advanced Subsonic Technology (AST) program. This newly developed aeroelastic analysis capability is based on TURBO, a threedimensional unsteady aerodynamic Reynolds-averaged Navier-Stokes turbomachinery code developed previously under a grant from Glenn. TURBO can model the viscous flow effects that play an important role in certain aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), flutter in the presence of shock and boundary-layer interaction, and forced response due to wakes and shock impingement. In aeroelastic analysis, the structural dynamics representation of the blades is based on normal modes. A finite-element analysis code is used to calculate these in-vacuum vibration modes and the associated natural frequencies. In an aeroelastic analysis using the TURBO code, flutter and forced response are modeled as being uncoupled. To calculate if a blade row will flutter, one prescribes the motion of the blade to be a harmonic vibration in a specified in-vacuum normal mode. An aeroelastic analysis preprocessor is used to generate the displacement field required for the analysis. The work done by aerodynamic forces on the vibrating blade during a cycle of vibration is calculated. If this work is positive, the blade is dynamically unstable, since it will extract energy from the flow, leading to an increase in the blade s oscillation amplitude. The forced-response excitations on a blade row are calculated by modeling the flow through two adjacent blade rows using the TURBO code. The blades are assumed to be rigid. As an option, a single blade row can be modeled with the upstream blade row influence represented by a time-varying disturbance (gust) at the inlet boundary. The unsteady forces on a blade row from such analyses are used in a structural analysis along with the blade structural dynamics characteristics and aerodynamic damping associated with blade vibration to calculate the resulting dynamic stresses on the blade.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-05
    Description: The tip clearance flows of transonic compressor rotors have a significant impact on rotor and stage performance. Although numerical simulations of these flows are quite sophisticated, they are seldom verified through rigorous comparisons of numerical and measured data because, in high-speed machines, measurements acquired in sufficient detail to be useful are rare. Researchers at the NASA Glenn Research Center at Lewis Field compared measured tip clearance flow details (e.g., trajectory and radial extent) of the NASA Rotor 35 with results obtained from a numerical simulation. Previous investigations had focused on capturing the detailed development of the jetlike flow leaking through the clearance gap between the rotating blade tip and the stationary compressor shroud. However, we discovered that the simulation accuracy depends primarily on capturing the detailed development of a wall-bounded shear layer formed by the relative motion between the leakage jet and the shroud.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-05
    Description: Higher operating temperatures increase the efficiency of aircraft gas turbine engines, but can also degrade internal components. High-pressure turbine blades just downstream of the combustor are particularly susceptible to overheating. Computational fluid dynamics (CFD) computer programs can predict the flow around the blades so that potential hot spots can be identified and appropriate cooling schemes can be designed. Various blade and cooling schemes can be examined computationally before any hardware is built, thus saving time and effort. Often though, the accuracy of these programs has been found to be inadequate for predicting heat transfer. Code and model developers need highly detailed aerodynamic and heat transfer data to validate and improve their analyses. The Transonic Turbine Blade Cascade was built at the NASA Glenn Research Center at Lewis Field to help satisfy the need for this type of data.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-10-04
    Description: The cost of implementing new technology in aerospace propulsion systems is becoming prohibitively expensive and time consuming. One of the main contributors to the high cost and lengthy time is the need to perform many large-scale hardware tests and the inability to integrate all appropriate subsystems early in the design process. The NASA Glenn Research Center is developing the technologies required to enable simulations of full aerospace propulsion systems in sufficient detail to resolve critical design issues early in the design process before hardware is built. This concept, called the Numerical Propulsion System Simulation (NPSS), is focused on the integration of multiple disciplines such as aerodynamics, structures and heat transfer with computing and communication technologies to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS, as illustrated, is to be a "numerical test cell" that enables full engine simulation overnight on cost-effective computing platforms. There are several key elements within NPSS that are required to achieve this capability: 1) clear data interfaces through the development and/or use of data exchange standards, 2) modular and flexible program construction through the use of object-oriented programming, 3) integrated multiple fidelity analysis (zooming) techniques that capture the appropriate physics at the appropriate fidelity for the engine systems, 4) multidisciplinary coupling techniques and finally 5) high performance parallel and distributed computing. The current state of development in these five area focuses on air breathing gas turbine engines and is reported in this paper. However, many of the technologies are generic and can be readily applied to rocket based systems and combined cycles currently being considered for low-cost access-to-space applications. Recent accomplishments include: (1) the development of an industry-standard engine cycle analysis program and plug 'n play architecture, called NPSS Version 1, (2) A full engine simulation that combines a 3D low-pressure subsystem with a 0D high pressure core simulation. This demonstrates the ability to integrate analyses at different levels of detail and to aerodynamically couple components, the fan/booster and low-pressure turbine, through a 3D computational fluid dynamics simulation. (3) Simulation of all of the turbomachinery in a modern turbofan engine on parallel computing platform for rapid and cost-effective execution. This capability can also be used to generate full compressor map, requiring both design and off-design simulation. (4) Three levels of coupling characterize the multidisciplinary analysis under NPSS: loosely coupled, process coupled and tightly coupled. The loosely coupled and process coupled approaches require a common geometry definition to link CAD to analysis tools. The tightly coupled approach is currently validating the use of arbitrary Lagrangian/Eulerian formulation for rotating turbomachinery. The validation includes both centrifugal and axial compression systems. The results of the validation will be reported in the paper. (5) The demonstration of significant computing cost/performance reduction for turbine engine applications using PC clusters. The NPSS Project is supported under the NASA High Performance Computing and Communications Program.
    Keywords: Aircraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-10-04
    Description: Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.
    Keywords: Aircraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-05
    Description: As we look to the future, increasingly stringent civilian aviation noise regulations will require the design and manufacture of extremely quiet commercial aircraft. Also, the large fan diameters of modern engines with increasingly higher bypass ratios pose significant packaging and aircraft installation challenges. One design approach that addresses both of these challenges is to mount the engines above the wing. In addition to allowing the performance trend towards large diameters and high bypass ratio cycles to continue, this approach allows the wing to shield much of the engine noise from people on the ground. The Propulsion Systems Analysis Office at the NASA Glenn Research Center at Lewis Field conducted independent analytical research to estimate the noise reduction potential of mounting advanced turbofan engines above the wing. Certification noise predictions were made for a notional long-haul commercial quadjet transport. A large quad was chosen because, even under current regulations, such aircraft sometimes experience difficulty in complying with certification noise requirements with a substantial margin. Also, because of its long wing chords, a large airplane would receive the greatest advantage of any noise-shielding benefit.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-05
    Description: A planar optical velocity measurement technique known as Particle Image Velocimetry (PIV) is being used to study transient events in compressors. In PIV, a pulsed laser light sheet is used to record the positions of particles entrained in a fluid at two instances in time across a planar region of the flow. Determining the recorded particle displacement between exposures yields an instantaneous velocity vector map across the illuminated plane. Detailed flow mappings obtained using PIV in high-speed rotating turbomachinery components are used to improve the accuracy of computational fluid dynamics (CFD) simulations, which in turn, are used to guide advances in state-of-the-art aircraft engine hardware designs.
