ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Elsevier  (4,223)
  • International Union of Crystallography
  • 2020-2024  (4,236)
  • 1980-1984
  • 2022  (4,236)
  • 1
    Publication Date: 2023-01-04
    Description: The ubiquitous use of microplastics and their release into the environment especially the water bodies by anthropogenic/industrial activities are the major resources for microplastic contamination. The widespread and often injudicious use of antimicrobial drugs or antibiotics in various sectors including human health and hygiene, agriculture, animal husbandry and food industries are leading to the release of antibiotics into the wastewater/sewage and other water bodies, particularly in urban setups and thus leads to the antimicrobial resistance (AMR) in the microbes. Microplastics are emerging as the hubs as well as effective carriers of these microbial pathogens beside their AMR-genes (ARGs) in marine, freshwater, sewage/wastewater, and urban river ecosystems. These drug resistant bacteria interact with microplastics forming synthetic plastispheres, the ideal niche for biofilm formations which in turn facilitates the transfer of ARGs via horizontal gene transfer and further escalates the occurrence and levels of AMR. Microplastic-associated AMR is an emerging threat for human health and healthcare besides being a challenge for the research community for effective management/address of this menace. In this review, we encompass the increasing prevalence of microplastics in environment, emphasizing mainly on water environments, how they act as centers and vectors of microbial pathogens with their associated bacterial assemblage compositions and ultimately lead to AMR. It further discusses the mechanistic insights on how microplastics act as hosts of biofilms (creating the plastisphere). We have also presented the modern toolbox used for microplastic-biofilm analyses. A review on potential strategies for addressing microplastic-associated AMR is given with recent success stories, challenges and future prospects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-01-04
    Description: The European Union cap-and-trade emissions trading system (EU ETS) faces two challenges in the context of the European Green Deal. First, to meet the Paris temperature target, emissions in the energy and industrial sectors must fall to net-zero and then even become net-negative. Second, there is a concern that excessive CO2 price spikes and volatility on this path will jeopardize the political acceptance and support for emissions trading as a climate policy instrument. Conditional supply of carbon removal credits (CRCs) to support dynamic carbon price caps would make it possible to stabilize the market in the transition from positive to net-negative emissions trading while keeping the net-emissions path unchanged. CRCs would be assigned for carbon removal achieved for example with methods like Direct Air Carbon Capture and Storage or Bioenergy with Carbon Capture and Storage and would be used by companies under the EU ETS to compensate for their emissions. However, we suggest that there would be no direct exchange between emitting companies under the EU ETS and carbon removal companies, i.e., the demand and supply side of CRCs, during an initial phase. Instead, we suggest assigning an institutional mandate to for example a carbon central bank (CCB) to organize the supply of CRCs. Under this mandate, carbon removal would be procured, would be translated into a corresponding number of CRCs, and a fraction of it could be auctioned to the market at a later point in time, provided that market prices exceed a certain (dynamic) price cap.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-04
    Description: Algae synthesise structurally complex glycans to build a protective barrier, the extracellular matrix. One function of matrix glycans is to slow down microorganisms that try to enzymatically enter living algae and degrade and convert their organic carbon back to carbon dioxide. We propose that matrix glycans lock up carbon in the ocean by controlling degradation of organic carbon by bacteria and other microbes not only while algae are alive, but also after death. Data revised in this review shows accumulation of algal glycans in the ocean underscoring the challenge bacteria and other microbes face to breach the glycan barrier with carbohydrate active enzymes. Briefly we also update on methods required to certify the uncertain magnitude and unknown molecular causes of glycan-controlled carbon sequestration in a changing ocean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-04
    Description: The depth of the Labrador Sea mixed layer during winter convection is a balance between atmospheric buoyancy loss and lateral buoyancy exchange, and is notoriously difficult to represent accurately in ocean and climate models. This study shows that lateral exchanges of heat and salt between the shelf and the interior are smaller in a regional coupled ocean–sea ice model at higher vertical resolution (75 levels compared with 50 levels), due in part to altered bathymetry along the Greenland shelf. Reduced lateral exchange results in a stronger stratification in the interior of the Labrador Sea, with stronger convection resistance which results in unrealistically shallow mixed layers. The westward fluxes of heat and salt associated with Irminger Water at Cape Farewell are 50 % and 33 % lower, respectively, with higher vertical resolution. Exchanges south of the Labrador Sea from the North Atlantic Current are also smaller, contributing to a reduction in salt and heat import into the Labrador Sea interior. When the high resolution model is forced with a stronger wintertime buoyancy loss at the ocean surface, this weakens the Labrador Sea stratification, allowing the forcing to break through the freshwater cap and increasing convection, bringing mixed layer depths back to observed values. A strong atmospheric forcing can therefore compensate for a reduction in lateral advection. The mixed layer depths, which are representative of convection and Labrador Sea water formation, will be the focus in this study. Therefore, this study suggests that convection and Labrador Sea Water formation is a complex interplay of surface and lateral fluxes, linked to stratification thresholds.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-01-04
