ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (7)
  • Articles (OceanRep)  (7)
  • Nature Publishing Group  (4)
  • ASLO (Association for the Sciences of Limnology and Oceanography)
  • American Meteorological Society
  • Springer Nature
  • 2015-2019
  • 1995-1999  (7)
  • 1999  (7)
Collection
  • Other Sources  (7)
Source
  • Articles (OceanRep)  (7)
Years
  • 2015-2019
  • 1995-1999  (7)
Year
  • 1
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 44 . pp. 440-446.
    Publication Date: 2018-06-25
    Description: Cellular nutrient ratios are often applied as indicators of nutrient limitation in phytoplankton studies, especially the so-called Redfield ratio. For periphyton, similar data are scarce. We investigated the changes in cellular C: N: P stoichiometry of benthic microalgae in response to different levels and types of nutrient limitation and a variety of abiotic conditions in laboratory experiments with natural inocula. C: N ratios increased with decreasing growth rate, irrespective of the limiting nutrient. At the highest growth rates, the C: N ratio ranged uniformly around 7.5. N: P ratios 〈13 indicated N limitation, while N: P ratios 〉22 indicated P limitation. Under P limitation, the C: P ratios increased at low growth rate and varied around 130 at highest growth rates. For a medium with balanced supply of N and P, an optimal stoichiometric ratio of C: N: P = 119 : 17 : 1 could be deduced for benthic microalgae, which is slightly higher than the Redfield ratio (106 : 16 : 1) considered typical for optimally growing phytoplankton. The optimal ratio was stable against changes in abiotic conditions. In conclusion, cellular nutrient ratios are proposed as an indicator for nutrient status in periphyton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 397 (6718). pp. 389-391.
    Publication Date: 2015-07-16
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 44 . pp. 1114-1119.
    Publication Date: 2019-09-23
    Description: According to Connell�s intermediate disturbance hypothesis (IDH), diversity within a community is maximal at intermediate frequencies and intensities of disturbances. In order to test the IDH, disturbances of different frequencies and intensities were imposed on natural plankton communities in controlled field experiments. These disturbances consisted of an artificial deepening of the mixed layer, leading to the dilution of epilimnetic populations and to a higher level of nutrients. Intervals between disturbances ranged from 2 to 12 d. Different intensities of disturbance were caused by differences in the experimental mixing depth (150 and 225% of the original epilimnion depth). Investigation focused on the effect that disturbances had on the diversity of natural phytoplankton communities. Additionally, we were interested in determining the effect of grazing by zooplankton. The results of the field experiments show for the first time the applicability of the IDH to phytoplankton within complete planktonic communities. Diversity showed a clear maximum at the intermediate disturbance interval of 6 d. Similarly, species number peaked at intermediate interval length (6-10 d).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    ASLO (Association for the Sciences of Limnology and Oceanography)
    In:  Limnology and Oceanography, 44 . pp. 683-690.
    Publication Date: 2014-01-30
    Description: The effect of variable concentrations of dissolved molecular carbon dioxide, [CO2,aq], on C:N:P ratios in marine phytoplankton was studied in batch cultures under high light, nutrient-replete conditions at different irradiance cycles. The elemental composition in six out of seven species tested was affected by variation in [CO2,aq]. Among these species, the magnitude of change in C:N:P was similar over the experimental CO2 range. Differences in both cell size and day length-dependent growth rate had little effect on the critical CO2 concentration below which a further decrease in [CO2,aq] led to large changes in C:N:P ratios. Significant CO2-related changes in elemental ratios were observed at [CO2,aq] 〈 10 mu mol kg-l and correlated with a CO2-dependent decrease in growth rate. At [CO2,aq] typical for ocean surface waters, variation in C:N:P was relatively small under our experimental conditions. No general pattern far CO2-related changes in the elemental composition could be found with regard to the direction of trends. Either an increase or a decrease in C:N and C:P with increasing [CO2,aq] was observed, depending on the species tested. Diurnal variation in C:N and C:P, tested in Skeletonema costatum, was of a similar magnitude as CO2-related variation. In this species, the CO2 effect was superimposed on diurnal variation, indicating that differences in elemental ratios at the end of the photoperiod were not caused by a transient buildup of carbon-rich storage compounds due to a more rapid accumulation of carbohydrates at high CO2 concentrations. If our results obtained under high light, nutrient-replete conditions are representative for natural phytoplankton populations, CO2-related changes in plankton stoichiometry are unlikely to have a significant effect on the oceanic carbon cycle
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-25
    Description: The El Niño/Southern Oscillation (ENSO) phenomenon is the strongest natural interannual climate fluctuation1. ENSO originates in the tropical Pacific Ocean and has large effects on the ecology of the region, but it also influences the entire global climate system and affects the societies and economies of manycountries2. ENSO can be understood as an irregular low-frequency oscillation between a warm (El Niño) and a cold (La Niña) state. The strong El Niños of 1982/1983 and 1997/1998, along with the more frequent occurrences of El Niños during the past few decades, raise the question of whether human-induced 'greenhouse' warming affects, or will affect, ENSO3. Several global climate models have been applied to transient greenhouse-gas-induced warming simulations to address this question4, 6, but the results have been debated owing to the inability of the models to fully simulate ENSO (because of their coarse equatorial resolution)7. Here we present results from a global climate model with sufficient resolution in the tropics to adequately represent the narrow equatorial upwelling and low-frequency waves. When the model is forced by a realistic future scenario of increasing greenhouse-gas concentrations, more frequent El-Niño-like conditions and stronger cold events in the tropical Pacific Ocean result
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 402 . pp. 366-367.
    Publication Date: 2017-02-28
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Nature Publishing Group
    In:  Nature, 397 . pp. 243-246.
    Publication Date: 2017-02-28
    Description: The overflow and descent of cold dense water from the Denmark Strait sill-a submarine passage between Greenland and Iceland-is a principal means by which the deep ocean is ventilated, and is an important element in the global thermohaline circulation. Previous investigations of its variability-in particular, direct current measurements(1,2) in the overflow core since 1986-have shown surprisingly little evidence of long-term changes in now speed. Here we report significant changes in the overflow characteristics during the winter of 1996-97, measured using two current-meter moorings and an inverted echo sounder located at different depths in the fastest part of the now. The overflow warmed to the highest monthly value yet recorded (2.4 degrees C), and showed a pronounced slowing and thinning at its lower margin. We believe that the extreme warmth of the overflow caused it to run higher on the continental slope off east Greenland, so that the lower current meters and the echo sounder were temporarily outside and deeper than the fast-flowing core; model simulations appear to confirm this interpretation, We suggest that the extreme warmth of the overflow is a lagged response to a warming upstream in the Fram Strait three years earlier (caused by an exceptional amplification of the winter North Atlantic Oscillation). If this is so, over-now characteristics may be predictable.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...