    Keywords: Aircraft Propulsion and Power
    Type: Research and Technology 1999; NASA/TM-2000-209639
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-17
    Description: In this project, we continue to develop the previous joint research between the Fluid Mechanics and Acoustics Laboratory (FM&AL) at Hampton University (HU) and the Jet Noise Team (JNT) at the NASA Langley Research Center (NASA LaRC). The FM&AL was established at Hampton University in June of 1996 and has conducted research under two NASA grants: NAG-1-1835 (1996-99), and NAG-1-1936 (1997-00). In addition, the FM&AL has jointly conducted research with the Central AeroHydrodynamics Institute (TsAGI, Moscow) in Russia under a Civilian Research and Development Foundation (CRDF) grant #RE2-136 (1996-99). The goals of the FM&AL programs are twofold: (1) to improve the working efficiency of the FM&AUs team in generating new innovative ideas and in conducting research in the field of fluid dynamics and acoustics, basically for improvement of supersonic and subsonic aircraft engines, and (2) to attract promising minority students to this research and training and, in cooperation with other HU departments, to teach them basic knowledge in Aerodynamics, Gas Dynamics, and Theoretical and Experimental Methods in Aeroacoustics and Computational Fluid Dynamics (CFD). The research at the HU FM&AL supports reduction schemes associated with the emission of engine pollutants for commercial aircraft and concepts for reduction of observables for military aircraft. These research endeavors relate to the goals of the NASA Strategic Enterprise in Aeronautics concerning the development of environmentally acceptable aircraft. It is in this precise area, where the US aircraft industry, academia, and Government are in great need of trained professionals and which is a high priority goal of the Minority University Research and Education (MUREP) Program, that the HU FM&AL can make its most important contribution. The main achievements for the reporting period in the development of concepts for noise reduction and improvement in efficiency for jet exhaust nozzles and inlets for aircraft engines are as follows: (1) Publications- The AIAA Paper #99-1924 has been presented at the 5th AIAA/CEAS Aeroacoustics Conference, May 10-12, 1999, Seattle, WA; the AIAA Paper #00-3315 has been accepted for the 36th AIAA/ASME/ SAE/ASEE Joint Propulsion Conference, 17-19 July, 2000, Huntsville, AL; and another paper has been accepted for the International Environmental Congress, 14-16 June, 2000, St.-Petersburg, Russia. (2) Two patents were granted on July 20, 1999, and January 12, 2000. (3) Three reports/presentations at the NASA LaRC and GRC (06/22199, 09/26/ 99, and 06/25/00). (4) Grants and Proposals: Four proposals were submitted to the NASA and CRDF; a NASA Faculty Award was granted on January, 2000. A CRDF Young Investigator Program Award was granted for a 3 months visit of the Russian scientist to the HU FM&AL (03/99-05/99). (5) Theory and Numerical Simulations- Analytical theory, numerical simulation, comparison of theoretical with experimental results, and modification of theoretical approaches, models, grids etc. have been conducted for several complicated 2D and 3D nozzle and inlet designs using NASA codes based on full Euler and Navier-Stokes solvers: CFL3D, CRAFT, GODUNOV, and others. New approach for environmental monitoring via infrasound. (6) Experimental Tests: Experimental acoustic tests at the TsAGI, Moscow, with nozzles having Screwdriver or Axisymmetric Plug and Permeable Shells. A small scale working model of the NASA Low Speed Wind Tunnel (LSWT) has been installed in the Experimental Hall of the HU FM&AL (June, 1999). Preliminary preparations for experimental tests were made. (7) Students Research Activity: Involvement of the two graduate students as research assistants in the current research project.
    Keywords: Aircraft Propulsion and Power
    Type: HBCUs/OMUs Research Conference Agenda and Abstracts; 21; NASA/TM-2000-210042
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: It has been suggested previously that the performance of scramjet propulsion system may be improved by the use of magnetohydrodynamic (MHD) energy bypass: an MHD generator could be made to decelerate the flow entering the combustor, thereby improving combustion efficiency, and the electrical power generated could be made to accelerate the flow exiting from the combustor prior to expanding through the nozzle. In one of such proposed schemes, the MHD generator is proposed to be operated at a low temperature and ionization is to be achieved under nonequilibrium by the application of an external power. In the present work, the required power of such an external source is calculated assuming a 100%-efficient nonequilibrium ionization scheme. The power required is that needed to prevent the degree of ionization from reaching equilibrium with the low gas temperature. The flow is seeded with potassium or cesium. Specific impulse is calculated with and without turbulent friction. The results show that, for typical intended flight conditions, the specific impulse obtained is substantially higher than that of a typical scramjet, but the required external-power is several times that of the power generated in the MHD generator.
    Keywords: Aircraft Propulsion and Power
    Type: 39th AIAA Aerospace Sciences Meeting; Jan 01, 2001; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: This paper introduces a simple "Rule of Thumb" (ROT) method to estimate the load capacity of foil air journal bearings, which are self-acting compliant-surface hydrodynamic bearings being considered for Oil-Free turbo-machinery applications such as gas turbine engines. The ROT is based on first principles and data available in the literature and it relates bearing load capacity to the bearing size and speed through an empirically based load capacity coefficient, D. It is shown that load capacity is a linear function of bearing surface velocity and bearing projected area. Furthermore, it was found that the load capacity coefficient, D, is related to the design features of the bearing compliant members and operating conditions (speed and ambient temperature). Early bearing designs with basic or "first generation" compliant support elements have relatively low load capacity. More advanced bearings, in which the compliance of the support structure is tailored, have load capacities up to five times those of simpler designs. The ROT enables simplified load capacity estimation for foil air journal bearings and can guide development of new Oil-Free turbomachinery systems.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-209782 , E-12067 , ARL-TR-2334 , NAS 1.15:209782 , International Joint Tribology; Oct 01, 2000 - Oct 04, 2000; Seattle, WA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: An experimental investigation is presented of a novel vitiated coflow spray flame burner. The vitiated coflow emulates the recirculation region of most combustors, such as gas turbines or furnaces; additionally, since the vitiated gases are coflowing, the burner allows exploration of the chemistry of recirculation without the corresponding fluid mechanics of recirculation. As such, this burner allows for chemical kinetic model development without obscurations caused by fluid mechanics. The burner consists of a central fuel jet (droplet or gaseous) surrounded by the oxygen rich combustion products of a lean premixed flame that is stabilized on a perforated, brass plate. The design presented allows for the reacting coflow to span a large range of temperatures and oxygen concentrations. Several experiments measuring the relationships between mixture stoichiometry and flame temperature are used to map out the operating ranges of the coflow burner. These include temperatures as low 300 C to stoichiometric and oxygen concentrations from 18 percent to zero. This is achieved by stabilizing hydrogen-air premixed flames on a perforated plate. Furthermore, all of the CO2 generated is from the jet combustion. Thus, a probe sample of NO(sub X) and CO2 yields uniquely an emission index, as is commonly done in gas turbine engine exhaust research. The ability to adjust the oxygen content of the coflow allows us to steadily increase the coflow temperature surrounding the jet. At some temperature, the jet ignites far downstream from the injector tube. Further increases in the coflow temperature results in autoignition occurring closer to the nozzle. Examples are given of methane jetting into a coflow that is lean, stoichiometric, and even rich. Furthermore, an air jet with a rich coflow produced a normal looking flame that is actually 'inverted' (air on the inside, surrounded by fuel). In the special case of spray injection, we demonstrate the efficacy of this novel burner with a methanol spray in a vitiated coflow. As a proof of concept, an ensemble light diffraction (ELD) optical instrument was used to conduct preliminary measurements of droplet size distribution and liquid volume fraction.