ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Meteorological Society
  • Annual Reviews
  • 2020-2022  (1,451)
  • 1980-1984
  • 1965-1969
  • 1950-1954
  • 2021  (1,451)
Collection
Years
Year
  • 1
    Publication Date: 2021-05-12
    Description: Producing probabilistic subseasonal forecasts of extreme events up to six weeks in advance is crucial for many economic sectors. In agribusiness, this time scale is particularly critical because it allows for mitigation strategies to be adopted for counteracting weather hazards and taking advantage of opportunities. For example, spring frosts are detrimental for many nut trees, resulting in dramatic losses at harvest time. To explore subseasonal forecast quality in boreal spring, identified as one of the most sensitive times of the year by agribusiness end users, we build a multisystem ensemble using four models involved in the Subseasonal to Seasonal Prediction project (S2S). Two-meter temperature forecasts are used to analyze cold spell predictions in the coastal Black Sea region, an area that is a global leader in the production of hazelnuts. When analyzed at the global scale, the multisystem ensemble probabilistic forecasts for near-surface temperature are better than climatological values for several regions, especially the tropics, even many weeks in advance; however, in the coastal Black Sea, skill is low after the second forecast week. When cold spells are predicted instead of near-surface temperatures, skill improves for the region, and the forecasts prove to contain potentially useful information to stakeholders willing to put mitigation plans into effect. Using a cost–loss model approach for the first time in this context, we show that there is added value of having such a forecast system instead of a business-as-usual strategy, not only for predictions released 1–2 weeks ahead of the extreme event, but also at longer lead times.
    Description: Published
    Description: 237–254
    Description: 4A. Oceanografia e clima
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-20
    Description: Species tree estimation is a basic part of many biological research projects, ranging from answering basic evolutionary questions (e.g., how did a group of species adapt to their environments?) to addressing questions in functional biology. Yet, species tree estimation is very challenging, due to processes such as incomplete lineage sorting, gene duplication and loss, horizontal gene transfer, and hybridization, which can make gene trees differ from each other and from the overall evolutionary history of the species. Over the last 10–20 years, there has been tremendous growth in methods and mathematical theory for estimating species trees and phylogenetic networks, and some of these methods are now in wide use. In this survey, we provide an overview of the current state of the art, identify the limitations of existing methods and theory, and propose additional research problems and directions. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1543-592X
    Electronic ISSN: 1545-2069
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-08-20
    Description: In this article, we review the nascent literature on the transmission of negative policy rates. We discuss the theory of how the transmission depends on bank balance sheets, and how this changes once policy rates become negative. We review the growing evidence that negative policy rates are special because the pass-through to banks’ retail deposit rates is hindered by a zero lower bound. We summarize existing research on the impact of negative rates on banks’ lending and securities portfolios as well as their consequences for the real economy. Finally, we discuss the role of different initial conditions when the policy rate becomes negative, and potential interactions between negative policy rates and other unconventional monetary policies. Expected final online publication date for the Annual Review of Financial Economics, Volume 13 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1367
    Electronic ISSN: 1941-1375
    Topics: Economics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-20
    Description: Bacterial stress-signaling alarmones are important components of a protective network against diverse stresses such as nutrient starvation and antibiotic assault. pppGpp and ppGpp, collectively (p)ppGpp, have well-documented regulatory roles in gene expression and protein translation. Recent work has highlighted another key function of (p)ppGpp: inducing rapid and coordinated changes in cellular metabolism by regulating enzymatic activities, especially those involved in purine nucleotide synthesis. Failure of metabolic regulation by (p)ppGpp results in the loss of coordination between metabolic and macromolecular processes, leading to cellular toxicity. In this review, we document how (p)ppGpp and newly characterized nucleotides pGpp and (p)ppApp directly regulate these enzymatic targets for metabolic remodeling. We examine targets’ common determinants for alarmone interaction as well as their evolutionary diversification. We highlight classical and emerging themes in nucleotide signaling, including oligomerization and allostery along with metabolic interconversion and crosstalk, illustrating how they allow optimized bacterial adaptation to their environmental niches. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4197
    Electronic ISSN: 1545-2948
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-20
    Description: The large-scale dynamics of ocean oxygenation have changed dramatically throughout Earth's history, in step with major changes in the abundance of O2 in the atmosphere and changes to marine nutrient availability. A comprehensive mechanistic understanding of this history requires insights from oceanography, marine geology, geochemistry, geomicrobiology, evolutionary ecology, and Earth system modeling. Here, we attempt to synthesize the major features of evolving ocean oxygenation on Earth through more than 3 billion years of planetary history. We review the fundamental first-order controls on ocean oxygen distribution and summarize the current understanding of the history of ocean oxygenation on Earth from empirical and theoretical perspectives—integrating geochemical reconstructions of oceanic and atmospheric chemistry, genomic constraints on evolving microbial metabolism, and mechanistic biogeochemical models. These changes are used to illustrate primary regimes of large-scale ocean oxygenation and to highlight feedbacks that can act to stabilize and destabilize the ocean–atmosphere system in anoxic, low-oxygen, and high-oxygen states. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-08-20
    Description: The SUP05 clade of gammaproteobacteria (Thioglobaceae) comprises both primary producers and primary consumers of organic carbon in the oceans. Host-associated autotrophs are a principal source of carbon and other nutrients for deep-sea eukaryotes at hydrothermal vents, and their free-living relatives are a primary source of organic matter in seawater at vents and in marine oxygen minimum zones. Similar to other abundant marine heterotrophs, such as SAR11 and Roseobacter, heterotrophic Thioglobaceae use the dilute pool of osmolytes produced by phytoplankton for growth, including methylated amines and sulfonates. Heterotrophic members are common throughout the ocean, and autotrophic members are abundant at hydrothermal vents and in anoxic waters; combined, they can account for more than 50% of the total bacterial community. Studies of both cultured and uncultured representatives from this diverse family are providing novel insights into the shifting biogeochemical roles of autotrophic and heterotrophic bacteria that cross oxic–anoxic boundary layers in the ocean. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-08-20
    Description: Beyond the better-studied carbohydrates and the macronutrients nitrogen and phosphorus, a remaining 20 or so elements are essential for life and have distinct geographical distributions, making them of keen interest to ecologists. Here, I provide a framework for understanding how shortfalls in micronutrients like iodine, copper, and zinc can regulate individual fitness, abundance, and ecosystem function. With a special focus on sodium, I show how simple experiments manipulating biogeochemistry can reveal why many of the variables that ecologists study vary so dramatically from place to place. I conclude with a discussion of how the Anthropocene's changing temperature, precipitation, and atmospheric CO2 levels are contributing to nutrient dilution (decreases in the nutrient quality at the base of food webs). Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1543-592X
    Electronic ISSN: 1545-2069
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-08-20
    Description: A key Earth system science question is the role of atmospheric deposition in supplying vital nutrients to the phytoplankton that form the base of marine food webs. Industrial and vehicular pollution, wildfires, volcanoes, biogenic debris, and desert dust all carry nutrients within their plumes throughout the globe. In remote ocean ecosystems, aerosol deposition represents an essential new source of nutrients for primary production. The large spatiotemporal variability in aerosols from myriad sources combined with the differential responses of marine biota to changing fluxes makes it crucially important to understand where, when, and how much nutrients from the atmosphere enter marine ecosystems. This review brings together existing literature, experimental evidence of impacts, and new atmospheric nutrient observations that can be compared with atmospheric and ocean biogeochemistry modeling. We evaluate the contribution and spatiotemporal variability of nutrient-bearing aerosols from desert dust, wildfire, volcanic, and anthropogenic sources, including the organic component, deposition fluxes, and oceanic impacts. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-08-20
