ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Triticum aestivum  (1.039)
  • 04.06. Seismology
  • Creep observations and analysis
  • Springer  (874)
  • Elsevier  (211)
  • Wiley-AGU  (7)
  • EGU - Copernicus
  • IEEE
  • Wiley
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 1
    Publikationsdatum: 2020-11-12
    Beschreibung: Public concern about anthropogenic seismic- ity in Italy first arose in the aftermath of the deadly M ≈ 6 earthquakes that hit the Emilia-Romagna region (northern Italy) in May 2012. As these events occurred in a (tectonically active) region of oil and gas production and storage, the question was raised, whether stress perturbations due to underground industrial activities could have induced or triggered the shocks. Following expert recommendations, in 2014, the Italian Oil & Gas Safety Authority (DGS-UNMIG, Ministry of Economic Development) published guidelines (ILG - Indirizzi e linee guida per il monitoraggio della sismicità, delle deformazioni del suolo e delle pressioni di poro nell’ambito delle attività antropiche), describing regula- tions regarding hydrocarbon extraction, waste-water in- jection and gas storage that could also be adapted to other technologies, such as dams, geothermal systems, CO2 storage, and mining. The ILG describe the frame- work for the different actors involved in monitoring activities, their relationship and responsibilities, the procedure to be followed in case of variations of mon- itored parameters, the need for in-depth scientific anal- yses, the definition of different alert levels, their mean- ing and the parameters to be used to activate such alerts. Four alert levels are defined, the transition among which follows a decision to be taken jointly by relevant au- thorities and industrial operator on the basis of evalua- tion of several monitored parameters (micro-seismicity, ground deformation, pore pressure) carried on by a scientific-technical agency. Only in the case of liquid reinjection, the alert levels are automatically activated on the basis of exceedance of thresholds for earthquake magnitude and ground shaking – in what is generally known as a Traffic Light System (TLS). Istituto Nazionale di Geofisica e Vulcanologia has been charged by the Italian oil and gas safety authority (DGS- UNMIG) to apply the ILG in three test cases (two oil extraction and one gas storage plants). The ILG indeed represent a very important and positive innovation, as they constitute official guidelines to coherently regulate monitoring activity on a national scale. While pilot studies are still mostly under way, we may point out merits of the whole framework, and a few possible critical issues, requiring special care in the implementa- tion. Attention areas of adjacent reservoirs, possibly licenced to different operators, may overlap, hence mak- ing the point for joint monitoring, also in view of the possible interaction between stress changes related to the different reservoirs. The prescribed initial blank- level monitoring stage, aimed at assessing background seismicity, may lose significance in case of nearby ac- tive production. Magnitude – a critical parameter used to define a possible step-up in activation levels – has inherent uncertainty and can be evaluated using differ- ent scales. A final comment considers the fact that relevance of TLS, most frequently used in hydraulic fracturing operations, may not be high in case of trig- gered tectonic events.
    Beschreibung: Published
    Beschreibung: 1015–1028
    Beschreibung: 1IT. Reti di monitoraggio e sorveglianza
    Beschreibung: JCR Journal
    Schlagwort(e): Anthropogenic seismicity ; Alert system ; Monitoring guidelines ; 04.06. Seismology ; 05.04. Instrumentation and techniques of general interest
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2021-01-22
    Beschreibung: Spectral analysis has been applied to almost thou-sand seismic events recorded at Vesuvius volcano (Naples,southern Italy) in 2018 with the aim to test a new tool fora fast event classification. We computed two spectral pa-rameters, central frequency and shape factor, from the spec-tral moments of order 0, 1, and 2, for each event at sevenseismic stations taking the mean among the three compo-nents of ground motion. The analyzed events consist ofvolcano-tectonic earthquakes, low frequency events and un-classified events (landslides, rockfall, thunders, quarry blasts,etc.). Most of them are of low magnitude, and/or low maxi-mum signal amplitude, therefore the signal to noise ratio isvery different between the low noise summit stations andthe higher noise stations installed at low elevation aroundthe volcano. The results of our analysis show that volcano-tectonic earthquakes and low frequency events are easily dis-tinguishable through the spectral moments values, particu-larly at seismic stations closer to the epicenter. On the con-trary, unclassified events show the spectral parameters valuesdistributed in a broad range which overlap both the volcano-tectonic earthquakes and the low frequency events. Since thecomputation of spectral parameters is extremely easy and fastfor a detected event, it may become an effective tool for eventclassification in observatory practice.
