ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Instrumentation and Photography
  • 1995-1999  (276)
  • 1925-1929
  • 1999  (185)
  • 1996  (91)
  • 1
    Publication Date: 2004-12-03
    Description: The Hydrodynamic Focusing Bioreactor (HDFB) technology is designed to provide a flow field with nearly uniform shear force throughout the vessel, which can provide the desired low shear force spatial environment to suspend three-dimensional cell aggregates while providing optimum mass transfer. The reactor vessel consists of a dome-shaped cell culture vessel, a viscous spinner, an access port, and a rotating base. The domed vessel face has a radius of R(o). and rotates at 0mega(o) rpm, while the internal viscous spinner has a radius of R(i) and rotates at 0mega(i) rpm. The culture vessel is completely filled with cell culture medium into which three-dimensional cellular structures are introduced. The HDFB domed vessel and spinner were driven by two independent step motors,
    Keywords: Instrumentation and Photography
    Type: KC-135 and Other Microgravity Simulations; 62-64; NASA/CR-1999-208922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: Coherent Doppler lidar is a promising technique for the global measurements of winds using a space-based platform. Doppler lidar produces estimates of the radial component of the velocity vector averaged over the resolution volume of the measurement. Profiles of the horizontal vector winds are produced by scanning the lidar beam or stepping the lidar beam through a sequence of different angles (step-stare). The first design for space-based measurements proposed a conical scan which requires a high power laser to produce acceptable signal levels for every laser pulse. Performance is improved by fixing the laser beam and accumulating the signal from many lidar pulses for each range-gate. This also improves the spatial averaging of the wind estimates and reduces the threshold signal energy required for a good estimate. Coherent Doppler lidar performance for space-based operation is determined using computer simulations and including the wind variability over the measurement volume as well as the variations of the atmospheric aerosol backscatter.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 298-301; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: A useful measure of sensor performance is the transceiver system efficiency n (sub sys). Which consists of the antenna efficiency n (sub a) and optical and electronic losses. Typically, the lidar equation and the antenna efficiency are defined in terms of the telescope aperture area. However, during the assembly of a coherent transceiver, it is important to measure the system efficiency before the installation of the beamexpanding telescope (i.e., the untruncated-beam system efficiency). Therefore, to accommodate both truncated and untruncated beam efficiency measurements, we define the lidar equation and the antenna efficiency in terms of the beam area rather than the commonly used aperture area referenced definition. With a well-designed Gaussian-beam lidar, aperture area referenced system efficiencies of 15 to 20 % (23-31% relative to the beam area) are readily achievable. In this paper we compare the differences between these efficiency definitions. We then describe techniques by which high efficiency can be achieved, followed by a discussion several novel auto alignment techniques developed to maintain high efficiency.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 247-250; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-12-03
    Description: Transmissive scanning elements for coherent laser radar systems are typically optical wedges, or prisms, which deflect the lidar beam at a specified angle and are then rotated about the instrument optical axis to produce a scan pattern. The wedge is placed in the lidar optical system subsequent to a beam-expanding telescope, implying that it has the largest diameter of any element in the system. The combination of the wedge diameter and asymmetric profile result in the element having very large mass and, consequently, relatively large power consumption required for scanning. These two parameters, mass and power consumption, are among the instrument requirements which need to be minimized when designing a lidar for a space-borne platform. Reducing the scanner contributions in these areas will have a significant effect on the overall instrument specifications, Replacing the optical wedge with a diffraction grating on the surface of a thin substrate is a straight forward approach with potential to reduce the mass of the scanning element significantly. For example, the optical wedge that will be used for the SPAce Readiness Coherent Lidar Experiment (SPARCLE) is approximately 25 cm in diameter and is made from silicon with a wedge angle designed for 30 degree deflection of a beam operating at approx. 2 micrometer wavelength. The mass of this element could be reduced by a factor of four by instead using a fused silica substrate, 1 cm thick, with a grating fabricated on one of the surfaces. For a grating to deflect a beam with a 2 micrometer wavelength by 30 degrees, a period of approximately 4 micrometers is required. This is small enough that fabrication of appropriate high efficiency blazed or multi-phase level diffractive optical gratings is prohibitively difficult. Moreover, bulk or stratified volume holographic approaches appear impractical due to materials limitations at 2 micrometers and the need to maintain adequate wavefront quality. In order to avoid the difficulties encountered in these approaches, we have developed a new type of high-efficiency grating which we call a Stratified Volume Diffractive Optical Element (SVDOE). The features of the gratings in this approach can be easily fabricated using standard photolithography and etching techniques and the materials used in the grating can be chosen specifically for a given application, In this paper we will briefly discuss the SVDOE technique and will present an example design of a lidar scanner using this approach. We will also discuss performance predictions for the example design.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 119-122; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-12-03
    Description: NASA's New Millennium Program (NMP) has been chartered to identify and validate in space emerging, revolutionary technologies that will enable less costly, more capable future science missions. The program utilizes a unique blend of science guidance and industry partnering to ferret out technology solutions to enable science capabilities in space which are presently technically infeasible, or unaffordable. Those technologies which present an unacceptably high risk to future science missions (whether small PI-led or operational) are bundled into technology validation missions. These missions seek to validate the technologies in a manner consistent with their future uses, thus reducing the associated risk to the first user, and obtaining meaningful science data as well. The Space Readiness Coherent Lidar Experiment (SPARCLE) was approved as the second NMP Earth Observing mission (EO2) in October 1997, and assigned to Marshall Space Flight Center for implementation. Leading up to mission confirmation, NMP sponsored a community workshop in March 1996 to draft Level-1 requirements for a doppler wind lidar mission, as well as other space-based lidar missions (such as DIAL). Subsequently, a study group was formed and met twice to make recommendations on how to perform a comparison of coherent and direct detection wind lidars in space. These recommendations have guided the science validation plan for the SPARCLE mission, and will ensure that future users will be able to confidently assess the risk profile of future doppler wind missions utilizing EO2 technologies. The primary risks to be retired are: (1) Maintenance of optical alignments through launch and operations on orbit, and (2) Successful velocity estimation compensation for the Doppler shift due to the platform motion, and due to the earth's rotation. This includes the need to account for all sources of error associated with pointing control and knowledge. The validation objectives are: (1) Demonstrate measurement of tropospheric winds from space using a scanning coherent Doppler lidar technique that scales to meet future research (e.g. ESSP) and operational (e.g. NPOESS) mission requirements. Specifically, produce and validate LOS wind data with single shot accuracy of 1-2 m/s in regions of high signal-to-noise ratio (SNR), and low atmospheric wind turbulence and wind shear, (2) Collect the atmospheric and instrument performance data in various scanning modes necessary to validate and improve instrument performance models that will enable the definition of future missions with greater confidence. Such data include aerosol backscatter data over much of the globe, and high SNR data such as that from surface returns, and (3) Produce a set of raw instrument data with which advanced signal processing techniques can be developed. This objective will permit future missions to better understand how to extract wind information from low backscatter regions of the atmosphere.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 38-39; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-12-03
    Description: This paper describes a method to determine the uncertainties of measured forces and moments from multi-component force balances used in wind tunnel tests. A multivariate regression technique is first employed to estimate the uncertainties of the six balance sensitivities and 156 interaction coefficients derived from established balance calibration procedures. These uncertainties are then employed to calculate the uncertainties of force-moment values computed from observed balance output readings obtained during tests. Confidence and prediction intervals are obtained for each computed force and moment as functions of the actual measurands. Techniques are discussed for separate estimation of balance bias and precision uncertainties.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 1; 279-306; NASA/CP-1999-209101/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-12-03
    Description: Direct measurements of forces and moments are some of the most important data acquired during aerodynamic testing. This paper deals with the force and strain measurement capabilities at the Langley Research Center (LaRC). It begins with a progressive history of LaRC force measurement developments beginning in the 1940's and ends with the center's current capabilities. Various types of force and moment transducers used at LaRC are discussed including six-component sting mounted balances, semi-span balances, hinge moment balances, flow-through balances, rotor balances, and many other unique transducers. Also discussed are some unique strain-gage applications, such as those used in extreme environments. The final topics deal with the LaRC's ability to perform custom calibrations and our current levels of effort in the area of force and strain measurement.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 1; 105-114; NASA/CP-1999-209101/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-12-03
    Description: Imaging spectrometry data must be spectrally, radiometrically and geometrically calibrated in order to: 1) derive physical parameters from measured spectral radiance, 2) compare data acquired from different regions and at different times, 3) compare and analyze the imaging spectrometry data with data acquired from other calibrated sensors, and 4) compare and analyze data with results from computer models. The calibration of AVIRIS data is the process by which laboratory characterization data are applied to raw instrument data (digitized number versus spectral channels) to produce quantitative spectra (radiance versus wavelength) for each image pixel in units of spectral radiance. The AVIRIS sensor and calibration process are described by Vane and the application of the calibration data to the raw digital data is described by Green. This calibration process is validated for in-flight performance of the sensor using a rigorous ground-truth campaign. This workshop paper reviews the laboratory characterization data set that is used in the AVIRIS calibration process. The laboratory measurements used to acquire the calibration data are divided into three classes: 1) spectral calibration, 2) radiometric calibration, and 3) spatial calibration.
    Keywords: Instrumentation and Photography
    Type: Summaries of the Sixth Annual JPL Airborne Earth Science Workshop; Volume 1; 39-48; NASA/CR/96-113073
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-12-03
    Description: A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.
    Keywords: Instrumentation and Photography
    Type: ; 297-302
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: Major advances must occur to protect astronauts from prolonged periods in near-zero gravity and high radiation associated with extended space travel. The dangers of living in space must be thoroughly understood and methods developed to reverse those effects that cannot be avoided. Six of the seven research teams established by the National Space Biomedical Research Institute (NSBRI) are studying biomedical factors for prolonged space travel to deliver effective countermeasures. To develop effective countermeasures, each of these teams require identification of and quantitation of complex pharmacological, hormonal, and growth factor compounds (biomarkers) in humans and in experimental animals to develop an in-depth knowledge of the physiological changes associated with space travel. At present, identification of each biomarker requires a separate protocol. Many of these procedures are complicated and the identification of each biomarker requires a separate protocol and associated laboratory equipment. To carry all of this equipment and chemicals on a spacecraft would require a complex clinical laboratory; and it would occupy much of the astronauts time. What is needed is a small, efficient, broadband medical diagnostic instrument to rapidly identify important biomarkers for human space exploration. The Miniature Time-Of- Flight Mass Spectrometer Project in the Technology Development Team is developing a small, high resolution, time-of-flight mass spectrometer (TOFMS) to quantitatively measure biomarkers for human space exploration. Virtues of the JHU/APL TOFMS technologies reside in the promise for a small (less than one cubic ft), lightweight (less than 5 kg), low-power (less than 50 watts), rugged device that can be used continuously with advanced signal processing diagnostics. To date, the JHU/APL program has demonstrated mass capability from under 100 to beyond 10,000 atomic mass units (amu) in a very small, low power prototype for biological analysis. Further, the electronic nature of the TOFMS output makes it ideal for rapid telemetry to earth for in-depth analysis by ground support teams.