    Description: When a phenological shift affects a demographic vital rate such as survival or reproduction, the altered vital rate may or may not have population-level consequences. We review the evidence that climate change affects populations by shifting species’ phenologies, emphasizing the importance of demographic life-history theory. We find many examples of phenological shifts having both positive and negative consequences for vital rates. Yet, few studies link phenological shifts to changes in vital rates known to drive population dynamics, especially in plants. When this link is made, results are largely consistent with life-history theory: Phenological shifts have population-level consequences when they affect survival in longer-lived organisms and reproduction in shorter-lived organisms. However, there are just as many cases in which demographic mechanisms buffer population growth from phenologically induced changes in vital rates. We provide recommendations for future research aiming to understand the complex relationships among climate, phenology, and demography, which will help to elucidate the extent to which phenological shifts actually alter population persistence. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1543-592X
    Electronic ISSN: 1545-2069
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-08-20
    Description: Marine ecosystems are increasingly impacted by global environmental changes, including warming temperatures, deoxygenation, and ocean acidification. Marine scientists recognize intuitively that these environmental changes are translated into community changes via organismal physiology. However, physiology remains a black box in many ecological studies, and coexisting species in a community are often assumed to respond similarly to environmental stressors. Here, we emphasize how greater attention to physiology can improve our ability to predict the emergent effects of ocean change. In particular, understanding shifts in the intensity and outcome of species interactions such as competition and predation requires a sharpened focus on physiological variation among community members and the energetic demands and trophic mismatches generated by environmental changes. Our review also highlights how key species interactions that are sensitive to environmental change can operate as ecological leverage points through which small changes in abiotic conditions are amplified into large changes in marine ecosystems. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2021-08-20
    Description: CRISPR-Cas adaptive immune systems in bacteria and archaea utilize short CRISPR RNAs (crRNAs) to guide sequence-specific recognition and clearance of foreign genetic material. Multiple crRNAs are stored together in a compact format called a CRISPR array that is transcribed and processed into the individual crRNAs. While the exact processing mechanisms vary widely, some CRISPR-Cas systems, including those encoding the Cas9 nuclease, rely on a trans-activating crRNA (tracrRNA). The tracrRNA was discovered in 2011 and was quickly co-opted to create single-guide RNAs as core components of CRISPR-Cas9 technologies. Since then, further studies have uncovered processes extending beyond the traditional role of tracrRNA in crRNA biogenesis, revealed Cas nucleases besides Cas9 that are dependent on tracrRNAs, and established new applications based on tracrRNA engineering. In this review, we describe the biology of the tracrRNA and how its ongoing characterization has garnered new insights into prokaryotic immune defense and enabled key technological advances. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4197
    Electronic ISSN: 1545-2948
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2021-08-20
    Description: A small subset of marine microbial enzymes and surface transporters have a disproportionately important influence on the cycling of carbon and nutrients in the global ocean. As a result, they largely determine marine biological productivity and have been the focus of considerable research attention from microbial oceanographers. Like all biological catalysts, the activity of these keystone biomolecules is subject to control by temperature and pH, leaving the crucial ecosystem functions they support potentially vulnerable to anthropogenic environmental change. We summarize and discuss both consensus and conflicting evidence on the effects of sea surface warming and ocean acidification for five of these critical enzymes [carbonic anhydrase, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO), nitrogenase, nitrate reductase, and ammonia monooxygenase] and one important transporter (proteorhodopsin). Finally, we forecast how the responses of these few but essential biocatalysts to ongoing global change processes may ultimately help to shape the microbial communities and biogeochemical cycles of the future greenhouse ocean. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2021-08-20
    Description: State-owned investors (SOIs), including sovereign wealth funds and public pension funds, have $27 trillion in assets under management in 2020, making these funds the third largest group of asset owners globally. SOIs have become the largest and are among the most important private equity investors, and they are key investors in other alternative asset investments such as real estate, infrastructure, and hedge funds. SOIs are also leaders in promoting environmental, social, and governance policies and corporate social responsibility policies in investee companies. We document the rise of SOIs, assess their current investment policies, and describe how their state ownership both constrains and enhances their investment opportunity sets. We survey the most impactful recent academic research on sovereign wealth funds, public pension funds, and their closest financial analogs, private pension funds. We also introduce a new Governance-Sustainability-Resilience Scoreboard for SOIs and survey research examining their role in promoting good corporate governance. Expected final online publication date for the Annual Review of Financial Economics, Volume 13 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1367
    Electronic ISSN: 1941-1375
    Topics: Economics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2021-08-20
    Description: With the discovery of the incredible diversity of neurons, Cajal and coworkers laid the foundation of modern neuroscience. Neuron types are not only structural units of nervous systems but also evolutionary units, because their identities are encoded in the genome. With the advent of high-throughput cellular transcriptomics, neuronal identities can be characterized and compared systematically across species. The comparison of neurons in mammals, reptiles, and birds indicates that the mammalian cerebral cortex is a mosaic of deeply conserved and recently evolved neuron types. Using the cerebral cortex as a case study, this review illustrates how comparing neuron types across species is key to reconciling observations on neural development, neuroanatomy, circuit wiring, and physiology for an integrated understanding of brain evolution. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1081-0706
    Electronic ISSN: 1530-8995
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2021-08-20
    Description: A statistical model is a class of probability distributions assumed to contain the true distribution generating the data. In parametric models, the distributions are indexed by a finite-dimensional parameter characterizing the scientific question of interest. Semiparametric models describe the distributions in terms of a finite-dimensional parameter and an infinite-dimensional component, offering more flexibility. Ordinarily, the statistical model represents distributions for the full data intended to be collected. When elements of these full data are missing, the goal is to make valid inference on the full-data-model parameter using the observed data. In a series of fundamental works, Robins, Rotnitzky, and colleagues derived the class of observed-data estimators under a semiparametric model assuming that the missingness mechanism is at random, which leads to practical, robust methodology for many familiar data-analytic challenges. This article reviews semiparametric theory and the key steps in this derivation. Expected final online publication date for the Annual Review of Statistics, Volume 9 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 2326-8298
    Electronic ISSN: 2326-831X
    Topics: Mathematics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2021-08-20
    Description: For centuries, mathematicians and, later, statisticians, have found natural research and employment opportunities in the realm of insurance. By definition, insurance offers financial cover against unforeseen events that involve an important component of randomness, and consequently, probability theory and mathematical statistics enter insurance modeling in a fundamental way. In recent years, a data deluge, coupled with ever-advancing information technology and the birth of data science, has revolutionized or is about to revolutionize most areas of actuarial science as well as insurance practice. We discuss parts of this evolution and, in the case of non-life insurance, show how a combination of classical tools from statistics, such as generalized linear models and, e.g., neural networks contribute to better understanding and analysis of actuarial data. We further review areas of actuarial science where the cross fertilization between stochastics and insurance holds promise for both sides. Of course, the vastness of the field of insurance limits our choice of topics; we mainly focus on topics closer to our main areas of research. Expected final online publication date for the Annual Review of Statistics, Volume 9 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 2326-8298