    Beschreibung: Published
    Beschreibung: 67–74
    Beschreibung: 1SR TERREMOTI - Sorveglianza Sismica e Allerta Tsunami
    Beschreibung: N/A or not JCR
    Schlagwort(e): Vesuvius ; Spectral Analisys ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2020-10-01
    Beschreibung: Several months of ambient seismic noise recordings are used for investigating the distribution of elastic properties in the Fucino Plain, one of the largest intermontane tectonic depressions of the Italian Apennine chain (Central Italy). The Plain is characterized by a low level of seismicity but the presence of several active faults makes it an Italian area of high seismic hazard. The most recent and strongest seismic event in Fucino Plain occurred in the 1915 (Avezzano earthquake) and it represents one of the most energetic events (Ms = 7.0) happened in central Apennines. Inter-stations Green’s functions are reconstructed by the cross-correlation of continuous ambient noise data recorded from twelve seismic velocimeters deployed around the Avezzano city, and organized in two different temporally sub-networks. The aim of cross-correlation analysis is to extract surface waves from Green’s functions for investigating the dispersive response of the structure. We analyzed the temporal stability of the cross-correlated signals that is used as an indicator of reliability of measurements and as criteria to select the Green’s functions to analyze
    Beschreibung: Published
    Beschreibung: 1173-1176
    Beschreibung: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Schlagwort(e): Cross correlation ; Noise ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2020-11-30
    Beschreibung: Buildings close to each other can perform different behaviour despite its similar seismic vulnerability. This effect is mainly due to the local seismic response connected to the characteristics of the shallow soil layers, especially when we move away from the epicentral area and the near field motion reduces its importance among the total amount of shaking. In this paper we show some results of the microzonation project of the Avezzano municipality, a town located in the southwestern portion of the Abruzzi region, which experienced the severe effects of the January 13th, 1915 M 7.0 earthquake. Starting from a particularly detailed knowledge of the geological characteristics of outcropping lithologies and inferring the trend of subsoil geometries, we explored the role played by the near-surface geology in causing variability of the ground motion by analysing a large database of earthquakes and microtremor recordings acquired by temporary seismological networks using classical site-reference and non-reference spectral techniques. Based on the obtained results we can seismically characterize all the municipal territory not only in terms of fundamental resonance frequency, useful in drawing maps of seismic microzonation and design geological sections, but also of amplification factors helpful in verifying numerical modelling of seismic response as required by national microzonation guidelines. We have also found many criticisms that need a more detailed analysis in order to establish the cause of these anomalies.
    Beschreibung: Published
    Beschreibung: 1153-1157
    Beschreibung: 5T. Sismologia, geofisica e geologia per l'ingegneria sismica
    Schlagwort(e): Microzonation ; Site response ; Spectral techniques ; Seismic amplification ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: book chapter
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    facet.materialart.