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-210466 , E-12462 , NAS 1.26:210466 , Mar 13, 2000 - Mar 14, 2000; Golden, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: The following research results are based on development of an approach previously proposed by the authors for optimum nozzle design to obtain maximum thrust. The design was denoted a Telescope nozzle. A Telescope nozzle contains one or several internal designs of certain location, which are inserted at certain locations into a divergent conical or planar main nozzle near its exit. Such a design provides additional thrust augmentation over 20% by comparison with the optimum single nozzle of equivalent lateral area. What is more, recent experimental acoustic tests have discovered an essential noise reduction due to Telescope nozzles application. In this paper, some additional theoretical results are presented for Telescope nozzles and a similar approach is applied for aeroperformance improvement of a supersonic inlet. In addition, a classic gas dynamics problem of a similar supersonic flow into a plate has been analyzed. In some particular cases, new exact analytical solutions are obtained for a flow into a wedge with an oblique shock wave. Numerical simulations were conducted for supersonic flow into a divergent portion of a 2D or axisymmetric nozzle with several plane or conuical designs as well as into a 2D or axisymmetric supersonic inlet with a forebody. The 1st order Kryko-Godunov marching numerical scheme for inviscid supersonic flows was used. Several cases were tested using the NASA CFL3d code based on full Navier-Stokes equations. Numerical simulation results have confirmed essential benefits of Telescope design applications in propulsion systems.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 00-3315 , 36th Joint Propulsion Conference; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: A probabilistic approach is described for aeropropulsion system assessment. To demonstrate this approach, the technical performance of a wave rotor-enhanced gas turbine engine (i.e. engine net thrust, specific fuel consumption, and engine weight) is assessed. The assessment accounts for the uncertainties in component efficiencies/flows and mechanical design variables, using probability distributions. The results are presented in the form of cumulative distribution functions (CDFS) and sensitivity analyses, and are compared with those from the traditional deterministic approach. The comparison shows that the probabilistic approach provides a more realistic and systematic way to assess an aeropropulsion system.
    Keywords: Aircraft Propulsion and Power
    Type: Gas Turbine and Aeroengine Technical Congress; May 08, 2000 - May 11, 2000; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: Advances in computational technology and in physics-based modeling are making large-scale, detailed simulations of complex systems possible within the design environment. For example, the integration of computing, communications, and aerodynamics has reduced the time required to analyze major propulsion system components from days and weeks to minutes and hours. This breakthrough has enabled the detailed simulation of major propulsion system components to become a routine part of designing systems, providing the designer with critical information about the components early in the design process. This paper describes the development of the numerical propulsion system simulation (NPSS), a modular and extensible framework for the integration of multicomponent and multidisciplinary analysis tools using geographically distributed resources such as computing platforms, data bases, and people. The analysis is currently focused on large-scale modeling of complete aircraft engines. This will provide the product developer with a "virtual wind tunnel" that will reduce the number of hardware builds and tests required during the development of advanced aerospace propulsion systems.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-209915 , E-12152 , NAS 1.15:209915 , Computational Aerosciences; Feb 15, 2000 - Feb 17, 2000; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: As we look to the future, increasingly stringent civilian aviation noise regulations will require the design and manufacture of extremely quiet commercial aircraft. Indeed, the noise goal for NASA's Aeronautics Enterprise calls for technologies that will help to provide a 20 EPNdB reduction relative to today's levels by the year 2022. Further, the large fan diameters of modem, increasingly higher bypass ratio engines pose a significant packaging and aircraft installation challenge. One design approach that addresses both of these challenges is to mount the engines above the wing. In addition to allowing the performance trend towards large, ultra high bypass ratio cycles to continue, this over-the-wing design is believed to offer noise shielding benefits to observers on the ground. This paper describes the analytical certification noise predictions of a notional, long haul, commercial quadjet transport with advanced, high bypass engines mounted above the wing.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210025 , NAS 1.15:210025 , E-12222 , 14th International Symposium on Air Breathing Engines; Sep 05, 1999 - Sep 10, 1999; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Experimental investigations are performed to measure the detailed heat transfer coefficient and static pressure distributions on the squealer tip of a gas turbine blade in a five-bladed stationary linear cascade. The blade is a 2-dimensional model of a modem first stage gas turbine rotor blade with a blade tip profile of a GE-E(sup 3) aircraft gas turbine engine rotor blade. A squealer (recessed) tip with a 3.77% recess is considered here. The data on the squealer tip are also compared with a flat tip case. All measurements are made at three different tip gap clearances of about 1%, 1.5%, and 2.5% of the blade span. Two different turbulence intensities of 6.1% and 9.7% at the cascade inlet are also considered for heat transfer measurements. Static pressure measurements are made in the mid-span and near-tip regions, as well as on the shroud surface opposite to the blade tip surface. The flow condition in the test cascade corresponds to an overall pressure ratio of 1.32 and an exit Reynolds number based on the axial chord of 1.1 x 10(exp 6). A transient liquid crystal technique is used to measure the heat transfer coefficients. Results show that the heat transfer coefficient on the cavity surface and rim increases with an increase in tip clearance. 'Me heat transfer coefficient on the rim is higher than the cavity surface. The cavity surface has a higher heat transfer coefficient near the leading edge region than the trailing edge region. The heat transfer coefficient on the pressure side rim and trailing edge region is higher at a higher turbulence intensity level of 9.7% over 6.1 % case. However, no significant difference in local heat transfer coefficient is observed inside the cavity and the suction side rim for the two turbulence intensities. The squealer tip blade provides a lower overall heat transfer coefficient when compared to the flat tip blade.
    Keywords: Aircraft Propulsion and Power
    Type: ASME Paper-2000-FT-0195 , ASME Turbo 2000; May 08, 2000 - May 11, 2000; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-08-17
    Description: A numerical investigation of an experimental dual-mode scramjet configuration is performed. Both experimental and numerical results indicate significant upstream interaction for this case. Several computational cases are examined: these include the use of jet-to-jet symmetry and entire half-duct modeling. Grid convergence, turbulence modeling, and wall temperature effects are studied in terms of wall pressure predictions and flow-field characteristics. Wall pressure comparisons between CFD and experiment show fair agreement for the jet-to-jet case. However, further computations of the entire half-duct show the development of a large sidewall separation zone extending much further upstream than the separation zone at the duct centerline. This sidewall separation is the dominant feature in the CFD-generated flowfield but is not evident in the experimental data, resulting in a unfavorable comparison between CFD and experimental data. Current work aimed at resolving this issue and at further understanding asymmetric flow-structures in dual-mode flow-fields is discussed.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2000-3704
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-12
    Description: A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-08-13
    Description: This presentation focuses on the use of single crystal material, uniaxial LCF specimen data, and on development blade failure analysis.
