ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (31)
  • Copernicus Publications  (30)
  • American Chemical Society
  • American Institute of Physics (AIP)
  • 2020-2024  (31)
  • 2024  (20)
  • 2022  (11)
Collection
  • Articles  (31)
Source
Years
Year
  • 1
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Earth System Dynamics, Copernicus Publications, 13(4), pp. 1677-1688, ISSN: 2190-4979
    Publication Date: 2023-12-05
    Description: The ability to adapt to social and environmental change is an increasingly critical feature of environmental governance. However, an understanding of how specific features of governance systems influence how they respond to change is still limited. Here we focus on how system features like diversity, heterogeneity, and connectedness impact stability, which indicates a system's capacity to recover from perturbations. Through a framework that combines agent-based modeling with "generalized"dynamical systems modeling, we model the stability of thousands of governance structures consisting of groups of resource users and non-government organizations interacting strategically with the decision centers that mediate their access to a shared resource. Stabilizing factors include greater effort dedicated to venue shopping and a greater fraction of non-government organizations in the system. Destabilizing factors include greater heterogeneity among actors, a greater diversity of decision centers, and greater interdependence between actors. The results suggest that while complexity tends to be destabilizing, there are mitigating factors that may help balance adaptivity and stability in complex governance. This study demonstrates the potential in applying the insights of complex systems theory to managing complex and highly uncertain human-natural systems in the face of rapid social and environmental change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-08-01
    Description: Marine particles of different nature are found throughout the global ocean. The term "marine particles"describes detritus aggregates and fecal pellets as well as bacterioplankton, phytoplankton, zooplankton and nekton. Here, we present a global particle size distribution dataset obtained with several Underwater Vision Profiler 5 (UVP5) camera systems. Overall, within the 64 μm to about 50 mm size range covered by the UVP5, detrital particles are the most abundant component of all marine particles; thus, measurements of the particle size distribution with the UVP5 can yield important information on detrital particle dynamics. During deployment, which is possible down to 6000 m depth, the UVP5 images a volume of about 1 L at a frequency of 6 to 20 Hz. Each image is segmented in real time, and size measurements of particles are automatically stored. All UVP5 units used to generate the dataset presented here were inter-calibrated using a UVP5 high-definition unit as reference. Our consistent particle size distribution dataset contains 8805 vertical profiles collected between 19 June 2008 and 23 November 2020. All major ocean basins, as well as the Mediterranean Sea and the Baltic Sea, were sampled. A total of 19 % of all profiles had a maximum sampling depth shallower than 200 dbar, 38 % sampled at least the upper 1000 dbar depth range and 11 % went down to at least 3000 dbar depth. First analysis of the particle size distribution dataset shows that particle abundance is found to be high at high latitudes and in coastal areas where surface productivity or continental inputs are elevated. The lowest values are found in the deep ocean and in the oceanic gyres. Our dataset should be valuable for more in-depth studies that focus on the analysis of regional, temporal and global patterns of particle size distribution and flux as well as for the development and adjustment of regional and global biogeochemical models. The marine particle size distribution dataset is available at 10.1594/PANGAEA.924375.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-16
    Description: The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modeled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modeled water isotopologues, as well as the diversity of their representation in different models, are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable terrestrial paleoclimate archives and provide well-preserved (semi-)continuous multivariate isotope time series in the lower latitudes and mid-latitudes and are therefore well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationships of speleothem oxygen and carbon isotopes to climate variables are influenced by site-specific parameters, and their comparison to GCMs is not always straightforward. Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and Analysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISSE2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for modeled isotopes and compare them to those of measured isotopes. We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modeled surface temperature. At low latitudes, precipitation amount is the dominant driver for stable water isotope variability; however, at cave locations the agreement between modeled temperature variability is higher than for precipitation variability. While modeled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes. This may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems (albeit to varying extents). We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach whenever comparing proxy data to modeled data. Considering karst and cave internal processes, e.g., through isotope-enabled karst models, may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using, e.g., different isotopes, different climate archives, or different time periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-01-30