    Unbekannt
    Elsevier
    Publikationsdatum: 2021-01-05
    Beschreibung: We use seismic data together with a subglacial bedrock relief from the BEDMAP2 database to obtain a new three- layer model of the consolidated (crystalline) crust of Antarctica that locally improves the global seismic crustal model CRUST1.0. We collect suitable data for constructing crustal layers, analyse them and build maps of the crustal layer thickness and seismic velocities. We use the subglacial relief according to a tectonic configuration and then interpolate data using a statistical kriging method. The P-wave velocity information from old seismic profiles have been supplemented with the new shear-wave velocity models. We adjust the thickness of crustal layers by multiplying a total crustal thickness by a percentage ratio of each individual layer at each point. Our re- sults reveal large variations in seismic velocities between different crustal blocks forming Antarctica. The most pronounced differences exist between East and West Antarctica. In East Antarctica, a high P-wave velocity (vP 〉 7 km/s) layer in the lower crust is absent. The P-wave velocity in the lower crust changes from 6.1 km/s beneath the Lambert Rift to 6.9 km/s beneath the Wilkes Basin. In West Antarctica, a thick mafic lower crust is characterized by large P-wave velocities, ranging from 7.0 km/s under the Ross Sea to 7.3 km/s under the Byrd Basin. In contrast, velocities in the lower crust beneath the Transantarctic and Ellsworth-Whitmore Mountains are ~6.8 km/s. The P-wave velocities in the upper crust in East Antarctica are within the range 5.5–6.4 km/s. The upper crust of West Antarctica is characterized by the P-wave velocities of 5.6–6.3 km/s. The P-wave veloc- ities in the middle crust vary within 5.9–6.6 km/s in East Antarctica and within 6.3–6.5 km/s in West Antarctica. A low-velocity layer (5.8–5.9 km/s) is detected at depth of ~20–25 km beneath the Princes Elizabeth Land.
    Beschreibung: Published
    Beschreibung: 1-18
    Beschreibung: 1T. Struttura della Terra
    Beschreibung: JCR Journal
    Schlagwort(e): Crustal structure ; Sediments ; Antarctica ; Gondwana ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2020-12-18
    Beschreibung: Tectonic styles and distributions of nodal planes are an essential input for probabilistic seismic hazard assessment. As a part of a recent elaboration of a new seismic hazard model for Italy, we adopted a cascade criteria approach to parametrize the tectonic style of expected earthquake ruptures and their uncertainty in an area-based seismicity model. Using available or recomputed seismic moment tensors for relevant seismic events (Mw starting from 4.5), first arrival focal mechanisms for less recent earthquakes, and also geological data on past activated faults, we collected a database for the last ~ 100 yrs gathering a thousand of data all over the Italian peninsula and regions around it. The adopted procedure consists, in each seismic zone, of separating the available seismic moment tensors in the three main tectonic styles, making summation within each group, identifying possible nodal plane(s) taking into account the different percentages of tectonic styles and including, where necessary, total or partial random source contributions. Referring to the used area source model, for several seismic zones we obtained robust results, e.g. along the southern Apennines we expect future earthquakes to be mostly extensional, although in the outer part of the chain strike-slip events are possible. In the Northern part of the Apennines we also expect different tectonic styles for different hypocentral depths. In zones characterized by a low seismic moment release, the possible tectonic style of future earthquakes is less clear and it has been represented using different combination (total or partial) of random sources.
    Beschreibung: Published
    Beschreibung: 3577–3592
    Beschreibung: 6T. Studi di pericolosità sismica e da maremoto
    Beschreibung: JCR Journal
    Schlagwort(e): 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2021-01-29
    Beschreibung: eriods of accelerated seismicity have been observed during the preparation process of many large earthquakes. This accelerating seismicity can be detected by the Accelerated Moment Release (AMR) method and its recent Revised version (RAMR) when the two techniques are applied to earthquake catalogues. The main aim of this study is to investigate the seismicity preceding large mainshocks and possibly increase our comprehension of the underlying physics. In particular, we applied both the AMR and R-AMR to the seismicity preceding 14 large worldwide shallow earthquakes, i.e. with focal depth less than 40 km, with magnitude M[6 for Mediterranean area, and M C 6.4 in the rest of the world, occurred from 2014 to 2018. Twelve case studies were analysed in the framework of SwArm For Earthquake study project funded by ESA, comprising the period 2014–2016; two additional cases were also considered to confirm the goodness of the methodology outside the period of the project catalogues. In total, R-AMR shows better performances than AMR, in 11 cases out of 14. In particular, in four out of 14 cases (i.e. 28.6%), the R-AMR method shows that acceleration exists due to an evident clustering in time–space on the faults, thus guiding the convergence of the fit; in seven cases (i.e. 50%) the R-AMR discloses acceleration, although no clustering around the fault is present; the remaining three cases (i.e. 21.4%) show no emerging acceleration from background. Finally, when R-AMR is compared with simulations, we verify that in most of the cases the acceleration is real and not casual.