    Electronic ISSN: 2326-831X
    Topics: Mathematics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2021-08-20
    Description: Aging is a major risk factor for multiple diseases. Understanding the underlying mechanisms of aging would help to delay and prevent age-associated diseases. Short-lived model organisms have been extensively used to study the mechanisms of aging. However, these short-lived species may be missing the longevity mechanisms that are needed to extend the lifespan of an already long-lived species such as humans. Unconventional long-lived animal species are an excellent resource to uncover novel mechanisms of longevity and disease resistance. Here, we review mechanisms that evolved in nonmodel vertebrate species to counteract age-associated diseases. Some antiaging mechanisms are conserved across species; however, various nonmodel species also evolved unique mechanisms to delay aging and prevent disease. This variety of antiaging mechanisms has evolved due to the remarkably diverse habitats and behaviors of these species. We propose that exploring a wider range of unconventional vertebrates will provide important resources to study antiaging mechanisms that are potentially applicable to humans. Expected final online publication date for the Annual Review of Genetics, Volume 55 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4197
    Electronic ISSN: 1545-2948
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2021-08-20
    Description: Studies of cetacean evolution using genetics and other biomolecules have come a long way—from the use of allozymes and short sequences of mitochondrial or nuclear DNA to the assembly of full nuclear genomes and characterization of proteins and lipids. Cetacean research has also advanced from using only contemporary samples to analyzing samples dating back thousands of years, and to retrieving data from indirect environmental sources, including water or sediments. Combined, these studies have profoundly deepened our understanding of the origin of cetaceans; their adaptation and speciation processes; and of the past population change, migration, and admixture events that gave rise to the diversity of cetaceans found today. Expected final online publication date for the Annual Review of Ecology, Evolution, and Systematics, Volume 52 is November 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1543-592X
    Electronic ISSN: 1545-2069
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2021-08-20
    Description: Many large marine predators make excursions from surface waters to the deep ocean below 200 m. Moreover, the ability to access meso- and bathypelagic habitats has evolved independently across marine mammals, reptiles, birds, teleost fishes, and elasmobranchs. Theoretical and empirical evidence suggests a number of plausible functional hypotheses for deep-diving behavior. Developing ways to test among these hypotheses will, however, require new ways to quantify animal behavior and biophysical oceanographic processes at coherent spatiotemporal scales. Current knowledge gaps include quantifying ecological links between surface waters and mesopelagic habitats and the value of ecosystem services provided by biomass in the ocean twilight zone. Growing pressure for ocean twilight zone fisheries creates an urgent need to understand the importance of the deep pelagic ocean to large marine predators. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1941-1405
    Electronic ISSN: 1941-0611
    Topics: Biology , Geosciences
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2021-02-01
    Description: Multiyear climate predictions provide climate outlooks from years to a decade in advance. As multiyear temperature predictions become more mainstream and skillful, guidance is needed to assist practitioners who wish to explore this maturing field. This paper demonstrates the process and considerations of incorporating multiyear temperature predictions into water resources planning. Multiyear temperature predictions from the Community Earth System Model Decadal Prediction Large Ensemble are presented as discrete and probabilistic products and are used to force two common hydrologic modeling approaches: conceptual and empirical. The approaches are demonstrated to simulate streamflow in the upper Colorado River basin watershed in Colorado, where diagnostics show that increasing temperatures are associated with decreasing streamflows. Using temperature information for lead years 2–6, two analyses are performed: (i) a retrospective hindcast for the climatological period (1981–2010) and (ii) a blind forecast for 2011–15. For the retrospective hindcast, including temperature information improved the percent error as compared with climatology. For the blind forecast, the multiyear temperature prediction for warming was skillful, but the corresponding multiyear average streamflow predictions from both approaches were counterintuitive: with the predicted warming, the multiyear average streamflow was predicted to be lower than the climatological mean; however, the observed multiyear average streamflow was higher than the climatological mean. This was due to above-average precipitation during the prediction time frame, particularly for one of the years. With that year removed, the multiyear streamflow average became lower than the climatological mean. Temperature provides a marginal source of streamflow predictability, but there will be substantial uncertainty until prediction skill for year-to-year climate variability, especially for precipitation, increases.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2021-02-25
    Description: Previous studies have concluded that the wind-input vorticity in ocean gyres is balanced by bottom pressure torques (BPT), when integrated over latitude bands. However, the BPT must vanish when integrated over any area enclosed by an isobath. This constraint raises ambiguities regarding the regions over which BPT should close the vorticity budget, and implies that BPT generated to balance a local wind stress curl necessitates the generation of a compensating, non-local BPT and thus non-local circulation. This study aims to clarify the role of BPT in wind-driven gyres using an idealized isopycnal model. Experiments performed with a single-signed wind stress curl in an enclosed, sloped basin reveal that BPT balances the winds only when integrated over latitude bands. Integrating over other, dynamically-motivated definitions of the gyre, such as barotropic streamlines, yields a balance between wind stress curl and bottom frictional torques. This implies that bottom friction plays a non-negligible role in structuring the gyre circulation. Non-local bottom pressure torques manifest in the form of along-slope pressure gradients associated with a weak basin-scale circulation, and are associated with a transition to a balance between wind stress and bottom friction around the coasts. Finally, a suite of perturbation experiments is used to investigate the dynamics of BPT. To predict the BPT, the authors extend previous theory that describes propagation of surface pressure signals from the gyre interior toward the coast along planetary potential vorticity contours. This theory is shown to agree closely with the diagnosed contributions to the vorticity budget across the suite of model experiments.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2021-02-25
    Description: Sufficient and accurate tide data are essential for analyzing physical processes in the ocean. A method is developed to spatially fit the tidal amplitude and phase lag data along satellite altimeter tracks near Hawaii and construct reliable cotidal charts by using the Chebyshev polynomials. The method is completely dependent on satellite altimeter data. By using the cross-validation method, the optimal orders of Chebyshev polynomials are determined and the polynomial coefficients are calculated by the least squares method. The tidal amplitudes and phase lags obtained by the method are compared with those from the Finite Element Solutions 2014 (FES2014), National Astronomical Observatory 99b (NAO.99b) and TPXO9 models. Results indicate that the method yields accurate results as its fitting results are consistent with the harmonic constants of the three models. The feasibility of this method is also validated by the harmonic constants from tidal gauges near Hawaii.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2021-02-25
    Description: The temporal-spatial variations of the static stability of dry air and the relative importance of their influencing quantities are explored. Derivation shows that while it links to the vertical difference of temperature, static stability also relates to the temperature itself. The static stability is expressed as a nonlinear function of temperature and the vertical difference of temperature. The relative importance of the two influencing quantities is assessed with the linear regression. Tests show that the linear fitting method is robust. The results of the dominance rely on the data examined, which include an interannual variation, a seasonal variation, and a spatial variation that consists of the grid points over the globe. It is revealed that in lower troposphere, while the temporal variations of static stability are dominated by the vertical difference of temperature, the temperature itself may also have considerable influence, especially over the high latitudes of the two hemispheres. In stratosphere, temperature tends to have more contributions. Over Antarctic, temperature dominates the seasonal and interannual variations of the static stability. The spatial variation of the static stability of July is influenced by both temperature and its vertical difference before 1980, but after that it is dominated by temperature.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2021-02-25