    Description: Changes in snowpack associated with climatic warming has drastic impacts on surface energy balance in the cryosphere. Yet, traditional monitoring techniques, such as punctual measurements in the field, do not cover the full snowpack spatial and temporal variability, which hampers efforts to upscale measurements to the global scale. This variability is one of the primary constraints in model development. In terms of spatial resolution, active microwaves (synthetic aperture radar – SAR) can address the issue and outperform methods based on passive microwaves. Thus, high-spatial-resolution monitoring of snow depth (SD) would allow for better parameterization of local processes that drive the spatial variability of snow. The overall objective of this study is to evaluate the potential of the TerraSAR-X (TSX) SAR sensor and the wave co-polar phase difference (CPD) method for characterizing snow cover at high spatial resolution. Consequently, we first (1) investigate SD and depth hoar fraction (DHF) variability between different vegetation classes in the Ice Creek catchment (Qikiqtaruk/Herschel Island, Yukon, Canada) using in situ measurements collected over the course of a field campaign in 2019; (2) evaluate linkages between snow characteristics and CPD distribution over the 2019 dataset; and (3) determine CPD seasonality considering meteorological data over the 2015–2019 period. SD could be extracted using the CPD when certain conditions are met. A high incidence angle () with a high topographic wetness index (TWI) (〉7.0) showed correlation between SD and CPD (R2 up to 0.72). Further, future work should address a threshold of sensitivity to TWI and incidence angle to map snow depth in such environments and assess the potential of using interpolation tools to fill in gaps in SD information on drier vegetation types.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science & Technology Letters, American Chemical Society
    Publication Date: 2024-01-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-03-21
    Description: 〈jats:p〉Abstract. The presence of melt ponds on Arctic summer sea ice significantly alters its albedo and thereby the surface energy budget and mass balance. Large-scale observations of melt pond coverage and sea ice albedo are crucial to investigate the role of sea ice for Arctic amplification and its representation in global climate models. We present the new Melt Pond Detection 2 (MPD2) algorithm, which retrieves melt pond, sea ice, and open-ocean fractions as well as surface albedo from Sentinel-3 visible and near-infrared reflectances. In contrast to most other algorithms, our method uses neither fixed values for the spectral albedo of the surface constituents nor an artificial neural network. Instead, it aims for a fully physical representation of the reflective properties of the surface constituents based on their optical characteristics. The state vector X, containing the optical properties of melt ponds and sea ice along with the area fractions of melt ponds and open ocean, is optimized in an iterative procedure to match the measured reflectances and describe the surface state. A major problem in unmixing a compound pixel is that a mixture of half open water and half bright ice cannot be distinguished from a homogeneous pixel of darker ice. In order to overcome this, we suggest constraining the retrieval with a priori information. Initial values and constraint of the surface fractions are derived with an empirical retrieval which uses the same spectral reflectances as implemented in the physical retrieval. The snow grain size and optical thickness change with time, and thus the ice surface albedo changes throughout the season. Therefore, field observations of spectral albedo are used to develop a parameterization of the sea ice optical properties as a function of the temperature history of the sea ice. With these a priori data, the iterative optimization is initialized and constrained, resulting in a retrieval uncertainty of below 8 % for melt pond and 9 % for open-ocean fractions compared to the reference dataset. As reference data for evaluation, a 10 m resolution product of melt pond and open-ocean fraction from Sentinel-2 optical imagery is used. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Earth System Science Data, Copernicus Publications, 16(3), pp. 1177-1184, ISSN: 1866-3508
    Publication Date: 2024-03-27