    Keywords: Instrumentation and Photography
    Type: National Space Biomedical Research Institute; B-111 - B-113
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2004-12-03
    Description: The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing. attitude information from lidar and non-lidar sensors, and pointing knowledge algorithms will meet this second requirement. The topic of this paper is the pre-launch demonstration of the first requirement, adequate sensitivity of the SPARCLE lidar.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 156-159; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2004-12-03
    Description: Routine backscatter, beta, measurements by an airborne or space-based lidar from designated earth surfaces with known and fairly uniform beta properties can potentially offer lidar calibration opportunities. This can in turn be used to obtain accurate atmospheric aerosol and cloud beta measurements on large spatial scales. This is important because achieving a precise calibration factor for large pulsed lidars then need not rest solely on using a standard hard target procedure. Furthermore, calibration from designated earth surfaces would provide an inflight performance evaluation of the lidar. Hence, with active remote sensing using lasers with high resolution data, calibration of a space-based lidar using earth's surfaces will be extremely useful. The calibration methodology using the earth's surface initially requires measuring beta of various earth surfaces simulated in the laboratory using a focused continuous wave (CW) CO2 Doppler lidar and then use these beta measurements as standards for the earth surface signal from airborne or space-based lidars. Since beta from the earth's surface may be retrieved at different angles of incidence, beta would also need to be measured at various angles of incidences of the different surfaces. In general, Earth-surface reflectance measurements have been made in the infrared, but the use of lidars to characterize them and in turn use of the Earth's surface to calibrate lidars has not been made. The feasibility of this calibration methodology is demonstrated through a comparison of these laboratory measurements with actual earth surface beta retrieved from the same lidar during the NASA/Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission on NASA's DC8 aircraft from 13 - 26 September, 1995. For the selected earth surface from the airborne lidar data, an average beta for the surface was established and the statistics of lidar efficiency was determined. This was compared with the actual lidar efficiency determined with the standard calibrating hard target.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 128-131; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2004-12-03
    Description: Surface mounted strain gages and strain gage application techniques are as varied as they are versatile. There is an abundance of technical literature, available throughout the strain gage community, offering techniques for installing strain gages and methods of obtaining useful information from them. This paper, while providing more of the same, will focus its discussions on recent Langley developments for using strain gages reliably and accurately in very harsh environments. With Langley's extensive use of wind tunnel balances, its ongoing effort in materials development, and its currently focused activities in structural testing, the use of strain gages in unusual and demanding environments has led to several innovative improvements in the "how to gage it" department. Several of these innovations will be addressed that hopefully will provide some practical information for the strain gage user who is finding the test environment and (or) the materials to be tested too demanding for previously utilized strain gage application technology. Specifically, this paper will include discussions in the following three areas: (1) technical considerations when gaging cryogenic wind tunnel balances, including areas for improving accuracy and reliability; (2) addressing technical difficulties associated with gaging composite test articles and certain alloys for testing at temperatures approaching -450F, or elevated temperatures up to 350F, or both temperatures inclusive during the same test scenario; (3) gaging innovations for testing metal/matrix and carbon/carbon composites at temperatures above 700F.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 1; 413-429; NASA/CP-1999-209101/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2004-12-03
    Description: It is critically important to be able to assess alterations in cardiovascular regulation during and after space flight. We propose to develop an instrument for the non-invasive assessment of such alterations that can be used on the ground and potentially during space flight. This instrumentation would be used by the Cardiovascular Alterations Team at multiple sites for the study of the effects of space flight on the cardiovascular system and the evaluation of countermeasures. In particular, the Cardiovascular Alterations Team will use this instrumentation in conjunction with ground-based human bed-rest studies and during application of acute stresses e.g., tilt, lower body negative pressure, and exercise. In future studies, the Cardiovascular Alterations Team anticipates using this instrumentation to study astronauts before and after space flight and ultimately, during space flight. The instrumentation may also be used by the Bone Demineralization/Calcium Metabolism Team, the Neurovestibular Team and the Human Performance Factors, Sleep and Chronobiology Team to measure changes in autonomic nervous function. The instrumentation will be based on a powerful new technology - cardiovascular system identification (CSI) - which has been developed in our laboratory. CSI provides a non-invasive approach for the study of alterations in cardiovascular regulation. This approach involves the analysis of second-to-second fluctuations in physiologic signals such as heart rate and non-invasively measured arterial blood pressure in order to characterize quantitatively the physiologic mechanisms responsible for the couplings between these signals. Through the characterization of multiple physiologic mechanisms, CSI provides a closed-loop model of the cardiovascular regulatory state in an individual subject.
    Keywords: Instrumentation and Photography
    Type: National Space Biomedical Research Institute; B-110
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2004-12-03
    Description: The purpose of the Dual Energy X-ray Absorptiometry (DEXA) project is to design, build, and test an advanced X-ray absorptiometry scanner capable of being used to monitor the deleterious effects of weightlessness on the human musculoskeletal system during prolonged spaceflight. The instrument is based on the principles of dual energy x-ray absorptiometry and is designed not only to measure bone, muscle, and fat masses but also to generate structural information about these tissues so that the effects on mechanical integrity may be assessed using biomechanical principles. A skeletal strength assessment could be particularly important for an astronaut embarking on a remote planet where the consequences of a fragility fracture may be catastrophic. The scanner will employ multiple projection images about the long axis of the scanned subject to provide geometric properties in three dimensions, suitable for a three-dimensional structural analysis of the scanned region. The instrument will employ advanced fabrication techniques to minimize volume and mass (100 kg current target with a long-term goal of 60 kg) of the scanner as appropriate for the space environment, while maintaining the required mechanical stability for high precision measurement. The unit will have the precision required to detect changes in bone mass and geometry as small as 1% and changes in muscle mass as small as 5%. As the system evolves, advanced electronic fabrication technologies such as chip-on-board and multichip modules will be combined with commercial (off-the-shelf) parts to produce a reliable, integrated system which not only minimizes size and weight, but, because of its simplicity, is also cost effective to build and maintain. Additionally, the system is being designed to minimize power consumption. Methods of heat dissipation and mechanical stowage (for the unit when not in use) are being optimized for the space environment.
    Keywords: Instrumentation and Photography
    Type: National Space Biomedical Research Institute; B-108 - B-109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2004-12-03
    Description: The objectives of this study are threefold: (1) Provide insight into water delivery in microgravity and determine optimal germination paper wetting for subsequent seed germination in microgravity; (2) Observe the behavior of water exposed to a strong localized magnetic field in microgravity; and (3) Simulate the flow of fixative (using water) through the hardware. The Magnetic Field Apparatus (MFA) is a new piece of hardware slated to fly on the Space Shuttle in early 2001. MFA is designed to expose plant tissue to magnets in a microgravity environment, deliver water to the plant tissue, record photographic images of plant tissue, and deliver fixative to the plant tissue.
    Keywords: Instrumentation and Photography
    Type: KC-135 and Other Microgravity Simulations; 142-146; NASA/CR-1999-208922
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2004-12-03
    Description: Sensors 2000! (S2K!) is a specialized, integrated projects team organized to provide focused, directed, advanced biosensor and bioinstrumentation systems technology support to NASA's spaceflight and ground-based research and development programs. Specific technology thrusts include telemetry-based sensor systems, chemical/ biological sensors, medical and physiological sensors, miniaturized instrumentation architectures, and data and signal processing systems. A concurrent objective is to promote the mutual use, application, and transition of developed technology by collaborating in academic-commercial-govemment leveraging, joint research, technology utilization and commercialization, and strategic partnering alliances. Sensors 2000! is organized around three primary program elements: Technology and Product Development, Technology infusion and Applications, and Collaborative Activities. Technology and Product Development involves development and demonstration of biosensor and biotelemetry systems for application to NASA Space Life Sciences Programs; production of fully certified spaceflight hardware and payload elements; and sensor/measurement systems development for NASA research and development activities. Technology Infusion and Applications provides technology and program agent support to identify available and applicable technologies from multiple sources for insertion into NASA's strategic enterprises and initiatives. Collaborative Activities involve leveraging of NASA technologies with those of other government agencies, academia, and industry to concurrently provide technology solutions and products of mutual benefit to participating members.