    Description: In recent winters, there have been repeated observations of extreme warm and cold spells in the mid-latitude countries. This has evoked questions regarding how winter temperature extremes are induced. In this study, we demonstrate that abnormally warm winter weather in East Asia can drive the onset of extremely cold weather in North America approximately one week forward. These seesawing extremes across the basin are mediated by the North Pacific Oscillation (NPO), one of the recurrent atmospheric patterns over the North Pacific. Budget analysis of the quasi-geostrophic geopotential tendency equation shows that intense thermal advection over East Asia is able to trigger the growth of the NPO. Vorticity fluxes associated with the upper-level stationary trough then strengthen and maintain the NPO against thermal damping following the onset of the NPO. Differential diabatic heating accompanied by changes in circulation also positively contribute to the growth and maintenance of the NPO. These results imply that recurrent cold extremes, seemingly contrary to global warming, may be an inherent feature resulting from strengthening warm extremes.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2021-02-25
    Description: This study revisits the long-term variabilities of East Asian summer monsoon (EASM) in 1958-2017 through examining diurnal cycles. We group monsoon days into four dynamic quadrants, with emphasis on the strong daily southerlies coupled with a large (Q1) or small (Q4) diurnal amplitude over Southeast China. The occurrence day of Q1 increases in June-July with the seasonal progress of EASM. It is most pronounced in 1960s-1970s and declines to the lowest in 1980s-1990s, while the Q4 occurrence increases notably from 1970s to 1990s; both groups return to normal in recent years. The interdecadal decrease (increase) of Q1 (Q4) occurrence corresponds well to the known weakening of EASM in the 20th century, and it also coincides with the rainfall anomalies over China shifting from “North flooding and South drought” to “North drought and South flooding” modes. The rainfall under Q1 (Q4) can account for ∼60% of the interannual variance of summer rainfall in northern (southern) China. The contrasting effects of Q1 and Q4 on rainfall are due to their remarkably different regulation on water vapor transports and convergence. The interannual/interdecadal variations of Q1 (Q4) occurrence determine the anomalous water vapor transports to northern (southern) China, in association with the various expansion of the western Pacific subtropical high. In particular, Q1 condition can greatly intensify nighttime moisture convergence, which is responsible for the long-term variations of rainfall in northern China. The results highlight that the diurnal cycles in monsoon flow act as a key regional process working with large-scale circulations to regulate the spatial distributions and long-term variabilities of EASM rainfall.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2021-02-25
    Description: A lightning risk assessment for application to human safety was created and applied in 10 West Texas locations from 2 May 2016 to 30 September 2016. The method combined spatial lightning mapping data, probabilistic risk calculation adapted from the International Electrotechnical Commission Standard 62305-2, and weighted average interpolation to produce risk magnitudes that were compared to tolerability thresholds to issue lightning warnings. These warnings were compared to warnings created for the same dataset using a more standard lightning safety approach based on National Lightning Detection Network (NLDN) total lightning within 5 nautical miles of each location. Four variations of the calculation as well as different units of risk were tested to find the optimal configuration to calculate risk to an isolated human outdoors.The best performing risk configuration using risk 10min−1 or larger produced the most comparable results to the standard method, such as number of failures, average warning duration, and total time under warnings. This risk configuration produced fewer failures than the standard method, but longer total time under warnings and higher false alarm ratios. Median lead times associated with the risk configuration were longer than the standard method for all units considered, while median down times were shorter for risk 10min−1 and risk 15min−1. Overall, the risk method provides a baseline framework to quantify the changing lightning hazard on the storm-scale, and could be a useful tool to aid in lightning decision support scenarios.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2021-02-01
    Description: Baroclinic waves drive both regional variations in weather and large-scale variability in the extratropical general circulation. They generally do not exist in isolation, but rather often form into coherent wave packets that propagate to the east via a mechanism called downstream development. Downstream development has been widely documented and explored. Here we document a novel but also key aspect of baroclinic waves: the downstream suppression of baroclinic activity that occurs in the wake of eastward propagating disturbances. Downstream suppression is apparent not only in the Southern Hemisphere storm track as shown in previous work, but also in the North Pacific and North Atlantic storm tracks. It plays an essential role in driving subseasonal periodicity in extratropical eddy activity in both hemispheres, and gives rise to the observed quiescence of the North Atlantic storm track 1–2 weeks following pronounced eddy activity in the North Pacific sector. It is argued that downstream suppression results from the anomalously low baroclinicity that arises as eastward propagating wave packets convert potential to kinetic energy. In contrast to baroclinic wave packets, which propagate to the east at roughly the group velocity in the upper troposphere, the suppression of baroclinic activity propagates eastward at a slower rate that is comparable to that of the lower to midtropospheric flow. The results have implications for understanding subseasonal variability in the extratropical troposphere of both hemispheres.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2021-03-30
    Description: In the present work, the trend of extreme rainfall indices in the Macro-Metropolis of São Paulo (MMSP) was analyzed and correlated with largescale climatic oscillations. A cluster analysis divided a set of rain gauge stations into three homogeneous regions within MMSP, according to the annual cycle of rainfall. The entire MMSP presented an increase in the total annual rainfall, from 1940 to 2016, of 3 mm per year on average, according to Mann-Kendall test. However, there is evidence that the more urbanized areas have a greater increase in the frequency and magnitude of extreme events, while coastal and mountainous areas, and regions outside large urban areas, have increasing rainfall in a better-distributed way throughout the year. The evolution of extreme rainfall (95th percentile) is significantly correlated with climatic indices. In the center-north part of the MMSP, the combination of Pacific Decadal Oscillation (PDO) and Antarctic Oscillation (AAO) explains 45% of the P95th increase during the wet season. In turn, in southern MMSP, the Temperature of South Atlantic (TSA), the AAO, the El Niño South Oscillation (ENSO) and the Multidecadal Oscillation of the North Atlantic (AMO) better explain the increase in extreme rainfall (R2 = 0.47). However, the same is not observed during the dry season, in which the P95th variation was only negatively correlated with the AMO, undergoing a decrease from the ‘70s until the beginning of this century. The occurrence of rainy anomalous months proved to be more frequent and associated with climatic indices than dry months.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2021-03-30
    Description: The faithful and timely copying of DNA by molecular machines known as replisomes depends on a disparate suite of enzymes and scaffolding factors working together in a highly orchestrated manner. Large, dynamic protein–nucleic acid assemblies that selectively morph between distinct conformations and compositional states underpin this critical cellular process. In this article, we discuss recent progress outlining the physical basis of replisome construction and progression in eukaryotes. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2021-03-29
    Description: Persistent multiyear cold states of the tropical Pacific Ocean drive hydroclimate anomalies worldwide, including persistent droughts in the extratropical Americas. Here, the atmosphere and ocean dynamics and thermodynamics of multiyear cold states of the tropical Pacific Ocean are investigated using European Centre for Medium-Range Weather Forecasts reanalyses and simplified models of the ocean and atmosphere. The cold states are maintained by anomalous ocean heat flux divergence and damped by increased surface heat flux from the atmosphere to ocean. The anomalous ocean heat flux divergence is contributed to by both changes in the ocean circulation and thermal structure. The keys are an anomalously shallow thermocline that enhances cooling by upwelling and anomalous westward equatorial currents that enhance cold advection. The thermocline depth anomalies are shown to be a response to equatorial wind stress anomalies. The wind stress anomalies are shown to be a simple dynamical response to equatorial SST anomalies as mediated by precipitation anomalies. The cold states are fundamentally maintained by atmosphere-ocean coupling in the equatorial Pacific. The physical processes that maintain the cold states are well approximated by linear dynamics for ocean and atmosphere and simple thermodynamics.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2021-03-29