    Beschreibung: Published
    Beschreibung: 4057–4087
    Beschreibung: 7T. Variazioni delle caratteristiche crostali e precursori sismici
    Beschreibung: JCR Journal
    Schlagwort(e): earthquake ; precursory acceleration ; accelerated moment release ; time to failure ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2021-02-12
    Beschreibung: This report summarizes the seismicity in Switzerland and surrounding regions in the years 2017 and 2018. In 2017 and 2018, the Swiss Seismological Service detected and located 1227 and 955 earthquakes in the region under considera- tion, respectively. The strongest event in the analysed period was the ML 4.6 Urnerboden earthquake, which occurred in the border region of cantons Uri, Glarus and Schwyz on March 6, 2017. The event was the strongest earthquake within Switzerland since the ML 5.0 Vaz earthquake of 1991. Associated ground motions indicating intensity IV were reported in a radius up to about 50 km and locally approached intensity VI in the region close to the epicentre. Derived focal mechanisms and relative hypocentre relocations of the immediate aftershocks image a NNW–SSE striking sinistral strike-slip fault. Together with other past events in this region, the Urnerboden earthquake suggests the existence of a system of sub-parallel strike-slip faults, likely within in the uppermost crystalline basement of the eastern Aar Massif. A vigorous earthquake sequence occurred close to Château-d’Oex in the Préalpes-Romandes region in western Switzer- land. With a magnitude of ML 4.3, the strongest earthquake of the sequence occurred on July 1, 2017. Focal mechanism and relative relocations of fore- and aftershocks image a NNE dipping normal fault in about 4 km depth. Two similarly oriented shallow normal-fault events occurred between subalpine Molasse and Préalpes units close to Châtel-St-Denis and St. Silvester in 2017/18. Together, these events indicate a domain of NE–SW oriented extensional to transtensional deformation along the Alpine Front between Lake Geneva in the west and the Fribourg Fault in the east. The structural complexity of the Fribourg Fault is revealed by an ML 2.9 earthquake near Tafers in 2018. The event images a NW–SE striking fault segment within the crystalline basement, which might be related to the Fribourg Fault Zone. Finally, the ML 2.8 Grenchen earthquake of 2017 provides a rare example of shallow thrust faulting along the Jura fold-and-thrust belt, indicating contraction in the northwestern Alpine foreland of Switzerland.