    Keywords: Instrumentation and Photography
    Type: Proceedings of the First Biennial Space Biomedical Investigators' Workshop; 578
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2004-12-03
    Description: The Instrumentation Working Group compiled a summary of measurement techniques applicable to gas turbine engine aerosol precursors and particulates. An assessment was made of the limits, accuracy, applicability, and technology readiness of the various techniques. Despite advances made in emissions characterization of aircraft engines, uncertainties still exist in the mechanisms by which aerosols and particulates are produced in the near-field engine exhaust. To adequately assess current understanding of the formation of sulfuric acid aerosols in the exhaust plumes of gas turbine engines, measurements are required to determine the degree and importance of sulfur oxidation in the turbine and at the engine exit. Ideally, concentrations of all sulfur species would be acquired, with emphasis on SO2 and SO3. Numerous options exist for extractive and non-extractive measurement of SO2 at the engine exit, most of which are well developed. SO2 measurements should be performed first to place an upper bound on the percentage of SO2 oxidation. If extractive and non-extractive techniques indicate that a large amount of the fuel sulfur is not detected as SO2, then efforts are needed to improve techniques for SO3 measurements. Additional work will be required to account for the fuel sulfur in the engine exhaust. Chemical Ionization Mass Spectrometry (CI-MS) measurements need to be pursued, although a careful assessment needs to be made of the sampling line impact on the extracted sample composition. Efforts should also be placed on implementing non-intrusive techniques and extending their capabilities by maximizing exhaust coverage for line-of-sight measurements, as well as development of 2-D techniques, where feasible. Recommendations were made to continue engine exit and combustor measurements of particulates. Particulate measurements should include particle size distribution, mass fraction, hydration properties, and volatile fraction. However, methods to ensure that unaltered samples are obtained need to be developed. Particulate speciation was also assigned a high priority for quantifying the fractions of carbon soot, PAH, refractory materials, metals, sulfates, and nitrates. High priority was also placed on performing a comparison of particle sizing instruments. Concern was expressed by the workshop attendees who routinely make particulate measurements about the variation in number density measured during in-flight tests by different instruments. In some cases, measurements performed by different groups of researchers during the same flight tests showed an order of magnitude variation. Second priority was assigned to measuring concentrations of odd hydrogen and oxidizing species. Since OH, HO2, H2O2, and O are extremely reactive, non-extractive measurements are recommended. A combination of absorption and fluorescence is anticipated to be effective for OH measurements in the combustor and at the engine exit. Extractive measurements of HO2 have been made in the stratosphere, where the ambient level of OH is relatively low. Use of techniques that convert HO2 to OH for combustor and engine exit measurements needs to be evaluated, since the ratio of HO2/OH may be 1% or less at both the combustor and engine exit. CI-MS might be a viable option for H2O2, subject to sampling line conversion issues. However, H2O2 is a low priority oxidizing species in the combustor and at the engine exit. Two candidates for atomic oxygen measurements are Resonance Enhanced Multi-Photon Ionization (REMPI) and Laser-Induced Fluorescence (LIF). Particulate measurement by simultaneous extractive and non-extractive techniques was given equal priority to the oxidizer measurements. Concern was expressed over the ability of typical ground test sampling lines to deliver an unaltered sample to a remotely located instrument. It was suggested that the sampling probe and line losses be checked out by attempting measurements using an optical or non-extractive technique immediately upstream of the sampling probe. This is a possible application for Laser Induced Incandescence (LII) as a check on the volume fraction of soot. Optical measurements of size distribution are not well developed for ultrafine particles less than about 20 nm in diameter, so a non-extractive technique for particulate size distribution cannot be recommended without further development. Carbon dioxide measurements need to be made to complement other extractive measurement techniques. CO2 measurements enable conversion of other species concentrations to emission indices. Carbon monoxide, which acts as a sink for oxidizing species, should be measured using non-extractive techniques. CO can be rapidly converted to CO2 in extractive probes, and a comparison between extractive and non-extractive measurements should be performed. Development of non-extractive techniques would help to assess the degree of CO conversion, and might be needed to improve the concentration measurement accuracy. Measurements of NO(x) will continue to be critical due to the role of NO and NO2 in atmospheric chemistry, and their influence on atmospheric ozone. Time-resolved measurements of temperature, velocity, and species concentrations were included on the list of desired measurement. Thermocouples are typically adequate for engine exit measurements. PIV and LDV are well established for obtaining velocity profiles. The techniques are listed in the accompanying table; are divided into extractive and non-extractive techniques. Efforts were made to include a measurement uncertainty for each technique. An assessment of the technology readiness was included.
    Keywords: Instrumentation and Photography
    Type: Workshop on Aerosols and Particulates from Aircraft Gas Turbine Engines; 179-186; NASA/CP-1999-208918
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2004-12-03
    Description: Abstract In this paper, an approach to increase the degree of autonomy of flight software is proposed. We describe an enhancement of the Attitude Determination and Control System by augmenting it with self-calibration capability. Conventional attitude estimation and control algorithms are combined with higher level decision making and machine learning algorithms in order to deal with the uncertainty and complexity of the problem.
    Keywords: Instrumentation and Photography
    Type: 1999 Flight Mechanics Symposium; 17-24; NASA/CP-1999-209235
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2004-12-03
    Description: The NASA Langley Research Center (LARC) participated in a national cooperative evaluation of the Israel Aircraft Industries (IAI) automatic balance calibration machine at Microcraft, San Diego in September 1995. A LaRC-designed six-component strain gauge balance was selected for test and calibration during LaRC's scheduled evaluation period. Eight calibrations were conducted using three selected experimental designs. Raw data were exported to LaRC facilities for reduction and statistical analysis using the techniques outlined in Tripp and Tcheng (1994). This report presents preliminary assessments of the results, and compares IAI calibration results with manual calibration results obtained at the Modern Machine and Tool Co., Inc. (MM & T). Newport News, VA. A more comprehensive report is forthcoming.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 1; 353-371; NASA/CP-1999-209101/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2004-12-03
    Description: Although there has been extensive development of analytical methods for modeling the behavior of piezoelectric structures, only a limited amount of research has been performed concerning the implications of thermal effects on both the active and sensory response of smart structures. Thermal effects become important when the piezoelectric structure has to operate in either extremely hot or cold temperature environments. Consequently, the purpose of this paper is to extend the previously developed discrete layer formulation of Saravanos and Heyliger to account for the coupled mechanical, electrical, and thermal response in modern smart composite beams. The mechanics accounts for thermal effects which may arise in the elastic and piezoelectric media at the material level through the constitutive equations. The displacements, electric potentials, and temperatures are introduced as state variables, allowing them to be modeled as variable fields through the laminate thickness. This unified representation leads to an inherent capability to model both the active compensation of thermal distortions in smart structures and the resultant sensory voltage when thermal loads are applied. The corresponding finite element formulation is developed and numerical results demonstrate the ability to model both the active and sensory modes of composite beams with heterogeneous plies with attached piezoelectric layers under thermal loadings.
    Keywords: Instrumentation and Photography
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 347-351; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2004-12-03
    Description: The construction of a piezoresistive - piezoelectric sensor (or actuator) array is proposed using 'neural' connectivity for signal recognition and possible actuation functions. A closer integration of the sensor and decision functions is necessary in order to achieve intrinsic identification within the sensor. A neural sensor is the next logical step in development of truly 'intelligent' arrays. This proposal will integrate 1-3 polymer piezoresistors and MLC electroceramic devices for applications involving acoustic identification. The 'intelligent' piezoresistor -piezoelectric system incorporates printed resistors, composite resistors, and a feedback for the resetting of resistances. A model of a design is proposed in order to simulate electromechanical resistor interactions. The goal of optimizing a sensor geometry for improving device reliability, training, & signal identification capabilities is the goal of this work. At present, studies predict performance of a 'smart' device with a significant control of 'effective' compliance over a narrow pressure range due to a piezoresistor percolation threshold. An interesting possibility may be to use an array of control elements to shift the threshold function in order to change the level of resistance in a neural sensor array for identification, or, actuation applications. The proposed design employs elements of: (1) conductor loaded polymers for a 'fast' RC time constant response; and (2) multilayer ceramics for actuation or sensing and shifting of resistance in the polymer. Other material possibilities also exist using magnetoresistive layered systems for shifting the resistance. It is proposed to use a neural net configuration to test and to help study the possible changes required in the materials design of these devices. Numerical design models utilize electromechanical elements, in conjunction with structural elements in order to simulate piezoresistively controlled actuators and changes in resistance of sensors. The construction of these devices may show significant improvement in ability to interrogate signals and in the control of effective compliance. This work focuses on the development a variety of series/parallel interconnected piezoresistive control elements for the neural sensing function.
    Keywords: Instrumentation and Photography
    Type: Proceedings of the 4th Annual Workshop: Advances in Smart Materials for Aerospace Applications; 329-334; NASA-CP-10185
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2004-12-03
    Description: The SPAce Readiness Coherent Lidar Experiment (SPARCLE) is the first demonstration of a coherent Doppler wind lidar in space. SPARCLE will be flown aboard a space shuttle In the middle part of 2001 as a stepping stone towards the development and deployment of a long-life-time operational instrument in the later part of next decade. SPARCLE is an ambitious project that is intended to evaluate the suitability of coherent lidar for wind measurements, demonstrate the maturity of the technology for space application, and provide a useable data set for model development and validation. This paper describes the SPARCLE's optical system design, fabrication methods, assembly and alignment techniques, and its anticipated operational characteristics. Coherent detection is highly sensitive to aberrations in the signal phase front, and to relative alignment between the signal and the local oscillator beams. Consequently, the performance of coherent lidars is usually limited by the optical quality of the transmitter/receiver optical system. For SPARCLE having a relatively large aperture (25 cm) and a very long operating range (400 km), compared to the previously developed 2-micron coherent lidars, the optical performance requirements are even more stringent. In addition with stringent performance requirements, the physical and environment constraints associated with this instrument further challenge the limit of optical fabrication technologies.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 284-287; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2004-12-03
    Description: The SPAce Readiness Coherent Lidar Experiment (SPARCLE) mission was proposed as a low cost technology demonstration mission, using a 2-micron, 100-mJ, 6-Hz, 25-cm, coherent lidar system based on demonstrated technology. SPARCLE was selected in late October 1997 to be NASA's New Millennium Program (NMP) second earth-observing (EO-2) mission. To maximize the success probability of SPARCLE, NASA/MSFC desired expert guidance in the areas of coherent laser radar (CLR) theory, CLR wind measurement, fielding of CLR systems, CLR alignment validation, and space lidar experience. This led to the formation of the NASA/MSFC Coherent Lidar Technology Advisory Team (CLTAT) in December 1997. A threefold purpose for the advisory team was identified as: 1) guidance to the SPARCLE mission, 2) advice regarding the roadmap of post-SPARCLE coherent Doppler wind lidar (CDWL) space missions and the desired matching technology development plan 3, and 3) general coherent lidar theory, simulation, hardware, and experiment information exchange. The current membership of the CLTAT is shown. Membership does not result in any NASA or other funding at this time. We envision the business of the CLTAT to be conducted mostly by email, teleconference, and occasional meetings. The three meetings of the CLTAT to date, in Jan. 1998, July 1998, and Jan. 1999, have all been collocated with previously scheduled meetings of the Working Group on Space-Based Lidar Winds. The meetings have been very productive. Topics discussed include the SPARCLE technology validation plan including pre-launch end-to-end testing, the space-based wind mission roadmap beyond SPARCLE and its implications on the resultant technology development, the current values and proposed future advancement in lidar system efficiency, and the difference between using single-mode fiber optical mixing vs. the traditional free space optical mixing.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 153-155; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2004-12-03
    Description: The coherent Doppler lidar, when operated from an airborne platform, offers a unique measurement capability for study of atmospheric dynamical and physical properties. This is especially true for scientific objectives requiring measurements in optically-clear air, where other remote sensing technologies such as Doppler radar are at a disadvantage in terms of spatial resolution and coverage. Recent experience suggests airborne coherent Doppler lidar can yield unique wind measurements of--and during operation within--extreme weather phenomena. This paper presents the first airborne coherent Doppler lidar measurements of hurricane wind fields. The lidar atmospheric remote sensing groups of National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, and Jet Propulsion Laboratory jointly developed an airborne lidar system, the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS). The centerpiece of MACAWS is the lidar transmitter from the highly successful NOAA Windvan. Other field-tested lidar components have also been used, when feasible, to reduce costs and development time. The methodology for remotely sensing atmospheric wind fields with scanning coherent Doppler lidar was demonstrated in 1981; enhancements were made and the system was reflown in 1984. MACAWS has potentially greater scientific utility, compared to the original airborne scanning lidar system, owing to a factor of approx. 60 greater energy-per-pulse from the NOAA transmitter. MACAWS development was completed and the system was first flown in 1995. Following enhancements to improve performance, the system was re-flown in 1996 and 1998. The scientific motivation for MACAWS is three-fold: obtain fundamental measurements of subgrid scale (i.e., approx. 2-200 km) processes and features which may be used to improve parameterizations in hydrological, climate, and general/regional circulation models; obtain similar datasets to improve understanding and predictive capabilities for similarly-scaled processes and features; and simulate and validate the performance of prospective satellite Doppler lidars for global tropospheric wind measurement.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 29-32; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2004-12-03
    Description: An orbiting coherent Doppler lidar for measuring winds is required to provide two basic pieces of data to the user community. The first is the line of sight wind velocity and the second is knowledge of the position at which the measurement was made. In order to provide this information in regions of interest the instrument is also required to have a certain backscatter sensitivity level. This paper outlines some of the considerations necessary in designing a coherent Doppler lidar for this purpose.