    Description: Mussel aquaculture is heavily reliant on wild mussel populations that supply juveniles (spat) for seeding farms. However, little is often known about parent populations, representing a risk for the sustainability of the industry. We used hydrodynamic back-tracking models to identify potential parental areas that provision green-lipped mussel (Perna canaliculus) spat across a range of settlement sites in New Zealand's largest aquaculture area. Median parental area varied considerably between 19 km2 for sites located in enclosed bays and a maximum of 〉1150 km2 for sites located in open bays. Median distance to parent populations ranged between 1.8 and 21.4 km, with a maximum larval dispersal estimated to be ca. 100 km. Small seasonal variations in parental area and dispersal distance were detected in some regions, whereas inter-annual variability was relatively minor. Regional connectivity between settlement and parental regions ranged between a minimum of 45% of larvae originating in the same parental region, to maximum retention rates of 99.9% for sites in enclosed bays, implying a considerable regional variation in the potential for self-seeding and exporting mussel larvae other areas. Our results also delineate areas that support spatfall by identifying likely locations for wild or farmed parental populations, and by establishing the spatial extent where mussel reproduction and larval development through to settlement take place. These dispersal and connectivity patterns are crucial to support management decisions for the conservation and restoration of parental populations, and other environmental constraints, such as water quality, which are necessary to ensure the sustainability of spat catching operations that enable shellfish farming.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-01-04
    Description: Varying culture methods are commonly used for eastern oyster, Crassostrea virginica, aquaculture in the Northeast United States. Vibrio vulnificus and V. parahaemolyticus, two human pathogenic bacteria species, accumulate in this edible, filter feeding shellfish. This study examined the use of two methods in an intertidal area (oysters cultured in trays and in bags on sediment) and two methods in a subtidal area (oysters cultured in trays and loose on the sediment) in Massachusetts over the growing season in 2015. Abundance of total V. vulnificus along with total and pathogenic (tdh+/trh+) V. parahaemolyticus were determined in oysters, sediment and water using real-time PCR. Temperature, salinity, turbidity and chlorophyll were continually measured every 15 min at each location. There were significantly higher abundances of total and pathogenic V. parahaemolyticus in on-bottom cultured oysters, while significantly higher abundances of V. vulnificus were identified in oysters from off-bottom culture in a subtidal location in Duxbury Bay, MA. In an intertidal location, Wellfleet Bay, MA, significantly higher abundances of total and tdh+ V. parahaemolyticus were found in off-bottom oysters, but significantly higher abundances of V. vulnificus and trh+ V. parahaemolyticus were found in on-bottom oysters. Spearman's correlation indicated that temperature is positively associated with concentrations of Vibrio spp. in oysters, water and sediment, but positive correlations between salinity and Vibrio spp. was also observed. Conversely, turbidity had a negative effect on Vibrio spp. concentrations in all sample types. There was no observed relationship inferred between chlorophyll and Vibrio spp. abundances in oysters, water or sediment.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-01-04
    Description: Saccharina japonica is a commercially farmed seaweed of global importance. However, disease occurrence during different stages of cultivation can result in substantial economic losses. Identification of the causative agents of disease remains a significant bottleneck to the large scale cultivation of S. japonica. In this study, an aerobic heterotrophic, flagellated, rod-shaped Gram-negative bacterial strain X-8 was isolated from the bleaching diseased S. japonica sporelings. Pathogenecity of strain X-8 was tested by re-infection assay. The ultrastructural changes of infected S. japonica cells by strain X-8 indicated that chloroplasts were the first organelle responding to X-8 infection with deformed structure and later followed by fragmented nucleus. However, the ultra-structure of mitochondria and cell wall remained intact during the re-infection. Based on 16S rRNA gene sequence, morphological and biochemical characteristics, strain X-8 was designated as Pseudoalteromonas piscicida X-8. The pathogenicity of P. piscicida X-8 was identified by Koch's Postulate under laboratory conditions. Our results will not only help to establish a stable experimental model between the pathogenic bacteria and the host S. japonica to further elucidate the virulence mechanisms, but will also provide information for disease management to effectively prevent and mitigate the occurrence of bleaching disease of S. japonica at nursery stage.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-01-04