    Keywords: Aircraft Propulsion and Power
    Type: Fracture Control Methodology; Oct 31, 2000 - Nov 02, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: The following research results are based on development of an approach previously proposed by the authors for optimum nozzle design to obtain maximum thrust. The design was denoted a Telescope nozzle. A Telescope nozzle contains one or several internal designs of certain location, which are inserted at certain locations into a divergent conical or planar main nozzle near its exit. Such a design provides additional thrust augmentation over 20% by comparison with the optimum single nozzle of equivalent lateral area. What is more, recent experimental acoustic tests have discovered an essential noise reduction due to Telescope nozzles application. In this paper, some additional theoretical results are presented for Telescope nozzles and a similar approach is applied for aeroperformance improvement of a supersonic inlet. In addition, a classic gas dynamics problem of a similar supersonic flow into a plate has been analyzed. In some particular cases, new exact analytical solutions are obtained for a flow into a wedge with an oblique shock wave. Numerical simulations were conducted for supersonic flow into a divergent portion of a 2D or axisymmetric nozzle with several plane or conical designs as well as into a 2D or axisymmetric supersonic inlet with a forebody. The 1st order Kryko-Godunov march- ing numerical scheme for inviscid supersonic flows was used. Several cases were tested using the NASA CFL3d code based on full Navier-Stokes equations. Numerical simulation results have confirmed essential benefits of Telescope design applications in propulsion systems.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2000-3315 , 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: Heat transfer measurements have been made in the stagnation region of a flat plate with a circular leading edge. Electrically heated aluminum strips placed symmetrically about the leading edge stagnation region were used to measure spanwise averaged heat transfer coefficients. The maximum Reynolds number obtained, based on leading edge diameter, was about 100,000. The model was immersed in the flow field downstream of an approximately half scale model of a can-type combustor from a low NO(x), ground based power-generating turbine. The tests were conducted with room temperature air; no fuel was added. Room air flowed into the combustor through six vane type fuel/air swirlers. The combustor can contained no dilution holes. The fuel/air swirlers all swirled the incoming airflow in a counter clockwise direction (facing downstream). A 5-hole probe flow field survey in the plane of the model stagnation point showed the flow was one big vortex with flow angles up to 36' at the outer edges of the rectangular test section. Hot wire measurements showed test section flow had very high levels of turbulence, around 28.5 percent, and had a relatively large axial-length scale-to-leading edge diameter ratio of 0.5. X-wire measurements showed the turbulence to be nearly isotropic. Stagnation heat transfer augmentation over laminar levels was around 77 percent and was about 14 percent higher than predicted by a previously developed correlation for isotropic grid generated turbulence.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210241 , E-12360 , NAS 1.15:210241 , ASME Paper 2000-GT-0215 , International Gas Turbine and Aeroengine Technical Congress; May 08, 2000 - May 11, 2000; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: The Supercharged Ejector Ramjet (SERJ) engine developments of the 1960s, as pursued by The Marquardt Corporation and its associated industry team members, are described. In just three years, engineering work on this combined-cycle powerplant type evolved, from its initial NASA-sponsored reusable space transportation system study status, into a U.S. Air Force/Navy-supported exploratory development program as a candidate 4.5 high-performance military aircraft engine. Bridging a productive transition from the spaceflight to the aviation arena, this case history supports the expectation that fully-integrated airbreathing/rocket propulsion systems hold high promise toward meeting the demanding propulsion requirements of tomorrow's aircraft-like Spaceliner class transportation systems. Lessons to be learned from this "SERJ Story" are offered for consideration by today's advanced space transportation and combined-cycle propulsion researchers and forward-planning communities.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2000-3109 , Joint Propulsion; Jul 16, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: Combustion instabilities can lead to increased development time and cost for aeroengine gas turbines. This problem has been evident in the development of very-low emissions stationary gas turbines, and will likely be encountered in the newer, more aggressive aeroengine designs. In order to minimize development time and cost, it is imperative that potential combustion dynamics issues be resolved using analyses and smaller-scale experimentation. This paper discusses a methodology through which a problem in a full-scale engine was replicated in a single-nozzle laboratory combustor. Specifically, this approach is valid for longitudinal and "bulk" mode combustion instabilities. An explanation and partial validation of the acoustic analyses that were used to achieve this replication are also included. This approach yields a testbed for the diagnosis of combustion dynamics problems and for their solution through passive and active control techniques.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210067 , E-12316 , NAS 1.15:210067 , Active Control Technology for Enhanced Performance Operational Capabilities of Military Aircraft, Land Vehicles and Sea Vehicles; May 08, 2000 - May 11, 2000; Braunschweig; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: A compressor-face boundary condition that models the unsteady interactions of acoustic and convective velocity disturbances with a compressor has been implemented into a three-dimensional computational fluid dynamics code. Locally one-dimensional characteristics along with a small-disturbance model are used to compute the acoustic response as a function of the local stagger angle and the strength and direction of the disturbance. Simulations of the inviscid flow in a straight duct, a duct coupled to a compressor, and a supersonic inlet demonstrate the behavior of the boundary condition in relation to existing boundary conditions. Comparisons with experimental data show a large improvement in accuracy over existing boundary conditions in the ability to predict the reflected disturbance from the interaction of an acoustic disturbance with a compressor.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-209945 , E-12193 , NAS 1.15:209945 , ASME-2000-GT-0005 , International Gas Turbine and Aeroengine Technical Congress; May 08, 2000 - May 11, 2000; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-13
    Description: Early implementation of structural dynamics finite element analyses for calculation of design loads is considered common design practice for high volume manufacturing industries such as automotive and aeronautical industries. However, with the rarity of rocket engine development programs starts, these tools are relatively new to the design of rocket engines. In the new Fastrac engine program, the focus has been to reduce the cost to weight ratio; current structural dynamics analysis practices were tailored in order to meet both production and structural design goals. Perturbation of rocket engine design parameters resulted in a number of Fastrac load cycles necessary to characterize the impact due to mass and stiffness changes. Evolution of loads and load extraction methodologies, parametric considerations and a discussion of load path sensitivities are discussed.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 00-XXXX , 41st Structures, Structural Dynamic and Materials Conference; Apr 04, 2000 - Apr 06, 2000; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-07-13
    Description: The performance and durability of advanced, high temperature foil air bearings are evaluated under a wide range (10-50 kPa) of loads at temperatures from 25 to 650 C. The bearings are made from uncoated nickel based superalloy foils. The foil surface experiences sliding contact with the shaft during initial start/stop operation. To reduce friction and wear, the solid lubricant coating, PS304, is applied to the shaft by plasma spraying. PS304 is a NiCr based Cr2O3 coating with silver and barium fluoride/calcium fluoride solid lubricant additions. The results show that the bearings provide lives well in excess of 30,000 cycles under all of the conditions tested. Several bearings exhibited lives in excess of 100,000 cycles. Wear is a linear function of the bearing load. The excellent performance measured in this study suggests that these bearings and the PS304 coating are well suited for advanced high temperature, oil-free turbomachinery applications.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-209187/REV1 , NAS 1.15:209187/REV1 , ARL-TR-2202 , E-11697-1/REV1 , May 07, 2000 - May 11, 2000; Nashville, TN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2019-07-13