    Keywords: Instrumentation and Photography
    Type: Tenth Biennial Coherent Laser Radar Technology and Applications Conference; 302-305; NASA/CP-1999-209758
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2011-08-23
    Description: The theory of special relativity is used to analyze some of the physical phenomena associated with space-based coherent Doppler lidars aimed at Earth and the atmosphere. Two important cases of diffuse scattering and retroreflection by lidar targets are treated. For the case of diffuse scattering, we show that for a coaligned transmitter and receiver on the moving satellite, there is no angle between transmitted and returned radiation. However, the ray that enters the receiver does not correspond to a retroreflected ray by the target. For the retroreflection case there is misalignment between the transmitted ray and the received ray. In addition, the Doppler shift in the frequency and the amount of tip for the receiver aperture when needed are calculated, The error in estimating wind because of the Doppler shift in the frequency due to special relativity effects is examined. The results are then applied to a proposed space-based pulsed coherent Doppler lidar at NASA's Marshall Space Flight Center for wind and aerosol backscatter measurements. The lidar uses an orbiting spacecraft with a pulsed laser source and measures the Doppler shift between the transmitted and the received frequencies to determine the atmospheric wind velocities. We show that the special relativity effects are small for the proposed system.
    Keywords: Instrumentation and Photography
    Type: Applied Optics (ISSN 0003-6935); Volume 38; No. 30; 6374-6381
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2011-08-23
    Description: Toxic gases produced by the combustion or thermo-oxidative degradation of materials such as wire insulation, foam, plastics, or electronic circuit boards in space shuttle or space station crew cabins may pose a significant hazard to the flight crew. Toxic gas sensors are routinely evaluated in pure gas standard mixtures, but the possible interferences from polymer combustion products are not routinely evaluated. The NASA White Sands Test Facility (WSTF) has developed a test system that provides atmospheres containing predetermined quantities of target gases combined with the coincidental combustion products of common spacecraft materials. The target gases are quantitated in real time by infrared (IR) spectroscopy and verified by grab samples. The sensor responses are recorded in real time and are compared to the IR and validation analyses. Target gases such as carbon monoxide, hydrogen cyanide, hydrogen chloride, and hydrogen fluoride can be generated by the combustion of poly(vinyl chloride), polyimide-fluoropolymer wire insulation, polyurethane foam, or electronic circuit board materials. The kinetics and product identifications for the combustion of the various materials were determined by thermogravimetric-IR spectroscopic studies. These data were then scaled to provide the required levels of target gases in the sensor evaluation system. Multisensor toxic gas monitors from two manufacturers were evaluated using this system. In general, the sensor responses satisfactorily tracked the real-time concentrations of toxic gases in a dynamic mixture. Interferences from a number of organic combustion products including acetaldehyde and bisphenol-A were minimal. Hydrogen bromide in the products of circuit board combustion registered as hydrogen chloride. The use of actual polymer combustion atmospheres for the evaluation of sensors can provide additional confidence in the reliability of the sensor response.
    Keywords: Instrumentation and Photography
    Type: JANNAF 28th Propellant Development and Characterization Subcommittee and 17th Safety and Environmental Protection Subcommitte Joint Meeting; Volume 1; 127-136; CPIA-Publ-687-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2011-08-23
    Description: XRS is the microcalorimeter X-ray detector aboard the US-Japanese ASTRO-E observatory, which is scheduled to be launched in early 2000. XRS is a high resolution spectrometer- with less than 9 eV resolution at 3 keV and better than 14 eV resolution over its bandpass ranging from about 0.3 keV to 15 keV. Here we present the results of our first calibration of the XRS instrument. We describe the methods used to extract detailed information about the detection efficiency and spectral redistribution of the instrument. We also present comparisons of simulations and real data to test our detector models.
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2011-08-23
    Description: We describe the signal processing system of the Astro-E XRS Instrument. The Calorimeter Analog Processor (CAP) provides bias and power for the detectors and amplifies the detector signals by a factor of 20,000. The Calorimeter Digital Processor (CDP) performs the digital processing of the calorimeter signals, detecting X-ray pulses and analyzing them by optimal filtering. We describe the operation of pulse detection, pulse height analysis, and risetime determination. We also discuss performance, including the three event grades (hi-res, mid-res, and low-res), anticoincidence detection, counting rate dependence, and noise rejection.
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-08-31
    Description: Twenty years of progress in 200 GHz receivers for spaceborne remote sensing has yielded a 180-220 GHz technology with maturing characteristics, as evident by increasing availability of relevant hardware, paralleled by further refinement in receiver performance requirements at this spectrum band. The 177-207 GHz superheterodyne receiver, for the Earth observing system (EOS) microwave limb sounder (MLS), effectively illustrates such technology developments. This MLS receiver simultaneously detects six different signals, located at sidebands below and above its 191.95 GHZ local-oscillator (LO). The paper describes the MLS 177-207 GHz receiver front-end (RFE), and provides measured data for its lower and upper sidebands. Sideband ratio data is provided as a function of IF frequency, at different LO power drive, and for variation in the ambient temperature.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-08-31
    Description: The Terrestrial Planet Finder (TPF) is a space-based infrared interferometer that will combine high sensitivity and spatial resolution to detect and characterize planetary systems within 15 pc of our sun. TPF is a key element in NASA's Origins Program and is currently under study in its Pre-Project Phase. We review some of the interferometer designs that have been considered for starlight nulling, with particular attention to the architecture and subsystems of the central beam-combiner.
    Keywords: Instrumentation and Photography
    Type: Optical and IR Interferometry from Ground and Space; 207-212
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-08-31
    Description: We describe an optical amplifier designed to amplify a spatially sampled component of an optical wavefront to kilowatt average power. The goal is means for implementing a strategy of spatially segmenting a large aperture wavefront, amplifying the individual segments, maintaining the phase coherence of the segments by active means, and imaging the resultant amplified coherent field. Applications of interest are the transmission of space solar power over multi-megameter distances, as to distant spacecraft, or to remote sites with no preexisting power grid.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2016-06-07
    Description: Two end-item tape recorders lost 4:1 mode data recording mode capability at less than half of their 1 6,000-cycle, 4-year operating life. Subsequent life tests on two spare recorders also experienced 4:1 mode data loss at 8,000 and 11,700 cycles. Tear down inspection after completion of the life tests showed that the tape had worn through the alfesil record and reproduce heads. An investigation was initiated to understand the cause of excessive tape head wear and the reasons why the 4:1 mode data rate, low-speed mode is more damaging than the 1:1 mode data rate, high-speed recording mode. The objective was to establish how operating conditions (tape speed, humidity, temperature, stop/start cycles) affects head life with the goal of extending head life on the remaining in-service tape recorders. Another interest was to explain why an earlier vendor life test showed capability beyond 16,000 cycles.
    Keywords: Instrumentation and Photography
    Type: 30th Aerospace Mechanisms Symposium; 47-63; NASA-CP-3328
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.