    Description: Microbiomes are complex and ubiquitous networks of microorganisms whose seemingly limitless chemical transformations could be harnessed to benefit agriculture, medicine, and biotechnology. The spatial and temporal changes in microbiome composition and function are influenced by a multitude of molecular and ecological factors. This complexity yields both versatility and challenges in designing synthetic microbiomes and perturbing natural microbiomes in controlled, predictable ways. In this review, we describe factors that give rise to emergent spatial and temporal microbiome properties and the meta-omics and computational modeling tools that can be used to understand microbiomes at the cellular and system levels. We also describe strategies for designing and engineering microbiomes to enhance or build novel functions. Throughout the review,we discuss key knowledge and technology gaps for elucidating the networks and deciphering key control points for microbiome engineering, and highlight examples where multiple omics and modeling approaches can be integrated to address these gaps. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1523-9829
    Electronic ISSN: 1545-4274
    Topics: Medicine , Technology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2021-03-29
    Description: The Conway-Maxwell-Poisson distribution improves the precision with which seasonal counts of tropical cyclones may be modelled. Conventionally the Poisson is used, which assumes that the formation and transit of tropical cyclones is the result of a Poisson process, such that their frequency distribution has equal mean and variance (‘equi-dispersion’). However, earlier studies of observed records have sometimes found over-dispersion, where the variance exceeds the mean, indicating that tropical cyclones are clustered in particular years. The evidence presented here demonstrates that at least some of this over-dispersion arises from observational inhomogeneities. Once this is removed, and particularly near the coasts, there is evidence for equi-dispersion or under-dispersion. In order to more accurately model numbers of tropical cyclones, we investigate the use of the Conway-Maxwell-Poisson as an alternative to the Poisson that represents any dispersion characteristic. An example is given for east China where using it improves the skill of a prototype seasonal forecast of tropical cyclone landfall.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2021-03-29
    Description: Today, the vast majority of meteorological data are collected in open, rural environments to comply with the standards set by the World Meteorological Organization. However, these traditional networks lack local information that would be of immense value, for example, for studying urban microclimate, evaluating climate adaptation measures, or improving high-resolution numerical weather predictions. Therefore an urgent need exists for reliable meteorological data in other environments (e.g. cities, lakes, forests) to complement these conventional networks. At present, however, high-accuracy initiatives tend to be limited in space and/or time as a result of the substantial budgetary requirements faced by research teams and operational services. We present a novel approach for addressing the existing observational gaps based on an intense collaboration with high schools. This methodology resulted in the establishment of a region-wide climate monitoring network of 59 accurate weather stations in a wide variety of locations across northern Belgium. The project is also of large societal relevance as it bridges the gap between the youth and atmospheric science. To guarantee a sustainable and mutually valuable collaboration, the schools and their students are involved at all stages, ranging from proposing measurement locations, building the weather stations, and even data analysis. We illustrate how the approach received an overwhelming enthusiasm from high schools and students and resulted in a high-accuracy monitoring network with unique locations offering novel insights.
    Print ISSN: 0003-0007
    Electronic ISSN: 1520-0477
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2021-03-30
    Description: Surface snowfall rate estimates from the Global Precipitation Measurement (GPM) mission’s Core Observatory sensors and the CloudSat radar are compared to those from the Multi-Radar Multi-Sensor (MRMS) radar composite product over the continental United States during the period from November 2014 to September 2020. The analysis includes: the Dual-Frequency Precipitation Radar (DPR) retrieval and its single frequency counterparts, the GPM Combined Radar Radiometer Algorithm (CORRA), the CloudSat Snow Profile product (2C-SNOW-PROFILE) and two passive microwave retrievals, i.e., the Goddard PROFiling algorithm (GPROF) and the Snow retrievaL ALgorithm fOr gMi (SLALOM). The 2C-SNOW retrieval has the highest Heidke Skill Score (HSS) for detecting snowfall among the products analysed. SLALOM ranks second; it outperforms GPROF and the other GPM algorithms, all detecting only 30% of the snow events. Since SLALOM is trained with 2C-SNOW, it suggests that the optimal use of the information content in the GMI observations critically depends on the precipitation training dataset. All the retrievals underestimate snowfall rates by a factor of two compared to MRMS. Large discrepancies (RMSE of 0.7 to 1.5 mm h-1) between space-borne and ground-based snowfall rate estimates are attributed to the complexity of the ice scattering properties and to the limitations of the remote sensing systems: the DPR instrument has low sensitivity, while the radiometric measurements are affected by the confounding effects of the background surface emissivity and of the emission of supercooled liquid droplet layers.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2021-03-30
    Description: Quantitative precipitation estimates (QPE) at high spatiotemporal resolution are essential for flash flood forecasting, especially in urban environments and headwater areas. An accurate quantification of precipitation is directly related to the temporal and spatial sampling of the precipitation system. The advent of phased array radar (PAR) technology, a potential next-generation weather radar, can provide updates that are at least 4-5 times faster than the conventional WSR-88D scanning rate. In this study, data collected by the KOUN WSR-88D radar with ~1 minute temporal resolution is used as an approximation of data that a future PAR system could provide to force the Ensemble Framework for Flash Flood Forecasting (EF5) hydrologic model. To assess the effect of errors resulting from temporal and spatial sampling of precipitation on flash flood warnings, KOUN precipitation data (1-km/1-min) is used to generate precipitation products at other spatial/temporal resolutions commonly used in hydrologic models, such as those provided by conventional WSR-88D radar (1-km/5-min), spaced-based observations (10-km/30-min), and hourly rainfall products (1-km/60-min). The effect of precipitation sampling errors on flash flood warnings are then examined and quantified by using discharge simulated from KOUN (1-km/1-min) as truth to assess simulations conducted using other generated coarser spatial/temporal resolutions of other precipitation products. Our results show that: 1) observations with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and distribution of precipitation, 2) time series of precipitation products show that QPE peak values decrease as the temporal resolution gets coarser, and 3) the effect of precipitation sampling error on flash flood forecasting is large in headwater areas and decrease quickly as drainage area increases.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2021-03-30
    Description: Measuring rainfall is complex, due to the high temporal and spatial variability of precipitation, especially in a changing climate, but it is of great importance for all the scientific and operational disciplines dealing with rainfall effects on the environment, human activities, and economy.Microwave (MW) telecommunication links carry information on rainfall rates along their path, through signal attenuation caused by raindrops, and can become measurements of opportunity, offering inexpensive chances to augment information without deploying additional infrastructures, at the cost of some smart processing. Processing satellite telecom signals bring some specific complexities related to the effects of rainfall boundaries, melting layer, and non-weather attenuations, but with the potential to provide worldwide precipitation data with high temporal and spatial samplings. These measurements have to be processed according to the probabilistic nature of the information they carry. An EnKF-based (Ensemble Kalman Filter) method has been developed to dynamically retrieve rainfall fields in gridded domains, which manages such probabilistic information and exploits the high sampling rate of measurements. The paper presents the EnKF method with some representative tests from synthetic 3D experiments. Ancillary data are assumed as from worldwide-available operational meteorological satellites and models, for advection, initial and boundary conditions, rain height. The method reproduces rainfall structures and quantities in a correct way, and also manages possible link outages. It results computationally viable also for operational implementation and applicable to different link observation geometries and characteristics.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2021-03-29