    Beschreibung: Published
    Beschreibung: id 4
    Beschreibung: 4T. Sismicità dell'Italia
    Beschreibung: JCR Journal
    Schlagwort(e): Seismicity ; Focal mechanisms ; Seismotectonics ; Urnerboden ; Aar Massif ; Château-d’oex ; Préalpes ; Fribourg ; Jura fold-and-thrust belt ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2020-06-10
    Beschreibung: Understanding how long-term subduction dynamics relates to the short-term seismicity and crustal tec tonics is a challenging but crucial topic in seismotectonics. We attempt to address this issue by linking long-term geodynamic evolution with short-term seismogenic deformation in the Northern Apennines. This retreating subduction orogen displays tectonic and seismogenic behaviors on various spatiotemporal scales that also characterize other subduction zones in the Mediterranean area. We use visco-elasto-plastic seismo-thermo-mechanical (STM) modeling with a realistic 2D setup based on available geological and geophysical data. The subduction dynamics and seismicity are coupled in the numerical modeling, and driven only by buoyancy forces, i.e., slab pull. Our results suggest that lower crustal rheology and lithospheric mantle temperature modulate the crustal tectonics of the Northern Apennines, as inferred by previous studies. The observed spatial distribution of upper crustal tectonic regimes and surface displacements requires buoyant, highly ductile material in the subduction channel beneath the internal part of the orogen. This allows protrusion of the asthenosphere in the lower crust and lithospheric delamination associated with slab retreat. The resulting surface velocities and principal stress axes generally agree with present-day observations, suggesting that slab delamination and retreat can explain the dynamics of the orogen. Our simulations successfully reproduce the type and overall distribution of seismicity with thrust faulting events in the external part of the orogen and normal faulting in its internal part. Slab temperatures and lithospheric mantle stiffness affect the cumulative seismic moment release and spatial distribution of upper crustal earthquakes. The properties of deep, sub-crustal material are thus shown to influence upper crustal seismicity in an orogen driven by slab retreat, even though the upper crust is largely decoupled from the lithospheric mantle. Our simulations therefore highlight the effect of deep lower crustal rheologies, self-driven subduction dynamics and mantle properties in controlling shallow deformation and seismicity.
    Beschreibung: Published
    Beschreibung: 228481
    Beschreibung: 1T. Struttura della Terra
    Beschreibung: 2T. Deformazione crostale attiva
    Beschreibung: JCR Journal
    Schlagwort(e): Numerical modeling ; Geodynamics ; Seismotectonics orogen ; Delamination ; Northern Apennines ; 04.06. Seismology ; 04.03. Geodesy ; 05.01. Computational geophysics ; 04.07. Tectonophysics
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2020-03-03
    Beschreibung: The Mw = 7.3 earthquake near the Iran-Iraq border in west Iran (34.911°N, 45.959°E) occurred at 18:18:17 UTC (LT = UTC + 03:30), November 12, 2017 as the result of oblique-thrust faulting at mid-crustal depth (∼19 km). Median, Kalman filter and Neural Network, as three standard, classical and intelligent methods, have been implemented to investigate three months of GPS Total Electron Content (TEC) measurements and to detect the striking anomalous variations around the time and location of the mentioned earthquake. The first method detects unusual variations, 9 days before the event, between 21:00 and 22:00 UTC. The other two methods of Kalman filter and Neural Network detect another clear anomaly on 11 days preceding the earthquake at 16:00 UTC. These findings are two of the outstanding results of GPS-TEC precursor analysis. This paper also presents the results of Swarm satellites (Alpha, Bravo and Charlie) data analysis inside the Dobrovolsky area around the Iran earthquake epicenter during the period from 1 August to 30 November 2017. The time series and orbital analysis of six measured parameters including electron density, electron temperature, magnetic scalar and vectors (X, Y, Z) components indicate irregular variations between 8 and 11 days prior to the occurrence of the earthquake. Since the variations of the solar and geomagnetic indices follow a normal behaviour during the whole period of the observed ionospheric anomalies between 8 and 11 days before the earthquake, it can be concluded that multi-precursors analysis has an important role to acknowledge the seismo-LAI (Lithospheric-Atmospheric-Ionospheric) anomalies associated to strong earthquakes such as this case. Furthermore, some physical and chemical atmospheric parameters from a climatological database are investigated and some interesting anomalies above two standard deviations prior to the earthquake are found. This paper shows not only anomalies in atmosphere and ionosphere but also a contemporary analysis of different data sources to detect the possible Lithosphere Atmosphere Ionosphere Coupling (LAIC) effects.
    Beschreibung: ASI
    Beschreibung: Published
    Beschreibung: 143-158
    Beschreibung: 7T. Variazioni delle caratteristiche crostali e precursori sismici
    Beschreibung: JCR Journal
    Schlagwort(e): Earthquake precursors ; LAIC ; 04.06. Seismology
    Repository-Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Materialart: article
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...