    Keywords: Instrumentation and Photography
    Type: 1999 Shuttle Small Payloads Symposium; 25-26; NASA/CP-1999-209476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2016-06-07
    Description: The first International Symposium on Strain Gauge Balances was sponsored under the auspices of the NASA Langley Research Center (LaRC), Hampton, Virginia during October 22-25, 1996. Held at the LaRC Reid Conference Center, the Symposium provided an open international forum for presentation, discussion, and exchange of technical information among wind tunnel test technique specialists and strain gauge balance designers. The Symposium also served to initiate organized professional activities among the participating and relevant international technical communities. The program included a panel discussion, technical paper sessions, tours of local facilities, and vendor exhibits. Over 130 delegates were in attendance from 15 countries. A steering committee was formed to plan a second international balance symposium tentatively scheduled to be hosted in the United Kingdom in 1998 or 1999. The Balance Symposium was followed by the half-day Workshop on Angle of Attack and Model Deformation on the afternoon of October 25. The thrust of the Workshop was to assess the state of the art in angle of attack (AoA) and model deformation measurement techniques and to discuss future developments.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 2; 727-738; NASA/CP-1999-209101/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2016-06-07
    Description: This paper will cover the standard force balance calibration and data reduction techniques used at Langley Research Center. It will cover balance axes definition, balance type, calibration instrumentation, traceability of standards to NIST, calibration loading procedures, balance calibration mathematical model, calibration data reduction techniques, balance accuracy reporting, and calibration frequency.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 2; 565-572; NASA/CP-1999-209101/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: The NASA Langley Research Center (LaRC) has been designing strain-gage balances for more than fifty years. These balances have been utilized in Langley's wind tunnels, which span over a wide variety of aerodynamic test regimes, as well as other ground based test facilities and in space flight applications. As a result, the designs encompass a large array of sizes, loads, and environmental effects. Currently Langley has more than 300 balances available for its researchers. This paper will focus on the design concepts for internal sting mounted strain-gage balances. However, these techniques can be applied to all force measurement design applications. Strain-gage balance concepts that have been developed over the years including material selection, sting, model interfaces, measuring, sections, fabrication, strain-gaging and calibration will be discussed.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 2; 525-541; NASA/CP-1999-209101/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2016-06-07
    Description: The F64 frame grabber is a high performance video image acquisition and processing board utilizing the TMS320C40 and TMS34020 processors. The hardware is designed for the ISA 16 bit bus and supports multiple digital or analog cameras. It has an acquisition rate of 40 million pixels per second, with a variable sampling frequency of 510 kHz to MO MHz. The board has a 4MB frame buffer memory expandable to 32 MB, and has a simultaneous acquisition and processing capability. It supports both VGA and RGB displays, and accepts all analog and digital video input standards.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-08-29
    Description: Previous modeling of the performance of spaceborne direct-detection Doppler lidar systems has assumed extremely idealized atmospheric models. Here we develop a technique for modeling the performance of these systems in a more realistic atmosphere, based on actual airborne lidar observations. The resulting atmospheric model contains cloud and aerosol variability that is absent in other simulations of spaceborne Doppler lidar instruments. To produce a realistic simulation of daytime performance, we include solar radiance values that are based on actual measurements and are allowed to vary as the viewing scene changes. Simulations are performed for two types of direct-detection Doppler lidar systems: the double-edge and the multi-channel techniques. Both systems were optimized to measure winds from Rayleigh backscatter at 355 nm. Simulations show that the measurement uncertainty during daytime is degraded by only about 10-20% compared to nighttime performance, provided a proper solar filter is included in the instrument design.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Astronauts are required to interface with complex systems that require sophisticated displays to communicate effectively. Lightweight, head-mounted real-time displays that present holographic images for comfortable viewing may be the ideal solution. We describe an implementation of a liquid crystal television (LCTV) as a spatial light modulator (SLM) for the display of holograms. The implementation required the solution of a complex set of problems. These include field calculations, determination of the LCTV-SLM complex transmittance characteristics and a precise knowledge of the signal mapping between the LCTV and frame grabbing board that controls it. Realizing the hologram is further complicated by the coupling that occurs between the phase and amplitude in the LCTV transmittance. A single drive signal (a gray level signal from a framegrabber) determines both amplitude and phase. Since they are not independently controllable (as is true in the ideal SLM) one must deal with the problem of optimizing (in some sense) the hologram based on this constraint. Solutions for the above problems have been found. An algorithm has been for field calculations that uses an efficient outer product formulation. Juday's MEDOF 7 (Minimum Euclidean Distance Optimal Filter) algorithm used for originally for filter calculations has been successfully adapted to handle metrics appropriate for holography. This has solved the problem of optimizing the hologram to the constraints imposed by coupling. Two laboratory methods have been developed for determining an accurate mapping of framegrabber pixels to LCTV pixels. A friendly software system has been developed that integrates the hologram calculation and realization process using a simple set of instructions. The computer code and all the laboratory measurement techniques determining SLM parameters have been proven with the production of a high quality test image.
    Keywords: Instrumentation and Photography
    Type: National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995; Volume 1; NASA-CR-201377-Vol-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: A project history review, literature review, and vendor search were conducted to identify a flowmeter that would improve the accuracy of gaseous flow measurements in the White Sands Test Facility (WSTF) Calibration Laboratory and the Hydrogen High Flow Facility. Both facilities currently use sonic flow nozzles to measure flowrates. The flow nozzle pressure drops combined with corresponding pressure and temperature measurements have been estimated to produce uncertainties in flowrate measurements of 2 to 5 percent. This study investigated the state of flowmeter technology to make recommendations that would reduce those uncertainties. Most flowmeters measure velocity and volume, therefore mass flow measurement must be calculated based on additional pressures and temperature measurement which contribute to the error. The two exceptions are thermal dispersion meters and Coriolis mass flowmeters. The thermal dispersion meters are accurate to 1 to 5 percent. The Coriolis meters are significantly more accurate, at least for liquids. For gases, there is evidence they may be accurate to within 0.5 percent or better of the flowrate, but there may be limitations due to inappropriate velocity, pressure, Mach number and vibration disturbances. In this report, a comparison of flowmeters is presented. Candidate Coriolis meters and a methodology to qualify the meter with tests both at WSTF and Southwest Research Institute are recommended and outlined.
    Keywords: Instrumentation and Photography
    Type: National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program: 1995.; 27-1 - 27-16; NASA-CR-201377-Vol-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-08-31
    Description: A Mach-Zehnder interferometer consists of a 3 db splitter to create the two separate beams, an optical path difference to control the interference between the two beams and another 3 db coupler to reconstruct the output signal. The performance of each of its components has been investigated. Since an optical path difference is required for its function, the performance of a Mach-Zehnder interferometer is not very sensitive to construction parameters. In designing an interferometer for this work, the following considerations must be observed: the interferometer is to be made of phthalocyanine or polydiacetylene thin films; in order to avoid thermal effects which are slower, the wavelength chosen must not be absorbed in either one or two photon processes; the wavelength chosen must be easily generated (laser line); the spacing between the interferometer arms must be large enough to allow attachment of external electrodes; the vapor deposition apparatus can accept disks no larger than 0.9 inches; and the design must allow multiple layer coating in order to determine the optimum film thickness or to change to another substance.
    Keywords: Instrumentation and Photography
    Type: Research Reports: 1995 NASA/ASEE Summer Faculty Fellowship Program; NASA-CR-199830
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-08-31
    Description: This paper presents a number of variations on the Davenport algorithm for in-flight gyroscope recalibration, or first order initial calibration, specifically tailored for use with a minimum of satellite telemetry data. Central to one of the techniques described is the use of onboard integration of gyroscope data together with a detailed model of scheduled satellite slew profiles. Methods are presented for determining adjustments to either parameters for the standard linear model (i.e., a drift rate bias vector and/or a scale factor/alignment transformation matrix) or individual gyroscope scale parameters, both linear and nonlinear, in cases where the alignments are well known. The results of applying the methods in an analysis of the temporal evolution and nonlinear response of the gyroscopes installed on the Hubble Space Telescope following its first servicing mission are discussed. The two effects, when working coherently, have been found to result in slew errors of almost 1 arcsecond per degree. Procedures for selecting optimal operational gyroscope parameters subject to the constraint of using a linear model are discussed.
    Keywords: Instrumentation and Photography
    Type: Flight Mechanics/Estimation Theory Symposium 1996; 41-53; NASA-CP-3333
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-08-31
    Description: This paper discusses the technology developments achieved during the first year of a program to develop a high performance digital optical tape recording device using a solid state, diode pumped, frequency doubled green laser source. The goal is to demonstrate, within two years, useful read/write data transfer rates to at least 100 megabytes per second and a user capacity of up to one terabyte per cartridge implemented in a system using a '3480' style mono-reel tape cartridge.
    Keywords: Instrumentation and Photography
    Type: Fifth NASA Goddard Conference on Mass Storage Systems and Technologies; Volume 2; 571-581; NASA-CP-3340-Vol- 2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2011-08-23
    Description: Leaks in the hydrazine supply system of the Shuttle APU can result in hydrazine ignition and fire in the aft compartment of the Shuttle. Indication of the location of a leak could provide valuable information required for operational decisions. WSTF has developed a small, single use sensor for detection of hydrazine leaks. The sensor is composed of a thermistor bead coated with copper(II) oxide (CuO) dispersed in a clay or alumina binder. The CuO-coated thermistor is one of a pair of closely located thermistors, the other being a reference. On exposure to hydrazine the CuO reacts exothermically with the hydrazine and increases the temperature of the coated-thermistor by several degrees. The temperature rise is sensed by a resistive bridge circuit and an alarm registered by data acquisition software. Responses of this sensor to humidity changes, hydrazine concentration, binder characteristics, distance from a liquid leak, and ambient pressure levels as well as application of this sensor concept to other fluids are presented.
    Keywords: Instrumentation and Photography
    Type: JANNAF 28th Propellant Development and Characterization Subcommittee and 17th Safety and Environmental Protection Subcommitte Joint Meeting; Volume 1; 137-144; CPIA-Publ-687-Vol-1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2011-08-23
    Description: We report results from a systematic study of breakdown limits for novel high-rate gaseous detectors: MICROMEGAS, CAT and GEM, together with more conventional devices such as thin-gap parallel-mesh chambers and high-rate wire chambers. It was found that for all these detectors, the maximum achievable pin, before breakdown appears, drops dramatically with incident flux, and is sometimes inversely proportional to it. Further, in the presence of alpha particles, typical of the breakgrounds in high-energy experiments, additional gain drops of 1-2 orders of magnitude were observed for many detectors. It was found that breakdowns at high rates occur through what we have termed an "accumulative" mechanism, which does not seem to have been previously reported in the literature. Results of these studies may help in choosing the optimum detector for given experimental conditions.
    Keywords: Instrumentation and Photography
    Type: Nuclear Instruments and Methods in Physics Research A (ISSN 0168-9002); Volume 422; 300-304
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2011-08-23
    Description: With a focused continuous-wave CO2 Doppler lidar at 9.1-microns wavelength, the superposition of backscatter from two approximately 14.12-micron-diameter silicone oil droplets in the lidar beam produced interference that resulted in a single backscatter pulse from the two droplets with a distinct periodic structure. This interference is caused by the phase difference in backscatter from the two droplets while they are traversing the lidar beam at different speeds, and thus the droplet separation is not constant. The complete cycle of interference, with periodicity 2(pi), gives excellent agreement between measurements and lidar theory.
    Keywords: Instrumentation and Photography
    Type: Applied Optics (ISSN 0003-6935); Volume 38; No. 15; 3387-3393
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2016-06-07
    Description: This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.