    Description: Tropical cyclones (TCs) propagating into baroclinic midlatitude environments can transform into extratropical cyclones, in some cases resulting in high-impact weather conditions far from the tropics. This study extends analysis of extratropical transition (ET) changes in multi-seasonal global simulations using the Model for Prediction Across Scales-Atmosphere (MPAS-A) under present-day and projected future conditions. High-resolution (15 km) covers the Northern Hemisphere; TCs and ET events are tracked based on sea-level pressure minima accompanied by a warm core and use of a cyclone phase space method. Previous analysis of these simulations showed large changes in ET over the North Atlantic (NATL) basin, with ET events exhibiting a 4–5° northward latitudinal shift and a ~6 hPa strengthening of the post-transition extratropical cyclone. Storm-relative composites, primarily representing post-transformation cold-core events, indicate that this increase in post-transition storm intensity is associated with an intensification of the neighboring upper-level trough and downstream ridge, and a poleward shift in the storm center, conducive to enhanced trough-TC interactions after ET completion. Additionally, the future composite ET event is located in the right-jet entrance of an outflow jet that is strengthened relative to its present-day counterpart. Localized impacts associated with ET events, such as heavy precipitation and strong near-surface winds, are significantly enhanced in the future-climate simulations; 6-hourly precipitation for NATL events increases at a super-Clausius-Clapeyron rate with area-average precipitation increasing over 30%. Furthermore, intensified precipitation contributes to enhanced lower-tropospheric potential vorticity and stronger upper-tropospheric outflow, implying the potential for more extreme downstream impacts under the future climate scenario.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2021-03-29
    Description: The remarkable diversity of specialized metabolites produced by plants has inspired several decades of research and nucleated a long list of theories to guide empirical ecological studies. However, analytical constraints and the lack of untargeted processing workflows have long precluded comprehensive metabolite profiling and, consequently, the collection of the critical currencies to test theory predictions for the ecological functions of plant metabolic diversity. Developments in mass spectrometry (MS) metabolomics have revolutionized the large-scale inventory and annotation of chemicals from biospecimens. Hence, the next generation of MS metabolomics propelled by new bioinformatics developments provides a long-awaited framework to revisit metabolism-centered ecological questions, much like the advances in next-generation sequencing of the last two decades impacted all research horizons in genomics. Here, we review advances in plant (computational) metabolomics to foster hypothesis formulation from complex metabolome data. Additionally, we reflect on how next-generation metabolomics could reinvigorate the testing of long-standing theories on plant metabolic diversity. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1543-5008
    Electronic ISSN: 1545-2123
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2021-03-29
    Description: Optobiochemical control of protein activities allows the investigation of protein functions in living cells with high spatiotemporal resolution. Over the last two decades, numerous natural photosensory domains have been characterized and synthetic domains engineered and assembled into photoregulatory systems to control protein function with light.Here, we review the field of optobiochemistry, categorizing photosensory domains by chromophore, describing photoregulatory systems by mechanism of action, and discussing protein classes frequently investigated using optical methods. We also present examples of how spatial or temporal control of proteins in living cells has provided new insights not possible with traditional biochemical or cell biological techniques. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2021-03-29
    Description: Codon-dependent translation underlies genetics and phylogenetic inferences, but its origins pose two challenges. Prevailing narratives cannot account for the fact that aminoacyl-tRNA synthetases (aaRSs), which translate the genetic code, must collectively enforce the rules used to assemble themselves. Nor can they explain how specific assignments arose from rudimentary differentiation between ancestral aaRSs and corresponding transfer RNAs (tRNAs). Experimental deconstruction of the two aaRS superfamilies created new experimental tools with which to analyze the emergence of the code. Amino acid and tRNA substrate recognition are linked to phase transfer free energies of amino acids and arise largely from aaRS class-specific differences in secondary structure. Sensitivity to protein folding rules endowed ancestral aaRS–tRNA pairs with the feedback necessary to rapidly compare alternative genetic codes and coding sequences. These and other experimental data suggest that the aaRS bidirectional genetic ancestry stabilized the differentiation and interdependence required to initiate and elaborate the genetic coding table. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2021-03-29
    Description: Nucleosomes wrap DNA and impede access for the machinery of transcription. The core histones that constitute nucleosomes are subject to a diversity of posttranslational modifications, or marks, that impact the transcription of genes. Their functions have sometimes been difficult to infer because the enzymes that write and read them are complex, multifunctional proteins. Here, we examine the evidence for the functions of marks and argue that the major marks perform a fairly small number of roles in either promoting transcription or preventing it. Acetylations and phosphorylations on the histone core disrupt histone-DNA contacts and/or destabilize nucleosomes to promote transcription. Ubiquitylations stimulate methylations that provide a scaffold for either the formation of silencing complexes or resistance to those complexes, and carry a memory of the transcriptional state. Tail phosphorylations deconstruct silencing complexes in particular contexts. We speculate that these fairly simple roles form the basis of transcriptional regulation by histone marks. Expected final online publication date for the Annual Review of Genomics and Human Genetics Volume 22 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1527-8204
    Electronic ISSN: 1545-293X
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2021-03-30
    Description: In 1961, Jacob and Monod proposed the operon model of gene regulation. At the model's core was the modular assembly of regulators, operators, and structural genes. To illustrate the composability of these elements, Jacob and Monod linked phenotypic diversity to the architectures of regulatory circuits. In this review, we examine how the circuit blueprints imagined by Jacob and Monod laid the foundation for the first synthetic gene networks that launched the field of synthetic biology in 2000. We discuss the influences of the operon model and its broader theoretical framework on the first generation of synthetic biological circuits, which were predominantly transcriptional and posttranscriptional circuits. We also describe how recent advances in molecular biology beyond the operon model—namely, programmable DNA- and RNA-binding molecules as well as models of epigenetic and posttranslational regulation—are expanding the synthetic biology toolkit and enabling the design of more complex biological circuits. Expected final online publication date for the Annual Review of Biochemistry, Volume 90 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4154
    Electronic ISSN: 1545-4509
    Topics: Biology , Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2021-03-23
    Description: Salicylic acid (SA) is an essential plant defense hormone that promotes immunity against biotrophic and semibiotrophic pathogens. It plays crucial roles in basal defense and the amplification of local immune responses, as well as the establishment of systemic acquired resistance. During the past three decades, immense progress has been made in understanding the biosynthesis, homeostasis, perception, and functions of SA. This review summarizes the current knowledge regarding SA in plant immunity and other biological processes. We highlight recent breakthroughs that substantially advanced our understanding of how SA is biosynthesized from isochorismate, how it is perceived, and how SA receptors regulate different aspects of plant immunity. Some key questions in SA biosynthesis and signaling, such as how SA is produced via another intermediate benzoic acid and how SA affects the activities of its receptors in the transcriptional regulation of defense genes, remain to be addressed. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1543-5008
    Electronic ISSN: 1545-2123
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2021-03-23