    Description: This paper describes the techniques, equipment, and results from the optimization of a two-axis traverse actuation system used to maintain concentricity between a sting-mounted fan and a wall-mounted nacelle in the 9 x 15 (9 Foot by 15 Foot Test Section) Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center (GRC). The Rotor Alone Nacelle (RAN) system, developed at GRC by the Engineering Design and Analysis Division (EDAD) and the Acoustics Branch, used nacelle-mounted lasers and an automated control system to maintain concentricity as thermal and thrust operating loads displace the fan relative to the nacelle. This effort was critical to ensuring rig/facility safety and experimental consistency of the acoustic data from a statorless, externally supported nacelle configuration. Although the tip clearances were originally predicted to be about 0.020 in. at maximum rotor (fan) operating speed, proximity probe measurements showed that the nominal clearance was less than 0.004 in. As a result, the system was optimized through control-loop modifications, active laser cooling, data filtering and averaging, and the development of strict operational procedures. The resultant concentricity error of RAN was reduced to +/- 0.0031 in. in the Y-direction (horizontal) and +0.0035 in./-0.001 3 in. in the Z-direction (vertical), as determined by error analysis and experimental results. Based on the success of this project, the RAN system will be transitioned to other wind tunnel research programs at NASA GRC.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210599 , NAS 1.15:210599 , E-12557 , AIAA Paper 2001-0164 , Aerospace Sciences; Jan 08, 2001 - Jan 11, 2001; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-07-13
    Description: Planar laser-induced fluorescence (PLIF), planar Mie scattering (PMie), and linear (1-D) spontaneous Raman scattering are applied to flame tube and sector combustors that burn Jet-A fuel at a range of inlet temperatures and pressures that simulate conditions expected in future high-performance civilian gas turbine engines. Chemiluminescence arising from C2 in the flame was also imaged. Flame spectral emissions measurements were obtained using a scanning spectrometer. Several different advanced concept fuel injectors were examined. First-ever PLIF and chemiluminescence data are presented from the 60-atm Gas turbine combustor facility.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210377 , E-12431 , NAS 1.15:210377 , EOS/SPIE Symposium on Applied Photonics; May 22, 2000 - May 25, 2000; Glasgow, Scotland; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-07-13
    Description: Lean-burning combustors are susceptible to combustion instabilities. Additionally, due to non-uniformities in the fuel-air mixing and in the combustion process, there typically exist hot areas in the combustor exit plane. These hot areas limit the operating temperature at the turbine inlet and thus constrain performance and efficiency. Finally, it is necessary to optimize the fuel-air ratio and flame temperature throughout the combustor to minimize the production of pollutants. In recent years, there has been considerable activity addressing Active Combustion Control. NASA Glenn Research Center's Active Combustion Control Technology effort aims to demonstrate active control in a realistic environment relevant to aircraft engines. Analysis and experiments are tied to aircraft gas turbine combustors. Considerable progress has been shown in demonstrating technologies for Combustion Instability Control, Pattern Factor Control, and Emissions Minimizing Control. Future plans are to advance the maturity of active combustion control technology to eventual demonstration in an engine environment.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210346 , NAS 1.15:210346 , E-12393 , AIAA Paper 2000-3500 , 36th Joint Propulsion Conference and Exhibition; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-07-13
    Description: The following report represents a compendium of selected speaker presentation materials and observations made by Prof O. Pinkus at the NASA/ASME/Industry sponsored workshop entitled "Tribological Limitations in Gas Turbine Engines" held on September 15-17, 1999 in Albany, New York. The impetus for the workshop came from the ASME's Research Committee on Tribology whose goal is to explore new tribological research topics which may become future research opportunities. Since this subject is of current interest to other industrial and government entities the conference received cosponsorship as noted above. The conference was well attended by government, industrial and academic participants. Topics discussed included current tribological issues in gas turbines as well as the potential impact (drawbacks and advantages) of future tribological technologies especially foil air bearings and magnetic beatings. It is hoped that this workshop report may serve as a starting point for continued discussions and activities in oil-free turbomachinery systems.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210059 , E-12261 , NAS 1.15:210059 , Tribological Limitations in Gas Turbine Engines; Sep 15, 1999 - Sep 17, 1999; Albany, NY; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-07-13
    Description: The NPARC Alliance (National Project for Applications oriented Research in CFD) maintains a publicly-available, web-based verification and validation archive as part of the development and support of the WIND CFD code. The verification and validation methods used for the cases attempt to follow the policies and guidelines of the ASME and AIAA. The emphasis is on air-breathing propulsion flow fields with Mach numbers ranging from low-subsonic to hypersonic.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-209946 , NAS 1.15:209946 , E-12196 , ASME-2000-FED-11233 , 2000 Fluids Engineering Summer Conference; Jun 11, 2000 - Jun 15, 2000; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-07-13
    Description: An Active Noise Control (ANC) system for ducted fan noise was built that uses actuators located in stator vanes. The custom designed actuators A,ere piezoelectric benders manufactured using THUNDER technology. The ANC system was tested in the NASA Active Noise Control Fan rig. A total of 168 actuators in 28 stator vanes were used (six per vane). Simultaneous inlet and exhaust acoustic power level reductions were demonstrated for a fan modal structure that contained two radial modes in each direction. Total circumferential mode power levels were reduced by up to 9 dB in the inlet and 3 dB in the exhaust. The corresponding total 2BPF tone level reductions were by 6 dB in the inlet and 2 dB in the exhaust. Farfield sound pressure level reductions of up to 17 dB were achieved at the peak mode lobe angle. The performance of the system was limited by the constraints of the power amplifiers and the presence of control spillover. Simpler control/actuator systems using carefully selected subsets of the full system and random simulated failures of up to 7% of the actuators were investigated. (The actuators were robust and none failed during the test). Useful reductions still occurred under these conditions.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210229 , NAS 1.15:210229 , E-12348 , AIAA Paper 2000-1906 , 6th Aeroacoustics Conference and Exhibit; Jun 12, 2000 - Jun 14, 2000; Lahaina, HI; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-07-13
    Description: Experimental data and numerical simulations of low-pressure turbines have shown that unsteady blade row interactions and separation can have a significant impact on the turbine efficiency. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that the performance of low-pressure turbine blades is a strong function of the Reynolds number. In the current investigation, experiments and simulations have been performed to study the behavior of a low-pressure turbine blade at several Reynolds numbers. Both the predicted and experimental results indicate increased cascade losses as the Reynolds number is reduced to the values associated with aircraft cruise conditions. In addition, both sets of data show that tripping the boundary layer helps reduce the losses at lower Reynolds numbers. Overall, the predicted aerodynamic and performance results exhibit fair agreement with experimental data.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-209910 , AIAA Paper 2000-0737 , NAS 1.15:209910 , E-12137 , 38th Aerospace Science Meeting; Jan 10, 2000 - Jan 13, 2000; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: Airframe-integrated scramjet engine tests have been completed at Mach 7 in the NASA Langley 8-Foot High Temperature Tunnel under the Hyper-X program. These tests provided critical engine data as well as design and database verification for the Mach 7 flight tests of the Hyper-X research vehicle (X-43), which will provide the first-ever airframe-integrated scramjet flight data. The first model tested was the Hyper-X Engine Model (HXEM), and the second was the Hyper-X Flight Engine (HXFE). The HXEM, a partial-width, full-height engine that is mounted on an airframe structure to simulate the forebody features of the X-43, was tested to provide data linking flowpath development databases to the complete airframe-integrated three-dimensional flight configuration, and to isolate effects of ground testing conditions and techniques. The HXFE, an exact geometric representation of the X-43 scramjet engine mounted on an airframe structure that duplicates the entire three-dimensional propulsion flowpath from the vehicle leading edge to the vehicle base, was tested to verify the complete design as it will be flight tested. This paper presents an overview of these two tests, their importance to the Hyper-X program, and the significance of their contribution to scramjet database development.