    Keywords: Instrumentation and Photography
    Type: First International Symposium on Strain Gauge Balances; Pt. 2; 595-606; NASA/CP-1999-209101/PT2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: With over two dozen missions since the first in 1986, the Hitchhiker project has a reputation for providing quick-reaction, low-cost flight services for Shuttle Small Payloads Project (SSPP) customers. Despite the successes, several potential improvements in customer payload integration and test (I&T) deserve consideration. This paper presents suggestions to Hitchhiker customers on how to help make the I&T process run smoother. Included are: customer requirements and interface definition, pre-integration test and evaluation, configuration management, I&T overview and planning, problem mitigation, and organizational communication. In this era of limited flight opportunities and new ISO-based requirements, issues such as these have become more important than ever.
    Keywords: Instrumentation and Photography
    Type: 1999 Shuttle Small Payloads Symposium; 331-336; NASA/CP-1999-209476
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2016-06-07
    Description: Motions of telescopes, satellites, and other flight bodies have been controlled by various means in the past. For example, gimbal mounted devices can use electric motors to produce pointing and scanning motions. Reaction wheels, control moment gyros, and propellant-charged reaction jets are other technologies that have also been used. Each of these methods has its advantages, but all actuator systems used in a flight environment face the challenges of minimizing weight, reducing energy consumption, and maximizing reliability. Recently, Polites invented and patented the Rotating Unbalanced Mass (RUM) device as a means for generation scanning motion on flight experiments. RUM devices have been successfully used to generate various scanning motions. The basic principle: a RUM rotating at constant annular velocity exerts a cyclic centrifugal force on the instrument or main body, thus producing a periodic scanning motion. A system of RUM devices exerts no reaction forces on the main body, requires very little energy, and is very simple to construct and control. These are significant advantages over electric motors, reaction wheels, and control moment gyroscopes. Although the RUM device very easily produces scanning motion, an auxiliary control system may be required to maintain the proper orientation, or pointing of the main body. It has been suggested that RUM devices can be used to control pointing dynamics, as well as generate the desired periodic scanning motion. The idea is that the RUM velocity will not be constant, but will vary over the period of one RUM rotation. The thought is that the changing angular velocity produces a centrifugal force having time-varying magnitude and direction. The scope of the present research project is to further study the pointing control concept, and to implement a microcontroller program to control an experimental hardware system. This report is subdivided into three themes. The basic dynamic modeling and control principles are described first. Then, the controller implementation and preliminary test results are discussed. Finally, suggestions for future work are presented.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Under a Small Business Innovation Research (SBIR) contract to Kennedy Space Center, EIC Laboratories invented a Raman Spectrograph with fiber optic sampling for space applications such as sensing hazardous fuel vapors and making on-board rapid analyses of chemicals and minerals. Raman spectroscopy is a laser-based measurement technique that provides through a unique vibrational spectrum a molecular 'fingerprint,' and can function in aqueous environments. EIC combined optical fiber technology with Raman methods to develop sensors that can be operated at a distance from the spectrographic analysis instruments and the laser excitation source. EIC refined and commercialized the technology to create the Fiber Optic Raman Spectrograph and the RamanProbe. Commercial applications range from process control to monitoring hazardous materials.
    Keywords: Instrumentation and Photography
    Type: Spinoff 1996; 108-113; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: PixelVision, Inc. developed the Night Video NV652 Back-illuminated CCD Camera, based on the expertise of a former Jet Propulsion Laboratory employee and a former employee of Scientific Imaging Technologies, Inc. The camera operates without an image intensifier, using back-illuminated and thinned CCD technology to achieve extremely low light level imaging performance. The advantages of PixelVision's system over conventional cameras include greater resolution and better target identification under low light conditions, lower cost and a longer lifetime. It is used commercially for research and aviation.
    Keywords: Instrumentation and Photography
    Type: Spinoff 1996; 63; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Technical Applications Unlimited, through a contract with Kennedy Space Center, developed the an activity sensor, called the TAU- N100A, which includes a microprocessor-controlled module that detects a particular on a sensor surface and converts this information into digital data. Its original purpose for development was to detect the accumulation of potentially damaging dust and fibers on sensitive payload components.
    Keywords: Instrumentation and Photography
    Type: Spinoff 1999; 78; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Jet Propulsion Laboratory's research on a second generation, solid-state image sensor technology has resulted in the Complementary Metal- Oxide Semiconductor Active Pixel Sensor (CMOS), establishing an alternative to the Charged Coupled Device (CCD). Photobit Corporation, the leading supplier of CMOS image sensors, has commercialized two products of their own based on this technology: the PB-100 and PB-300. These devices are cameras on a chip, combining all camera functions. CMOS "active-pixel" digital image sensors offer several advantages over CCDs, a technology used in video and still-camera applications for 30 years. The CMOS sensors draw less energy, they use the same manufacturing platform as most microprocessors and memory chips, and they allow on-chip programming of frame size, exposure, and other parameters.
    Keywords: Instrumentation and Photography
    Type: Spinoff 1999; 55; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2018-06-08
    Description: We present an interferometer that provides a null at the star and a direct measurement of both visibility amplitude and phase of the planets.
    Keywords: Instrumentation and Photography
    Type: Working on the Fringe Conference; Dana Point, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: IEEE, Frequency Control Symposium; Besancon; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: American Physical Society; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Through a licensing agreement with NASA, Face International Corporation has successfully commercialized ferroelectric actuator/sensor technology developed at Langley Research Center. Face International manufactures both ferroelectric actuators and sensors under the trademark "Thunder" (Thin Layer Composite Unimorph Ferroelectric Driver and Sensor). As actuators the Thunder technology provides a high level of movement not seen before in piezoelectric devices. Crystal structures generate electricity when stressed and move when voltage is applied. As sensors, the technology can be used in such applications as microphones, non-destructive testing, and vibration sensing. Thunder technology is being researched as a noise reduction device for aircraft engines. The technology is durable enough to be used in harsh environments, making it applicable to many commercial applications.
    Keywords: Instrumentation and Photography
    Type: Spinoff 1999; 83; NASA/NP-1999-10-254-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Type: Optical Engineering for Sensing and Nanotechnology; Yokohama; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2018-06-08
    Description: Nulling interferometry, a proposed technique for dimming a star relative to its surroundings, has the potential to enable direct imaging of planets orbiting nearby stars.
    Keywords: Instrumentation and Photography
    Type: Science
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2018-06-08
    Description: A method of systematically controlling the rotational state of a sample levitated in a high vacuum using the photon pressure is described. A zirconium sphere was levitated in the high-temperature electrostatic levitator and it was rotated by irradiating it with a narrow beam of a high power laser on a spot off the center of mass.
    Keywords: Instrumentation and Photography
    Type: Review of Scientific Instruments
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2018-06-08
    Description: A multi-channel heterodyne laser interferometer is proposed for the JPL Thermo-Opto-Mechanical Testbed, which requires the measurement of optical surface deformations at the sub-nanometer level.
    Keywords: Instrumentation and Photography
    Type: Optical Engineering for Sensing and Nanotechnology; Yokohama; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2018-06-08
    Description: The interferometer will operate in both a single spacecraft mode and a formation flying mode using two spacecraft. The primary goal is to validate interferometer and formation flying technology for future missions.
    Keywords: Instrumentation and Photography
    Type: Working on the Fringe Conference; Dana Point, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2018-06-08
    Description: If the dust content of nearby solar system is comparable to, or larger than, that of our own zodiacal disk, the thermal emission from exozodiacal disks will significantly outshine planetary companions to nearby stars.
    Keywords: Instrumentation and Photography
    Type: Thermal Emission Spectroscopy And Analysis of Dust, Disks and Regoliths; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2018-06-27
    Description: The theory of double edge lidar techniques for measuring the atmospheric wind using aerosol and molecular backscatter is described. Two high spectral resolution filters with opposite slopes are located about the laser frequency for the aerosol based measurement or in the wings of the Rayleigh - Brillouin profile for the molecular measurement. This doubles the signal change per unit Doppler shift and improves the measurement accuracy by nearly a factor of 2 relative to the single edge technique. For the aerosol based measurement, the use of two high resolution edge filters reduces the effects of background, Rayleigh scattering, by as much as an order of magnitude and substantially improves the measurement accuracy. Also, we describe a method that allows the Rayleigh and aerosol components of the signal to be independently determined. A measurement accuracy of 1.2 m/s can be obtained for a signal level of 1000 detected photons which corresponds to signal levels in the boundary layer. For the molecular based measurement, we describe the use of a crossover region where the sensitivity of a molecular and aerosol-based measurement are equal. This desensitizes the molecular measurement to the effects of aerosol scattering and greatly simplifies the measurement. Simulations using a conical scanning spaceborne lidar at 355 nm give an accuracy of 2-3 m/s for altitudes of 2-15 km for a 1 km vertical resolution, a satellite altitude of 400 km, and a 200 km x 200 km spatial.
    Keywords: Instrumentation and Photography
    Type: Journal of The Communications Research Laboratory; Volume 46; No. 3; 441-448
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-09
    Description: Under a Lewis Research Center Small Business Innovation Research contract, SRICO, Inc. developed a fiber optic voltage sensor to measure voltage in electronic systems in spacecraft. The sensor uses glass and light to sense and transmit electricity, and is relatively safe and accurate. SRICO then commercialized the sensor for measurement of electric field and voltage in applications such as electric power systems and hazardous environments, lightning detection, and fiber optic communication systems.
    Keywords: Instrumentation and Photography
    Type: Spinoff 1996; 70; NASA/NP-1996-10-222-HQ
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2018-06-08
    Description: The Palomar Testbed Interferometer (PTI) has been used for several years with a 110 m baseline, at 2.2 pm observing wavelength.
    Keywords: Instrumentation and Photography
    Type: Working on the Fringe Conference; Dana Point, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2018-06-08
    Description: The Terrestrial Planet Finder (TPF) offers the prospect of revolutionizing humanity's perception of its own place in the Universe by identifying habitable and possibly even life-bearing planets orbiting other stars.
    Keywords: Instrumentation and Photography
    Type: Working on the Fringe Conference; Dana Point, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2018-06-08
    Description: The Keck Interferometer is being developed by JPL and CARA as one of the ground-based components of NASA's Origins Program.
    Keywords: Instrumentation and Photography
    Type: Working on the Fringe Conference; Dana Point, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Description: None given.This is a set of viewgraphs presented at a NOZE symposium at Boulder, Colorado, USA.