    Description: The perception of light signals by the phytochrome family of photoreceptors has a crucial influence on almost all aspects of growth and development throughout a plant's life cycle. The holistic regulatory networks orchestrated by phytochromes, including conformational switching, subcellular localization, direct protein-protein interactions, transcriptional and posttranscriptional regulations, and translational and posttranslational controls to promote photomorphogenesis, are highly coordinated and regulated at multiple levels. During the past decade, advances using innovative approaches have substantially broadened our understanding of the sophisticated mechanisms underlying the phytochrome-mediated light signaling pathways. This review discusses and summarizes these discoveries of the role of the modular structure of phytochromes, phytochrome-interacting proteins, and their functions; the reciprocal modulation of both positive and negative regulators in phytochrome signaling; the regulatory roles of phytochromes in transcriptional activities, alternative splicing, and translational regulation; and the kinases and E3 ligases that modulate PHYTOCHROME INTERACTING FACTORs to optimize photomorphogenesis. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1543-5008
    Electronic ISSN: 1545-2123
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2021-03-24
    Description: Assimilation of dual-polarization (dual-pol) observations provides more accurate storm-scale analyses to initialize forecasts of severe convective thunderstorms. This study investigates the impact assimilating experimental sector-scan dual-pol observations has on storm-scale ensemble forecasts and how this impact changes over different data assimilation (DA) windows using the ensemble Kalman filter (EnKF). Ensemble forecasts are initialized after 30, 45, and 60 minutes of DA for two sets of experiments that assimilate either reflectivity and radial velocity only (EXPZ) or reflectivity and radial velocity plus differential reflectivity (EXPZZDR). This study uses the 31 May 2013 Oklahoma event which included multiple storms that produced tornadoes and severe hail, with focus placed on two storms that impacted El Reno and Stillwater during the event.The earliest initialized forecast of EXPZZDR better predicts the evolution of the El Reno storm than EXPZ, but the two sets of experiments become similar at subsequent forecast times. However, the later EXPZZDR forecasts of the Stillwater storm, which organized towards the end of the DA window, produce improved results compared to EXPZ, in which the storm is less intense and weakens. Evaluation of forecast products for supercell mesocyclones (updraft helicity [UH]) and hail show similar results with earlier EXPZZDR forecasts better predicting the UH swaths of the El Reno storm and later forecasts producing improved UH and hail swaths for the Stillwater storm. The results indicate that the assimilation of ZDR over fewer DA cycles can produce improved forecasts when DA windows sufficiently cover storms during their initial development and organization.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2021-03-24
    Description: The characteristics of El-Niño-Southern Oscillation (ENSO) phase-locking in observations and CMIP5 and CMIP6 models are examined in this study. Two metrics based on the peaking month histogram for all El Niño and La Niña events are adopted to delineate the basic features of ENSO phase-locking in terms of the preferred calendar month and strength of this preference. It turns out that most models are poor at simulating the ENSO phase-locking, either showing little peak strengths or peaking at the wrong seasons. By deriving ENSO’s linear dynamics based on the conceptual recharge oscillator (RO) framework through the seasonal linear inverse model (sLIM) approach, various simulated phase-locking behaviors of CMIP models are systematically investigated in comparison with observations. In observations, phase-locking is mainly attributed to the seasonal modulation of ENSO’s SST growth rate. In contrast, in a significant portion of CMIP models, phase-locking is co-determined by the seasonal modulations of both SST growth and phase-transition rates. Further study of the joint effects of SST growth and phase-transition rates suggests that for simulating realistic winter peak ENSO phase-locking with the right dynamics, climate models need to have four key factors in the right combination: (1) correct phase of SST growth rate modulation peaking at the fall; (2) large enough amplitude for the annual cycle in growth rate; (3) amplitude of semi-annual cycle in growth rate needs to be small; and (4) amplitude of seasonal modulation in SST phase-transition rate needs to be small.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2021-03-24
    Description: Undisturbed trade-wind conditions comprise the most prevalent synoptic weather pattern in Hawai’i and produces a distinct pattern of orographic rainfall. Significant total rainfall contributions and extreme events are linked to four types of atmospheric disturbances: cold fronts, Kona lows, upper-tropospheric disturbances, and tropical cyclones. In this study, a 20- year (1990-2010) categorical disturbance time series is compiled and analyzed in relation to daily rainfall over the same period. The primary objective of this research is to determine how disturbances contribute to total wet season rainfall on the Island of O’ahu, Hawai’i. On average, 41% of wet seasonal rainfall occurs on disturbance days. Seventeen percent of seasonal rainfall can be directly attributed to disturbances (after a background signal is removed) and as much as 48% in a single season. The intensity of disturbance rainfall (mm/day) is a stronger predictor (r2 = 0.49; p 〈 0.001) of the total seasonal rainfall than the frequency of occurrence (r2 = 0.11; p = 0.153). Cold fronts are the most common disturbance type; however, the rainfall associated with fronts that cross the island is significantly higher than rainfall produced from non-crossing fronts. In fact, non-crossing fronts produce significantly less rainfall than under mean non-disturbance conditions 76% of the time. While the combined influence of atmospheric disturbances can account for almost half of the rainfall received during the wet season, the primary factor in determining a relatively wet or dry season/year on O’ahu are the frequency and rainfall intensity of Kona Low events.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2021-03-24
    Description: We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and partitioned into thermodynamic growth and dynamic volume change. Both components are compared to validated sea ice-ocean models forced by reanalysis data to extend observations back to 1980 and to understand the mechanisms that cause the observed trends and variability. We find that a negative feedback driven by the increasing sea ice retreat in summer yields increasing thermodynamic ice growth during winter in the Arctic marginal seas eastward from the Laptev Sea to the Beaufort Sea. However, in the Barents and Kara Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative trends in thermodynamic ice growth of -2 km3month-1yr-1 on average over 2002-2019 derived from satellite observations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2021-03-23
    Description: Jupiter's Galilean satellite Io is one of the most remarkable objects in our Solar System. The tidal heating Io undergoes through its orbital resonance with Europa and Ganymede has resulted in a body rich in active silicate volcanism. Over the past decades, Io has been observed from ground-based and Earth-orbiting telescopes and by several spacecraft. In this review we summarize the progress made toward our understanding of the physical and chemical processes related to Io and its environment since the Galileo era. Io science has been revolutionized by the use of adaptive optics techniques on large, 8- to 10-m telescopes. The resultant ever-increasing database, mapping the size, style, and spatial distribution of Io's diverse volcanoes, has improved our understanding of Io's interior structure, its likely composition, and the tidal heating process. Additionally, new observations of Io's atmosphere obtained with these large optical/infrared telescopes and the Atacama Large Millimeter/submillimeter Array reveal the presence of volcanic plumes, the (at times) near-collapse of Io's atmosphere during eclipse, and the interactions of plumes with the sublimation atmosphere. ▪ Extensive new data sets of Io at ultraviolet, mid- to near-infrared, and radio wavelengths have been gathered since the Galileo era. ▪ New data and models inform us about tidal heating, surface properties, and magma composition across Io—although key questions remain. ▪ Atmospheric observations indicate a dominant sublimation-supported component and reinforce the presence of stealth volcanism. ▪ Observations of volcanic plumes show high gas velocities (up to ∼1 km/s) and their effect on Io's atmosphere. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2021-03-24
    Description: Message diffusion and message persuasion are two important aspects of success for official risk messages about hazards. Message diffusion enables more people to receive lifesaving messages, and message persuasion motivates them to take protective actions. This study helps to identify win-win message strategies by investigating how an under-examined factor, message content that is theoretically important to message persuasion, influences message diffusion for official risk messages about heat hazards on Twitter. Using multilevel negative binomial regression models, the respective and cumulative effects of four persuasive message factors, hazard intensity, health risk susceptibility, health impact, and response instruction on retweet counts were analyzed using a dataset of heat-related tweets issued by U.S. National Weather Service accounts. Two subsets of heat-related tweets were also analyzed: 1) heat warning tweets about current or anticipated extreme heat events and 2) tweets about non-extreme heat events. This study found that heat-related tweets that mentioned more types of persuasive message factors were retweeted more frequently, and so were two subtypes of heat-related tweets. Mentions of hazard intensity also consistently predicted increased retweet counts. Mentions of health impacts positively influenced message diffusion for heat-related tweets and tweets about non-extreme heat events. Mentions of health risk susceptibility and response instructions positively predicted retweet counts for tweets about non-extreme heat events and tweets about official extreme heat warnings respectively. In the context of natural hazards, this research informs practitioners with evidence-based message strategies to increase message diffusion on social media. Such strategies also have the potential to improve message persuasion.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2021-03-22