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2000-3605 , Joint Propulsion Conference; Jul 17, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: The tip clearance flows of transonic compressor rotors are important because they have a significant impact on rotor and stage performance. While numerical simulations of these flows are quite sophisticated. they are seldom verified through rigorous comparisons of numerical and measured data because these kinds of measurements are rare in the detail necessary to be useful in high-speed machines. In this paper we compare measured tip clearance flow details (e.g. trajectory and radial extent) with corresponding data obtained from a numerical simulation. Recommendations for achieving accurate numerical simulation of tip clearance flows are presented based on this comparison. Laser Doppler Velocimeter (LDV) measurements acquired in a transonic compressor rotor, NASA Rotor 35, are used. The tip clearance flow field of this transonic rotor was simulated using a Navier-Stokes turbomachinery solver that incorporates an advanced k-epsilon turbulence model derived for flows that are not in local equilibrium. Comparison between measured and simulated results indicates that simulation accuracy is primarily dependent upon the ability of the numerical code to resolve important details of a wall-bounded shear layer formed by the relative motion between the over-tip leakage flow and the shroud wall. A simple method is presented for determining the strength of this shear layer.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210347 , E-12395 , NAS 1.15:210347 , International Gas Turbine Institute Exposition; Jul 07, 1999 - Jul 10, 1999; Indianapolis, IN; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: A probabilistic approach is described for aeropropulsion system assessment. To demonstrate this approach, the technical performance of a wave rotor-enhanced gas turbine engine (i.e. engine net thrust, specific fuel consumption, and engine weight) is assessed. The assessment accounts for the uncertainties in component efficiencies/flows and mechanical design variables, using probability distributions. The results are presented in the form of cumulative distribution functions (CDFs) and sensitivity analyses, and are compared with those from the traditional deterministic approach. The comparison shows that the probabilistic approach provides a more realistic and systematic way to assess an aeropropulsion system.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210334 , E-12036-1 , NAS 1.15:210334 , International Gas Turbine and Aeroengine Technical Congress; May 08, 2000 - May 11, 2000; Munich; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: The technologies necessary to enable detailed numerical simulations of complete propulsion systems are being developed at the NASA Glenn Research Center in cooperation with industry, academia, and other government agencies. Large scale, detailed simulations will be of great value to the nation because they eliminate some of the costly testing required to develop and certify advanced propulsion systems. In addition, time and cost savings will be achieved by enabling design details to be evaluated early in the development process before a commitment is made to a specific design. This concept is called the Numerical Propulsion System Simulation (NPSS). NPSS consists of three main elements: (1) engineering models that enable multidisciplinary analysis of large subsystems and systems at various levels of detail, (2) a simulation environment that maximizes designer productivity, and (3) a cost-effective, high-performance computing platform. A fundamental requirement of the concept is that the simulations must be capable of overnight execution on easily accessible computing platforms. This will greatly facilitate the use of large-scale simulations in a design environment. This paper describes the current status of the NPSS with specific emphasis on the progress made over the past year on air breathing propulsion applications. In addition, the paper contains a summary of the feedback received from industry partners in the development effort and the actions taken over the past year to respond to that feedback. The NPSS development was supported in FY99 by the High Performance Computing and Communications Program.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-209795 , E-12085 , NAS 1.15:209795 , Oct 06, 1999 - Oct 07, 1999; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: Designing a hypersonic vehicle is a complicated process due to the multi-disciplinary synergy that is required. The greatest challenge involves propulsion-airframe integration. In the past, a two-dimensional flowpath was generated based on the engine performance required for a proposed mission. A three-dimensional CAD geometry was produced from the two-dimensional flowpath for aerodynamic analysis, structural design, and packaging. The aerodynamics, engine performance, and mass properties arc inputs to the vehicle performance tool to determine if the mission goals were met. If the mission goals were not met, then a flowpath and vehicle redesign would begin. This design process might have to be performed several times to produce a "closed" vehicle. This paper will describe an attempt to design a hypersonic cruise vehicle propulsion flowpath using a Design of' Experiments method to reduce the resources necessary to produce a conceptual design with fewer iterations of the design cycle. These methods also allow for more flexible mission analysis and incorporation of additional design constraints at any point. A design system was developed using an object-based software package that would quickly generate each flowpath in the study given the values of the geometric independent variables. These flowpath geometries were put into a hypersonic propulsion code and the engine performance was generated. The propulsion results were loaded into statistical software to produce regression equations that were combined with an aerodynamic database to optimize the flowpath at the vehicle performance level. For this example, the design process was executed twice. The first pass was a cursory look at the independent variables selected to determine which variables are the most important and to test all of the inputs to the optimization process. The second cycle is a more in-depth study with more cases and higher order equations representing the design space.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA Paper 2000-2694 , Aerodynamic Measurement Technology and Ground Testing; Jun 19, 2000 - Jun 22, 2000; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: Within NASA's High Performance Computing and Communication (HPCC) program, NASA Glenn Research Center is developing an environment for the analysis/design of aircraft engines called the Numerical Propulsion System Simulation (NPSS). NPSS focuses on the integration of multiple disciplines such as aerodynamics, structures, and heat transfer along with the concept of numerical zooming between zero-dimensional to one-, two-, and three-dimensional component engine codes. In addition, the NPSS is refining the computing and communication technologies necessary to capture complex physical processes in a timely and cost-effective manner. The vision for NPSS is to create a "numerical test cell" enabling full engine simulations overnight on cost-effective computing platforms. Of the different technology areas that contribute to the development of the NPSS Environment, the subject of this paper is a discussion on numerical zooming between a NPSS engine simulation and higher fidelity representations of the engine components (fan, compressor, burner, turbines, etc.). What follows is a description of successfully zooming one-dimensional (row-by-row) high-pressure compressor analysis results back to a zero-dimensional NPSS engine simulation and a discussion of the results illustrated using an advanced data visualization tool. This type of high fidelity system-level analysis, made possible by the zooming capability of the NPSS, will greatly improve the capability of the engine system simulation and increase the level of virtual test conducted prior to committing the design to hardware.