    Keywords: Instrumentation and Photography
    Type: NOAA; Boulder, CO; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2018-06-08
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: An ampoule failure system for use in material processing furnaces comprising a containment cartridge and an ampoule failure sensor. The containment cartridge contains an ampoule of toxic material therein and is positioned within a furnace for processing. An ampoule failure probe is positioned in the containment cartridge adjacent the ampoule for detecting a potential harmful release of toxic material therefrom during processing. The failure probe is spaced a predetermined distance from the ampoule and is chemically chosen so as to undergo a timely chemical reaction with the toxic material upon the harmful release thereof. The ampoule failure system further comprises a data acquisition system which is positioned externally of the furnace and is electrically connected to the ampoule failure probe so as to form a communicating electrical circuit. The data acquisition system includes an automatic shutdown device for shutting down the furnace upon the harmful release of toxic material. It also includes a resistance measuring device for measuring the resistance of the failure probe during processing. The chemical reaction causes a step increase in resistance of the failure probe whereupon the automatic shutdown device will responsively shut down the furnace.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-06-28
    Description: This report describes Government Work Package Task 29 (GWP29), whose purpose was to develop advanced strain gage technology in support of the National Aerospace Plane (NASP) Program. The focus was on advanced resistance strain gages with a temperature range from room temperature to 2000 F (1095 C) and on methods for reliably attaching these gages to the various materials anticipated for use in the NASP program. Because the NASP program required first-cycle data, the installed gages were not prestabilized or heat treated on the test coupons before first-cycle data were recorded. NASA Lewis Research Center, the lead center for GWP29, continued its development of the palladium-chromium gage; NASA Langley Research Center investigated a new concept gage using Kanthal A1; and the NASA Dryden Flight Research Center chose the well-known BCL-3 iron-chromium-aluminum gage. Each center then tested all three gages. The parameters investigated were apparent strain, drift strain, and gage factor as a function of temperature, plus gage size and survival rate over the test period. Although a significant effort was made to minimize the differences in test equipment between the three test sites (e.g., the same hardware and software were used for final data processing), the center employed different data acquisition systems and furnace configurations so that some inherent differences may be evident in the final results.
    Keywords: Instrumentation and Photography
    Type: NASA-TP-3540 , NAS 1.60:3540 , NASP-TM-1186 , E-9513
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-06-28
    Description: Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-06-28
    Description: This addendum reports the structural margins of safety and natural frequency predictions for the design following the EOS AMSU-A1 Mechanical/Structural Subsystem Critical Design Review (CDR), based on a new and more refined finite element model.
    Keywords: Instrumentation and Photography
    Type: NASA-CR-203675 , NAS 1.26:203675 , CDRL-113-A1 , AEROJET-10381
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-06-28
    Description: This report documents software written in MATLAB programming language for performing identification of systems from frequency response functions. MATLAB is a commercial software environment which allows easy manipulation of data matrices and provides other intrinsic matrix functions capabilities. Algorithms programmed in this collection of subroutines have been documented elsewhere but all references are provided in this document. A main feature of this software is the use of matrix fraction descriptions and system realization theory to identify state space models directly from test data. All subroutines have templates for the user to use as guidelines.
    Keywords: Instrumentation and Photography
    Type: NASA-TM-109039 , NAS 1.15:109039
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-06-28
    Description: Platinum OctaEthyl Porphyrin (Pt.OEP) is an efficient phosphor under ultraviolet excitation. The phosphorescent triplet state P(T(Sup 1)) is readily quenched by the oxygen O2 molecules. This phenomenon is being utilized as the basis for global air pressure measurements in aerodynamic facilities at various laboratories. The exact mechanism by which O2 molecules quench the P(T(Sup 1) approaches P(S(Sub O)) transitions is still unknown. The diamagnetic singlet states P(S(Sub n)), which feed P(T(Sub 1)) states via intersystem crossings, would presumably not be affected by O2. It must be only the magnetic P(T(Sub 1)) states, which can interact with the paramagnetic O2 molecules, that are affected. However, our positron lifetime and Doppler broadening studies suggest the formation of O2P(S(Sub n)), complexes which can also eventually reduce the population of the P(T(Sub 1)) states (i.e., quench phosphorescence). This reduction is possible because higher triplet states in (Pt.OEP) are admixed with the P(S(Sub 1)), states via spin orbit interactions. The experimental procedures and the results of various measurements are presented in this paper.
    Keywords: Instrumentation and Photography
    Type: NASA-TP-3619 , NAS 1.60:3619 , L-17577
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-06-28
    Description: A multi-axis accelerometer which utilizes a magnetically-suspended, high-TC proof mass is under development. The design and performance of a single axis device which is stabilized actively in the axial direction but which utilizes ring magnets for passive radial stabilization is discussed. The design of a full six degree-of-freedom device version is also described.
    Keywords: Instrumentation and Photography
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 793-805; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-06-28
    Description: A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development. This paper describes the design, implementation, and functional capability of the system. Specifics regarding control system electronics, including software and control algorithm structure, as well as performance design goals and test results are presented. Potential system enhancements, some of which are in process, are also discussed.
    Keywords: Instrumentation and Photography
    Type: Third International Symposium on Magnetic Suspension Technology; Part 2; 439-451; NASA-CP-3336-Pt-2
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-06-28
    Description: Interferometers are known to have higher throughput than grating spectrometers for the same resolvance. The digital array scanned interferometer (DASI) has been proposed as an instrument that can capitalize on the superior throughput of the interferometer and, simultaneously, be adapted to imaging. The DASI is not the first implementation of the dual purpose concept, but it is one that has made several claims of major performance superiority, and it has been developed into a complete instrument. This paper reviews the DASI concept, summarizes its claims, and gives an assessment of how well the claims are justified. It is shown that the claims of signal-to-noise ratio superiority and operational simplicity are realized only modestly, if at all.
    Keywords: Instrumentation and Photography
    Type: NASA-TP-3570 , L-17480 , NAS 1.60:3570
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-06-28
    Description: The purpose of this grant was to provide a low-energy electron detector to be flown on the PULSAUR 2 rocket payload for investigation of the pulsating aurora. In the course of this grant, the instrument, a tophat analyzer, was built and calibrated by the combined efforts of Southwest Research Institute, Mullard Space Sciences Laboratory, Rutherford Appleton Laboratory, and Goddard Space Flight Center, and successfully flown into an active, early morning, pulsating aurora over Andoya, Norway, on February 9, 1994. This report provides a description of the instrument and its calibration and gives examples of data obtained on the flight.
    Keywords: Instrumentation and Photography
    Type: NASA-CR-202196 , NAS 1.26:202196
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-06-28
    Description: It has been reported that erroneous results were obtained when a conventional pyrometer was used to measure the surface temperature of turbine engine components. Temperatures discrepancies were observed in components which were identical, except that one had its measured surface covered by a nanostructured thermal barrier coating (TBC) whereas the other component's surface was not so coated. These components were placed in an identical environment, receiving identical heat fluxes. A pyrometer measured the TBC covered surface hundreds degrees lower. These coatings were about 25 (mu)m thick, consisting of hundreds of layers of finer structures. The TBC's had very low thermal conductivity, heat flux calculations indicated that the temperatures of the coated surface should exhibit much higher temperature than the uncoated surface. Because these coatings were transparent to radiation from the visible to the infrared region, the temperatures measured by the pyrometer should be the temperature of the covered surface. Turbo components' performance and service life depend critically on the temperatures that it would experience; it is therefore important to know accurately and confidently the real surface temperature. Out of these concerns, an investigation into the measurement of nanostructured material surface temperature was carried out.
    Keywords: Instrumentation and Photography
    Type: NASA-TM-107286 , NAS 1.15:107286 , E-10361
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-06-28
    Description: The microgravity environment of the Space Shuttle Columbia was measured during the STS-73 mission using accelerometers from five different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System, the Three-dimensional Microgravity Accelerometer, the Microgravity Measuring Device, and Suppression of Transient Accelerations by Levitation Evaluation System. The Microgravity Analysis Workstation quasi-steady environment calculation and comparison of this calculation with Orbital Acceleration Research Experiment data was used to assess how appropriate a planned attitude was expected to be for one Crystal Growth Facility experiment sample. The microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted in this report. Data are examined to show the effects of vernier reaction control system jet firings for Orbiter attitude control. This is compared to examples of data when no thrusters were firing, when the primary reaction control system jets were used for attitude control, and when single vernier jets were fired for test purposes. In general, vernier jets, when used for attitude control, cause accelerations in the 3 x 10(exp -4) g to 7 x 10(exp -4) g range. Primary jets used in this manner cause accelerations in the 0.01 to 0.025 g range. Other significant disturbance sources characterized are water dump operations, with Y(sub b) axis acceleration deviations of about 1 x 10(exp -6) g; payload bay door opening motion, with Y(sub o) and Z(sub o) axis accelerations of frequency 0.4 Hz; and probable Glovebox fan operations with notable frequency components at 20, 38, 43, 48, and 53 Hz. The STS-73 microgravity environment is comparable to the environments measured on earlier microgravity science missions.
    Keywords: Instrumentation and Photography
    Type: NASA-TM-107269 , E-10336 , NAS 1.15:107269
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-06-28
    Description: A program was conducted to determine if a state of the art micro-machined silicon solid state flow sensor could be used to replace the existing space shuttle orbiter flow sensors. The rather aggressive goal was to obtain a new sensor which would also be a multi-gas sensor and operate over a much wider flow range and with a higher degree of accuracy than the existing sensors. Two types of sensors were tested. The first type was a venturi throat design and the second was a bypass design. The accuracy of venturi design was found to be marginally acceptable. The bypass sensor was much better although it still did not fully reach the accuracy goal. Two main problems were identified which would require further work.
    Keywords: Instrumentation and Photography
    Type: NASA-CR-201988 , NAS 1.26:201988 , CRT-1311
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2019-06-28
    Description: A digital camera equipped with a processor for authentication of images produced from an image file taken by the digital camera is provided. The digital camera processor has embedded therein a private key unique to it, and the camera housing has a public key that is so uniquely related to the private key that digital data encrypted with the private key may be decrypted using the public key. The digital camera processor comprises means for calculating a hash of the image file using a predetermined algorithm, and second means for encrypting the image hash with the private key, thereby producing a digital signature. The image file and the digital signature are stored in suitable recording means so they will be available together. Apparatus for authenticating the image file as being free of any alteration uses the public key for decrypting the digital signature, thereby deriving a secure image hash identical to the image hash produced by the digital camera and used to produce the digital signature. The authenticating apparatus calculates from the image file an image hash using the same algorithm as before. By comparing this last image hash with the secure image hash, authenticity of the image file is determined if they match. Other techniques to address time-honored methods of deception, such as attaching false captions or inducing forced perspectives, are included.