    Description: Profound environmental changes, such as drastic sea-ice decline, leave large-scale ecological footprints on the distribution and composition of marine biota in the Arctic. Currently, the impact of such stressors is not sufficiently understood due to the lack of pan-Arctic data that allow for estimating ecological baselines as well as modelling current and forecast potential changes in benthic biodiversity and ecosystem functioning. Here, we introduce the PAN-Arctic data collection of benthic BIOtas (PANABIO) and discuss its timeliness, potential, and details of its further development. The data collection contains individual datasets with records (presence, counts, abundance, or biomass) of benthic fauna, usually at genus level or species level, which were identified in field samples obtained at point-referenced locations (stations) by means of grabs, towed gear, or seabed imaging. The data cover the entire pan-Arctic realm, i.e.The central Arctic Ocean, Chukchi Sea, East Siberian Sea, Laptev Sea, Kara Sea, Barents Sea (including the White Sea), Svalbard waters, Greenland Sea, Norwegian Sea, Canadian Archipelago, Beaufort Sea, and Bering Sea as well as some adjacent sub-Arctic regions (Sea of Japan, Gulf of Okhotsk). Currently (as of 14 December 2023), PANABIO includes 27 datasets with a total of 126ĝ€¯388 records of 2978 taxa collected from 11ĝ€¯555 samples taken at 10ĝ€¯596 stations during 1095 cruises between 1800 and 2014. These numbers will increase with more data becoming available over time through contributions from PANABIO users. The data collection is available in a PostgreSQL-based data warehouse that can be accessed and queried through an open-Access front-end web service at https://critterbase.awi.de/panabio (last access: 27 February 2024). A snapshot of the current data collection and its 27 individual datasets is also available from the data publisher PANGAEA (10.1594/PANGAEA.963640, Piepenburg et al., 2023).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Biogeosciences, Copernicus Publications, 19(3), pp. 701-714, ISSN: 1726-4170
    Publication Date: 2024-04-10
    Description: Our understanding of the biogeochemical cycling of the climate-relevant trace gas dimethyl sulfide (DMS) in the Peruvian upwelling system is still limited. Here we present oceanic and atmospheric DMS measurements which were made during two shipborne cruises in December 2012 (M91) and October 2015 (SO243) in the Peruvian upwelling region. Dimethylsulfoniopropionate (DMSP) and dimethyl sulfoxide (DMSO) were also measured during M91. DMS concentrations were 1.9 ± 0.9 and 2.5 ± 1.9 nmol L−1 in surface waters in October 2015 and December 2012, respectively. Nutrient availability appeared to be the main driver of the observed variability in the surface DMS distributions in the coastal areas. DMS, DMSP, and DMSO showed maxima in the surface layer, and no elevated concentrations associated with the oxygen minimum zone off Peru were measured. The possible role of DMS, DMSP, and DMSO as radical scavengers (stimulated by nitrogen limitation) is supported by their negative correlations with N:P (sum of nitrate and nitrite : dissolved phosphate) ratios. Large variations in atmospheric DMS mole fractions were measured during M91 (144.6 ± 95.0 ppt) and SO243 (91.4 ± 55.8 ppt); however, the atmospheric mole fractions were generally low, and the sea-to-air flux was primarily driven by seawater DMS. The Peruvian upwelling region was identified as a source of atmospheric DMS in December 2012 and October 2015. However, in comparison to the previous measurements in the adjacent regions, the Peru upwelling was a moderate source of DMS emissions at either time (M91: 5.9 ± 5.3 µmol m−2 d−1; SO243: 3.8 ± 2.7 µmol m−2 d−1).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-04-22
    Description: 〈jats:p〉Abstract. Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three “hotspot” regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p3 m>0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-22
    Description: The response of evapotranspiration to anthropogenic warming is of critical importance for the water and carbon cycle. Contradictory conclusions about evapotranspiration changes are caused primarily by their brevity in time and sparsity in space, as well as the strong influence of internal variability. Here, we present the first gridded reconstruction of the summer (June, July, and August) vapor pressure deficit (VPD) for the past 4 centuries at the European level. This gridded reconstruction is based on 26 European tree ring oxygen isotope records and is obtained using a random forest approach. According to validation scores obtained with the Nash-Sutcliffe model efficiency, our reconstruction is robust over large parts of Europe since 1600, in particular for the westernmost and northernmost regions, where most tree ring records are located. Based on our reconstruction, we show that from the mid-1700s a trend towards higher summer VPD occurred in central Europe and the Mediterranean region that is related to a simultaneous increase in temperature and decrease in precipitation. This increasing summer VPD trend continues throughout the observational period and in recent times. Moreover, our summer VPD reconstruction helps to visualize the local and regional impacts of the current climate change, as well as to minimize statistical uncertainties of historical VPD variability. This paper provides also new insights into the relationship between summer VPD and large-scale atmospheric circulation, and we show that summer VPD has two preferred modes of variability, namely a NW-SE dipole-like mode and a N-S dipole-like mode. Furthermore, the interdisciplinary use of the data should be emphasized, as summer VPD is a crucial parameter for many climatological feedback processes in the Earth's surface system. The reconstructed summer VPD gridded data over the last 400 years are available at the following link: 10.5281/zenodo.5958836 (Balting et al., 2022).
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...