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-209913 , E-12144 , NAS 1.15:209913 , Computational Aerosciences; Feb 15, 2000 - Feb 17, 2000; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: The NASA Aviation Safety Program (AvSP) has been initiated with aggressive goals to reduce the civil aviation accident rate, To meet these goals, several technology investment areas have been identified including a sub-element in propulsion health monitoring (PHM). Specific AvSP PHM objectives are to develop and validate propulsion system health monitoring technologies designed to prevent engine malfunctions from occurring in flight, and to mitigate detrimental effects in the event an in-flight malfunction does occur. A review of available propulsion system safety information was conducted to help prioritize PHM areas to focus on under the AvSP. It is noted that when a propulsion malfunction is involved in an aviation accident or incident, it is often a contributing factor rather than the sole cause for the event. Challenging aspects of the development and implementation of PHM technology such as cost, weight, robustness, and reliability are discussed. Specific technology plans are overviewed including vibration diagnostics, model-based controls and diagnostics, advanced instrumentation, and general aviation propulsion system health monitoring technology. Propulsion system health monitoring, in addition to engine design, inspection, maintenance, and pilot training and awareness, is intrinsic to enhancing aviation propulsion system safety.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210348 , E-12396 , NAS 1.15:210348 , ARL-TR-2272 , AIAA Paper 2000-3624 , Joint Propulsion; Jul 16, 2000 - Jul 19, 2000; Huntsville, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-10
    Description: The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet trajectory analysis overpredicts the liquid mass penetration, and indicates a need for a more rigorous model to account for the three-dimensional mixing field induced by the jet-crossflow interaction. Nonetheless, the general procedures and criteria that are outlined can be used to efficiently assess and compare the quality of sprays formed under different conditions.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-210467 , E-12463 , NAS 1.26:210467 , UCI-ARTR-00-05
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-10
    Description: The current preliminary design tools lack the product performance, quality and cost prediction fidelity required to design Six Sigma products. They are also frequently incompatible with the tools used in detailed design, leading to a great deal of rework and lost or discarded data in the transition from preliminary to detailed design. Thus, enhanced preliminary design tools are needed in order to produce adequate financial returns to the business. To achieve this goal, GEAE has focused on building the preliminary design system around the same geometric 3D solid model that will be used in detailed design. With this approach, the preliminary designer will no longer convert a flowpath sketch into an engine cross section but rather, automatically create 3D solid geometry for structural integrity, life, weight, cost, complexity, producibility, and maintainability assessments. Likewise, both the preliminary design and the detailed design can benefit from the use of the same preliminary part sizing routines. The design analysis tools will also be integrated with the 3D solid model to eliminate manual transfer of data between programs. GEAE has aggressively pursued the computerized control of engineering knowledge for many years. Through its study and validation of 3D CAD programs and processes, GEAE concluded that total system control was not feasible at that time. Prior CAD tools focused exclusively on detail part geometry and Knowledge Based Engineering systems concentrated on rules input and data output. A system was needed to bridge the gap between the two to capture the total system. With the introduction of WAVE Engineering from UGS, the possibilities of an engineering system control device began to formulate. GEAE decided to investigate the new WAVE functionality to accomplish this task. NASA joined GEAE in funding this validation project through Task Order No. 1. With the validation project complete, the second phase under Task Order No. 2 was established to develop an associative control structure (framework) in the UG WAVE environment enabling multi-disciplinary design of turbine propulsion systems. The capabilities of WAVE were evaluated to assess its use as a rapid optimization and productivity tool. This project also identified future WAVE product enhancements that will make the tool still more beneficial for product development.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-210218 , E-12337 , NAS 1.26:210218
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-10
    Description: Results of a numerical investigation of a three-dimensional dual-mode scramjet isolator-combustor flow-field are presented. Specifically, the effect of wall cooling on upstream interaction and flow-structure is examined for a case assuming jet-to-jet symmetry within the combustor. Comparisons are made with available experimental wall pressures. The full half-duct for the isolator-combustor is then modeled in order to study the influence of side-walls. Large scale three-dimensionality is observed in the flow with massive separation forward on the side-walls of the duct. A brief review of convergence-acceleration techniques useful in dual-mode simulations is presented, followed by recommendations regarding the development of a reliable and unambiguous experimental data base for guiding CFD code assessments in this area.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-10
    Description: The multistage simulations of the GE90 turbofan primary flowpath components have been performed. The multistage CFD code, APNASA, has been used to analyze the fan, fan OGV and booster, the 10-stage high-pressure compressor and the entire turbine system of the GE90 turbofan engine. The code has two levels of parallel, and for the 18 blade row full turbine simulation has 87.3 percent parallel efficiency with 121 processors on an SGI ORIGIN. Grid generation is accomplished with the multistage Average Passage Grid Generator, APG. Results for each component are shown which compare favorably with test data.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-209951 , E-12205 , NAS 1.26:209951
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2019-07-10
    Description: The detailed heat transfer coefficient and film cooling effectiveness distributions as well as tile detailed coolant jet temperature profiles on the suction side of a gas turbine blade A,ere measured using a transient liquid crystal image method and a traversing cold wire and a traversing thermocouple probe, respectively. The blade has only one row of film holes near the gill hole portion on the suction side of the blade. The hole geometries studied include standard cylindrical holes and holes with diffuser shaped exit portion (i.e. fanshaped holes and laidback fanshaped holes). Tests were performed on a five-blade linear cascade in a low-speed wind tunnel. The mainstream Reynolds number based on cascade exit velocity was 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. The wake Strouhal number was kept at 0 or 0.1. Coolant blowing ratio was varied from 0.4 to 1.2. Results show that both expanded holes have significantly improved thermal protection over the surface downstream of the ejection location, particularly at high blowing ratios. However, the expanded hole injections induce earlier boundary layer transition to turbulence and enhance heat transfer coefficients at the latter part of the blade suction surface. In general, the unsteady wake tends to reduce film cooling effectiveness.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-209932 , E-12176 , NAS 1.26:209932
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-10
    Description: Unsteady wake effect, with and without trailing edge ejection, on detailed heat transfer coefficient and film cooling effectiveness distributions is presented for a downstream film-cooled gas turbine blade. Tests were performed on a five-blade linear cascade at an exit Reynolds number of 5.3 x 10(exp 5). Upstream unsteady wakes were simulated using a spoke-wheel type wake generator. Coolant blowing ratio was varied from 0.4 to 1.2; air and CO2 were used as coolants to simulate different density ratios. Surface heat transfer and film effectiveness distributions were obtained using a transient liquid crystal technique; coolant temperature profiles were determined with a cold wire technique. Results show that Nusselt numbers for a film cooled blade are much higher compared to a blade without film injection. Unsteady wake slightly enhances Nusselt numbers but significantly reduces film effectiveness versus no wake cases. Nusselt numbers increase only slic,htly but film cooling, effectiveness increases significantly with increasing, blowing ratio. Higher density coolant (CO2) provides higher effectiveness at higher blowing ratios (M = 1.2) whereas lower density coolant (Air) provides higher 0 effectiveness at lower blowing ratios (M = 0.8). Trailing edge ejection generally has more effect on film effectiveness than on the heat transfer, typically reducing film effectiveness and enhancing heat transfer. Similar data is also presented for a film cooled cylindrical leading edge model.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-209929 , E-12173 , NAS 1.26:209929
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-10