    Keywords: Instrumentation and Photography
    Type: US-Patent-Class-380-10 , US-Patent-Class-380-30 , US-Patent-Class-380-18 , US-Patent-Class-348-207 , US-Patent-Class-348-441 , US-Patent-Class-348-460 , US-Patent-Class-348-469 , US-Patent-Class-348-552 , Int-Patent-Class-H04N-7/167 , Int-Patent-Class-H04K-1/00
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2019-06-28
    Description: A method for automatically building qualitative and semi-quantitative models of dynamic systems, and using them for monitoring and fault diagnosis, is developed and demonstrated. The qualitative approach and semi-quantitative method are applied to monitoring observation streams, and to design of non-linear control systems.
    Keywords: Instrumentation and Photography
    Type: NASA-CR-201913 , NAS 1.26:201913
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-06-28
    Description: Pyrometer is a favorite method to do remote temperature measurement in research and development. One-color, two-color and the disappearing filament pyrometers are most common, multicolor and multiwavelength pyrometers are being introduced recently. All these pyrometers invariably require, in one form or another, information concerning emissivity, the medium transmissivity, their ratio at some two spectral regions, the instrument's calibration constant, etc. for their operation. This information can come from hand books, from the manufacturer or in some instances, from results of dedicated separate experiments. Often this information is sample or instrument specific. Sometimes this information, though obtained from a special experiment, is obtained using a separate sample rather than the one pursued for temperature measurement. Then, there would be the question of variability from sample to sample and variability from batch to batch in the sample used. Also, previously determined calibrations can change with time, and the only way to reduce uncertainty is to perform the calibration more frequently or even immediately before the experiment. We have developed a multiwavelength pyrometer, which eliminates the need to supply the necessary emissivity and/or transmissivity information and the instrument calibration constants ahead of time. The pyrometer calibrates itself from its first cycle data.
    Keywords: Instrumentation and Photography
    Type: NASA-TM-107149 , E-10087 , NAS 1.15:107149
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2018-06-05
    Description: Tracker is an object-tracking and image-processing program designed and developed at the NASA Lewis Research Center to help with the analysis of images generated by microgravity combustion and fluid physics experiments. Experiments are often recorded on film or videotape for analysis later. Tracker automates the process of examining each frame of the recorded experiment, performing image-processing operations to bring out the desired detail, and recording the positions of the objects of interest. It can load sequences of images from disk files or acquire images (via a frame grabber) from film transports, videotape, laser disks, or a live camera. Tracker controls the image source to automatically advance to the next frame. It can employ a large array of image-processing operations to enhance the detail of the acquired images and can analyze an arbitrarily large number of objects simultaneously. Several different tracking algorithms are available, including conventional threshold and correlation-based techniques, and more esoteric procedures such as "snake" tracking and automated recognition of character data in the image. The Tracker software was written to be operated by researchers, thus every attempt was made to make the software as user friendly and self-explanatory as possible. Tracker is used by most of the microgravity combustion and fluid physics experiments performed by Lewis, and by visiting researchers. This includes experiments performed on the space shuttles, Mir, sounding rockets, zero-g research airplanes, drop towers, and ground-based laboratories. This software automates the analysis of the flame or liquid s physical parameters such as position, velocity, acceleration, size, shape, intensity characteristics, color, and centroid, as well as a number of other measurements. It can perform these operations on multiple objects simultaneously. Another key feature of Tracker is that it performs optical character recognition (OCR). This feature is useful in extracting numerical instrumentation data that are embedded in images. All the results are saved in files for further data reduction and graphing. There are currently three Tracking Systems (workstations) operating near the laboratories and offices of Lewis Microgravity Science Division researchers. These systems are used independently by students, scientists, and university-based principal investigators. The researchers bring their tapes or films to the workstation and perform the tracking analysis. The resultant data files generated by the tracking process can then be analyzed on the spot, although most of the time researchers prefer to transfer them via the network to their offices for further analysis or plotting. In addition, many researchers have installed Tracker on computers in their office for desktop analysis of digital image sequences, which can be digitized by the Tracking System or some other means. Tracker has not only provided a capability to efficiently and automatically analyze large volumes of data, saving many hours of tedious work, but has also provided new capabilities to extract valuable information and phenomena that was heretofore undetected and unexploited.
    Keywords: Instrumentation and Photography
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: Phase-shifted, laser feedback interferometry is a new diagnostic tool developed at the NASA Lewis Research Center under the Advanced Technology Development (ATD) Program directed by NASA Headquarters Microgravity Research Division. It combines the principles of phase-shifting interferometry (PSI) and laser-feedback interferometry (LFI) to produce an instrument that can quantify both optical path length changes and sample reflectivity variations. In a homogenous medium, the optical path length between two points is the product of the index of refraction and the geometric distance between the two points. LFI differs from other forms of interferometry by using the laser as both the source and the phase detector. In LFI, coherent feedback of the incident light either reflected directly from a surface or reflected after transmission through a region of interest will modulate the output intensity of the laser. The combination of PSI and LFI has produced a robust instrument, based on a low-power helium-neon (HeNe) gas laser, with a high dynamic range that can be used to measure either static or oscillatory changes of the optical path length. Small changes in optical path length are limited by the fraction of a fringe that can be measured; we can measure nonoscillatory changes with a root mean square (rms) error of the wavelength/1000 without averaging.
    Keywords: Instrumentation and Photography
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2018-06-05
    Description: Exploratory work is in progress to apply thin-film thermocouples to localized heat transfer measurements on turbine engine vanes and blades. The emerging thin-film thermocouple technology shows great potential to improve the accuracy of local heat transfer measurements. To verify and master the experimental methodology of thin-film thermocouples, the NASA Lewis Research Center conducted a proof-of-concept experiment in a controlled environment before applying the thin-film sensors to turbine tests.
    Keywords: Instrumentation and Photography
    Type: Research and Technology 1995; NASA-TM-107111
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2018-06-05
    Description: In August, 1998 a Clouds and the Earth's Radiant Energy System (CERES) instrument telemetry housekeeping parameter generated a yellow warning message that indicated an on-board + 15V Data Acquisition Assembly (DAA) power converter deregulation anomaly. An exhaustive investigation was undertaken to understand this anomaly and the long-term consequences which have severely reduced CERES operations on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. Among investigations performed were ground tests that approximated the on-board electronic circuitry using a small quantity of flight identical components exposed to maximum spacecraft bus over-voltage conditions. These components include monolithic integrated microcircuits that perform analog signal conditioning on instrument sensor signals and an analog- to-digital converter (ADC) for the entire DAA. All microcircuit packages have either a bipolar silicon design with internal current limiting protections or have a complementary metal oxide semiconductor (CMOS) design with bias protections. Ground tests that have been running for approximately 8 months have indicated that these components are capable of withstanding as much as twice their input supply voltage ratings without noticeable performance degradation. These data provide CERES operators with confidence of being able to continue science operations over the remaining life of the TRMM mission. This paper will discuss this anomaly and some possible causes, a simulator of affected electronics, test results, prognosis for future CERES operations, and conclusions.
    Keywords: Instrumentation and Photography
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2019-06-28
    Description: Various aspects and extensions of the Fringe-Imaging Skin Friction technique (FISF) have been explored through the use of several benchtop experiments and modeling. The technique has been extended to handle three-dimensional flow fields with mild shear gradients. The optical and imaging system has been refined and a PC-based application has been written that has made it possible to obtain high resolution skin friction field measurements in a reasonable period of time. The improved method was tested on a wingtip and compared with Navier-Stokes computations. Additionally, a general approach to interferogram-fringe spacing analysis has been developed that should have applications in other areas of interferometry. A detailed error analysis of the FISF technique is also included.
    Keywords: Instrumentation and Photography
    Type: NASA-TM-110425 , A-965314 , NAS 1.15:110425
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2019-06-28
    Description: Two accelerometers provided acceleration data during the STS-75 mission in support of the third United States Microgravity Payload (USMP-3) experiments. The Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurement System (SAMS) provided a measure of the microgravity environment of the Space Shuttle Columbia. The OARE provided investigators with quasi-steady acceleration measurements after about a six hour time lag dictated by downlink constraints. SAMS data were downlinked in near-real-time and recorded on-board for post-mission analysis. An overview of the mission is provided as are brief discussions of these two accelerometer systems. Data analysis techniques used to process SAMS and OARE data are discussed Using a combination of these techniques, the microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted. The microgravity environment represented by SAMS and OARE data is comparable to the environments measured by the instruments on earlier microgravity science missions. The OARE data compared well with predictions of the quasi-steady environment. The SAMS data show the influence of thruster firings and crew motion (transient events) and of crew exercise, Orbiter systems, and experiment operations (oscillatory events). Thruster activity on this mission appears to be somewhat more frequent than on other microgravity missions with the combined firings of the F5L and F5R jets producing significant acceleration transients. The specific crew activities performed in the middeck and flight deck, the SPREE table rotations, the waste collection system compaction, and the fuel cell purge had negligible effects on the microgravity environment of the USMP-3 carriers. The Ku band antenna repositioning activity resulted in a brief interruption of the ubiquitous 17 Hz signal in the SAMS data. In addition, the auxiliary power unit operations during the Flight Control System checkout appeared to have a significant impact on the microgravity environment.
    Keywords: Instrumentation and Photography
    Type: NASA-TM-107359 , NAS 1.15:107359 , E-10517
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2019-06-28
    Description: A device and method are provided for determining the thickness of an ice and water mixture accumulated on the outer surface of an object. First and second total impedance sensors are operated at first and second frequencies over which the dielectric constants for water and ice are substantially the same. Corresponding first and second AC total impedance measuring circuits are coupled to the first and second sensors to produce output voltages based on the total impedance changes sensed by the sensors. A processor is coupled to the first and second measuring circuits to generate a voltage ratio using the measured output voltages. The voltage ratio is indicative of the thickness of the ice and water mixture. The novelty of the present invention is the use of two frequencies and dual geometry impedance sensors in order to be sensitive to the formation of ice. Thus, critical situations created by the presence of solid ice can be averted. The device is simple and is easily incorporated into current technology thereby making its realization cost- effective.
    Keywords: Instrumentation and Photography
    Type: NAS 1.71:LAR-15061-1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...