    Description: How do people’s perceptions about when they work affect their intrinsic motivation? We find that working during non-standard work time (weekends/holidays) versus standard work time (Monday-Friday, 9-to-5) undermines people’s intrinsic motivation for their professional and academic pursuits. Working during non-standard work time decreases intrinsic motivation by causing people to consider better uses of their time. That is, people generate more upward counterfactual thoughts, which mediates the effect of work time on reduced intrinsic motivation. As a causal test of this process, increasing consideration of upward counterfactuals during standard work time reduces intrinsic motivation, whereas decreasing consideration of upward counterfactuals during non-standard work time helps employees and students maintain intrinsic motivation for their professional and academic pursuits. Overall, we identify a novel determinant of intrinsic motivation and address a real challenge many people face: How changing work schedules affect interest and enjoyment of work, with important consequences for work outcomes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-01-04
    Description: Seagrasses are complex benthic coastal ecosystems that play a crucial role in organic matter cycling and carbon sequestration. However, little is known about how seagrasses influence the structure and carbon utilization potential of benthic bacterial communities. This study examined the bacterial communities in monospecific and mixed meadows of seagrasses and compared with bulk (unvegetated) sediments from Chilika, a brackish water coastal lagoon of India. High-throughput sequencing of 16S rRNA genes revealed a vegetation effect in terms of differences in benthic bacterial community diversity, composition, and abundances in comparison with bulk sediments. Desulfobacterales, Chromatiales, Enterobacteriales, Clostridiales, Vibrionales, and Acidimicrobiales were major taxa that contributed to differences between seagrass and bulk sediments. Seagrasses supported ∼5.94 fold higher bacterial abundances than the bulk due to rich organic carbon stock in their sediments. Co-occurrence network demonstrated much stronger potential interactions and connectedness in seagrass bacterial communities compared to bulk. Chromatiales and Acidimicrobiales were identified as the top two keystone taxa in seagrass bacterial communities, whereas, Dehalococcoidales and Rhizobiales were in bulk communities. Seagrasses and local environmental factors, namely, water depth, water pH, sediment salinity, redox potential, total organic carbon, available nitrogen, sediment texture, sediment pH, and sediment core depth were the major drivers of benthic bacterial community composition. Carbon metabolic profiling revealed that heterotrophic bacteria in seagrass sediments were much more metabolically diverse and active than bulk. The utilization of carbon substrate guilds, namely, amino acids, amines, carboxylic acids, carbohydrates, polymers, and phenolic compounds was enhanced in seagrass sediments. Metabolic mapping predicted higher prevalence of sulfate-reducer and N2 fixation metabolic functions in seagrass sediments. Overall, this study showed that seagrasses control benthic bacterial community composition and diversity, enhance heterotrophic carbon substrate utilization, and play crucial roles in organic matter cycling including degradation of hydrocarbon and xenobiotics in coastal sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-01-04
    Description: Ringed seals (Pusa hispida) are slowly recovering in the eastern and northern parts of the Baltic Sea after years of hunting pressure and contaminant exposure. Still, consequences of anthropogenic activities such as contaminant exposure and increasing temperatures are stressors that continue to have deleterious effects on their habitat and health. Transcription profiles of seven health-related genes involved in xenobiotic metabolism, endocrine disruption and stress were evaluated in blood, blubber, and liver of Baltic ringed seals in a multi-tissue approach. Selected persistent organic pollutants and total mercury concentrations were measured in blubber and liver, and muscle and liver of these animals, respectively. Concentrations of contaminants varied across tissues on a lipid weight basis but not with sex. mRNA transcript levels for all seven target genes did not vary between sexes or age classes. Transcript levels of thyroid hormone receptor alpha (TRα), retinoic acid receptor alpha (RARα) and heat shock protein 70 (HSP70) correlated with levels of persistent organic pollutants. TRα transcript levels also correlated positively with mercury concentrations in the liver. Of the three tissues assessed in this multi-tissue approach, blubber showed highest transcription levels of aryl hydrocarbon receptor nuclear translocator (ARNT), thyroid stimulating hormone receptor beta (TSHβ), oestrogen receptor alpha (ESR1) and peroxisome proliferator activated receptor alpha (PPARα). The wide range of genes expressed highlights the value of minimally invasive sampling (e.g. biopsies) for assessing health endpoints in free-ranging marine wildlife and the importance of identifying optimal matrices for targeted gene expression studies. This gene transcript profile study has provided baseline information on transcript levels of biomarkers for early on-set health effects in ringed seals and will be a useful guide to assess the impacts of environmental change in Baltic pinnipeds for conservation and management.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...