    Description: It is well known that the dynamic response of a mixed compression supersonic inlet is very sensitive to the boundary condition imposed at the subsonic exit (engine face) of the inlet. In previous work, a 3-D computational fluid dynamics (CFD) inlet code (NPARC) was coupled at the engine face to a 3-D turbomachinery code (ADPAC) simulating an isolated rotor and the coupled simulation used to study the unsteady response of the inlet. The main problem with this approach is that the high fidelity turbomachinery simulation becomes prohibitively expensive as more stages are included in the simulation. In this paper, an alternative approach is explored, wherein the inlet code is coupled to a lesser fidelity 1-D transient compressor code (DYNTECC) which simulates the whole compressor. The specific application chosen for this evaluation is the collapsing bump experiment performed at the University of Cincinnati, wherein reflections of a large-amplitude acoustic pulse from a compressor were measured. The metrics for comparison are the pulse strength (time integral of the pulse amplitude) and wave form (shape). When the compressor is modeled by stage characteristics the computed strength is about ten percent greater than that for the experiment, but the wave shapes are in poor agreement. An alternate approach that uses a fixed rise in duct total pressure and temperature (so-called 'lossy' duct) to simulate a compressor gives good pulse shapes but the strength is about 30 percent low.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-210247 , E-12367 , NAS 1.15:210247
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2019-07-10
    Description: A nozzle having an undulating surface for enhancing the mixing of a primary flow with a secondary flow or ambient air, without requiring an ejector. The nozzle includes a nozzle structure and design for introducing counter-rotating vorticity into the primary flow either through (i) internal surface corrugations where an axisymmetric line through each corrugation is coincident with an axisymmetric line through the center of the flow passageway or (ii) through one or more sets of alternating convexities and cavities in the internal surface of the nozzle where an axisymmetric line through each convexity and cavity is coincident with an axisymmetric line through the center of the flow passageway, and where the convexities contract from the entrance end towards the exit end. Exit area mixing is also enhanced by one or more chevrons attached to the exit edge of the nozzle. The nozzle is ideally suited for application as a jet engine nozzle. When used as a jet engine nozzle, noise suppression with simultaneous thrust augmentation/minimal thrust loss is achieved.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-10
    Description: The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-209949 , E-12202 , NAS 1.26:209949
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-10
    Description: The transonic flutter cascade facility at NASA Glenn Research Center was redesigned based on a combined program of experimental measurements and numerical analyses. The objectives of the redesign were to improve the periodicity of the cascade in steady operation, and to better quantify the inlet and exit flow conditions needed for CFD predictions. Part I of this paper describes the experimental measurements, which included static pressure measurements on the blade and endwalls made using both static taps and pressure sensitive paints, cobra probe measurements of the endwall boundary layers and blade wakes, and shadowgraphs of the wave structure. Part II of this paper describes three CFD codes used to analyze the facility, including a multibody panel code, a quasi-three-dimensional viscous code, and a fully three-dimensional viscous code. The measurements and analyses both showed that the operation of the cascade was heavily dependent on the configuration of the sidewalls. Four configurations of the sidewalls were studied and the results are described. For the final configuration, the quasi-three-dimensional viscous code was used to predict the location of mid-passage streamlines for a perfectly periodic cascade. By arranging the tunnel sidewalls to approximate these streamlines, sidewall interference was minimized and excellent periodicity was obtained.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2000-209933/PT1 , NAS 1.15:209933/PT1 , E-12177/PT1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-10
    Description: A previously developed technique allows an estimate of integral mixing to be obtained from an image of laser scattered light from particle seeded fuel in the hypervelocity flow through a scramjet combustor. This previous mixing analysis formulation contains an assumption of a constant velocity flowfield across the plane of the fuel plume image. For high-speed scramjet combustors, the velocity flowfield is quite uniform and an assumption of constant velocity works well. Applying this same mixing analysis technique to fuel plume images obtained from a mid-speed scramjet combustor makes it desirable to remove the constant velocity assumption. This is due to the non-uniform velocity flowfields present in mid-speed scramjet combustors. A new formulation of the mixing analysis methodology is developed and presented so that the technique can be applied to a mid-speed scramjet combustor without the need to assume a constant velocity flowfield.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-209868 , NAS 1.26:209868
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-10
    Description: Rapid mixing of cold lateral jets with hot cross-stream flows in confined configurations is of practical interest in gas turbine combustors as it strongly affects combustor exit temperature quality, and gaseous emissions in for example rich-lean combustion. It is therefore important to further improve our fundamental understanding of the important processes of dilution jet mixing especially when the injected jet mass flow rate exceeds that of the cross-stream. The results reported in this report describe some of the main flow characteristics which develop in the mixing process in a cylindrical duct. A three-dimensional computational fluid dynamics (CFD) code has been used to predict the mixing flow field characteristics and NOx emission in a quench section of a rich-burn/quick-mix/lean-burn (RQL) combustor. Sixty configurations have been analyzed in both circular and annular geometries in a fully reacting environment simulating the operating condition of an actual RQL gas turbine combustion liner. The evaluation matrix was constructed by varying the number of orifices per row and orifice shape. Other parameters such as J (momentum-flux ratio), MR (mass flowrate ratio), DR (density ratio), and mixer sector orifice ACd (effective orifice area) were maintained constant throughout the entire study. The results indicate that the mixing flow field can be correlated with the NOx production if they are referenced with the stoichiometric equivalence ratio value and not the equilibrium value. The mixing flowfields in both circular and annular mixers are different. The penetration of equal jets in both annular and circular geometries is vastly different which significantly affects the performance of the mixing section. In the computational results with the circular mixer, most of the NOx formation occurred behind the orifice starting at the orifice wake region. General trends have been observed in the NOx production as the number of orifices is changed and this appears to be common for all hole configurations and mixer types (circular or annular). The performance of any orifice shape (in producing minimum NOx) appears to be acceptable if the number of orifices can be freely varied in order to attain the optimum jet penetration.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-210672 , E-12579 , NAS 1.26:210672
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-10
    Description: The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TP-2000-210387 , M-986 , NAS 1.60:210387
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-10
    Description: Propulsion for acceptable supersonic passenger transport aircraft is primarily impacted by the very high jet noise characteristics of otherwise attractive engines. The mixed flow turbofan, when equipped with a special ejector nozzle seems to be the best candidate engine for this task of combining low jet noise with acceptable flight performance. Design, performance, and operation aspects of mixed flow turbofans are discussed. If the special silencing nozzle is too large, too heavy, or not as effective as expected, alternative concepts in mixed flow engines should be examined. Presented herein is a brief summary of efforts performed under cooperative agreement NCC3-193. Three alternative engine concepts, conceived during this study effort, are herein presented and their limitations and potentials are described. These three concepts intentionally avoid the use of special silencing nozzles and achieve low jet noise by airflow augmentation of the engine cycle.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2000-210035 , E-12233 , NAS 1.26:210035
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...