    Description: The very strong Typhoon Goni passed over the Yaeyama Islands in southwestern Japan during the rapid intensification stage on August 23, 2015. Surface data collected by the dense network of weather stations as well as Doppler radar observations over the islands revealed a finescale structure in the inner core of the typhoon near the surface.Goni had a clear eye surrounded by a square-shaped eyewall with intense convection. The surface observations revealed that several vortices with a diameter of ~7–10 km accompanied by a pressure deficit were present inside the eye. From the Doppler velocity field, mesovortices approximately 10 km in diameter were found at the apexes of the square-shaped eyewall. These mesovortices and the inner rainbands emanating outward from the apexes of the polygonal eyewall generally exhibited features typical of vortex Rossby waves. The mesovortices were accompanied by a pressure deficit at the surface and enhanced surface winds. The data also indicated the first observational evidence of near-surface mixing between the eye and eyewall through the mesovortices, that is, the transport of high equivalent potential temperature in the eye toward the eyewall.The radar data revealed that many radar-reflectivity filaments that had a pleated shape with lengths of a few kilometers extended perpendicularly from the inner edge of the eyewall at low levels. The filaments associated with wind perturbations at low levels caused significant wind gusts accompanied by sudden pressure drops and shifts in wind direction at the surface.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2021-03-22
    Description: Topographic Rossby waves (TRWs) in the abyssal South China Sea (SCS) are investigated using observations and high-resolution numerical simulations. These energetic waves can account for over 40% of the kinetic energy (KE) variability in the deep western boundary current and seamount region in the central SCS. This proportion can even reach 70% over slopes in the northern and southern SCS. The TRW-induced currents exhibit columnar (i.e., in-phase) structure in which the speed increases downward. Wave properties such as the period (5–60 days), wavelength (100–500 km), and vertical trapping scale (102–103 m) vary significantly depending on environmental parameters of the SCS. The TRW energy propagates along steep topography with phase propagation offshore. TRWs with high frequencies exhibit a stronger climbing effect than low-frequency ones and hence can move further upslope. For TRWs with a certain frequency, the wavelength and trapping scale are dominated by the topographic beta, whereas the group velocity is more sensitive to the internal Rossby deformation radius. Background circulation with horizontal shear can change the wavelength and direction of TRWs if the flow velocity is comparable to the group velocity, particularly in the central, southern, and eastern SCS. A case study suggests two possible energy sources for TRWs: mesoscale perturbation in the upper layer and large-scale background circulation in the deep layer. The former provides KE by pressure work, whereas the latter transfers the available potential energy (APE) through baroclinic instability.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2021-03-22
    Description: A small integrated oceanographic thermometer with a nominal response time of 1 s was affixed to a floating hose “sea snake” towed near the bow of a research vessel. The sensor measured the near-surface ocean temperature accurately and in agreement with other platforms. The effect of conduction and evaporation is modeled for a sensor impulsively alternated between water and air. Large thermal mass makes most sea snake thermometers insensitive to temperature impulses. The smaller 1-s thermometer cooled by evaporation, but the sensor never reached the wet bulb temperature. The cooling was less than 6% of the (~2.7 °C) difference between the ocean temperature and the wet bulb temperature in 99% of 2 s–1 samples. Filtering outliers, such as with a median, effectively removes the evaporative cooling effect from 1- or 10-minute average temperatures.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2021-03-22
    Description: This paper presents applications of wavelet artificial neural networks (WANN) to forecast rainfalls one, three, six, and twelve months in advance using lagged monthly rainfall, maximum, minimum temperatures, Southern Oscillation Index (SOI), Inter-decadal Pacific Oscillation (IPO), and Nino3.4 as predictors. Eight input datasets comprised of different combinations of predictive variables were used for ten candidate climate stations in Queensland, Australia. Datasets were split as 1908 to 1999 for the training of the model and 2000 to 2016 for the verification of the model. Also, the conventional Artificial Neural Network (ANN) model was developed with the same input datasets to compare with WANN results. Moreover, the skillfulness of the WANN was investigated with the current climate prediction system used by the Australian Bureau of Meteorology (BOM), Australian Community Climate Earth-System Simulator–Seasonal (ACCESS–S) as well as climatology forecasts. The comparisons showed that the WANN achieved the lowest errors for three-month lagged prediction with an average Root Mean Square Error (RMSE) of 38.6mm. In contrast, for the same lag-period, the average RMSEs from ANN, ACCESS-S, and climatology predictions were 72.2mm, 102.7mm, and 72.2mm, respectively. It is also found that the ANN underestimates the peak values with an average value of 49%, 47%, 52%, and 53% at one, three, six, and twelve months lead times, correspondingly. However, the corresponding peak values underestimation through the WANN were 0%, 1%, 22%, and 39%, respectively. This research provides promising insights into using hybrid methods for predicting rainfall a few months in advance, which is extremely beneficial for Australia’s agricultural industries.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2021-03-24
    Description: Soil moisture atmosphere interactions are key elements of the regional climate system. There is a well-founded hope that a more accurate representation of the soil moisture-precipitation feedback would improve the simulation of summer precipitation on daily to seasonal, to climate time scales. However, uncertainties have persistently remained as the simulated feedback is strongly sensitive to the model representation of deep convection. Here we assess the feedback representation using a GPU-accelerated version of the regional climate model COSMO. We simulate and compare the impact of continental-scale springtime soil-moisture anomalies on summer precipitation at convection-resolving (2.2 km) and convection-parameterizing resolution (12 km). We conduct re-analysis-driven simulations of 10 summer seasons (1999-2008) in continental Europe. While both simulations qualitatively agree on a positive sign of soil moisture-induced precipitation, they strongly differ in precipitation frequency: When convection is parameterized, wetter soil predominantly leads to more frequent precipitation events, and when convection is treated explicitly, they primarily become more intense. The results indicate that the sensitivity to soil moisture is stronger with parameterized convection, suggesting that the land surface-atmosphere coupling may be overestimated. In addition, the feedback’s sensitivity in complex terrain is assessed for soil perturbations of different horizontal scales. The convection-resolving simulations confirm a negative feedback for sub-continental soil moisture anomalies, which manifests itself in a local decrease of wet-hour frequency. However, the intensity feedback reinforces precipitation events at the same time (positive feedback). The two processes are represented differently in simulations with explicit and parameterized convection, explaining much of the difference between the two simulations.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2021-03-22
    Description: Although environmental controls on bulk supercell potential and hazards have been studied extensively, relationships between environmental conditions and temporal changes to storm morphology remain less explored. These relationships are examined in this study using a compilation of sounding data collected during field campaigns from 1994–2019 in the vicinity of 216 supercells. Environmental parameters are calculated from the soundings and related to storm-track characteristics like initial cell motion and the time of the right turn (i.e., the time elapsed between the cell initiation and the first time when the supercell obtains a quasi-steady motion that is directed clockwise from its initial motion.). We do not find any significant associations between environmental parameters and the time of the right turn. Somewhat surprisingly, no relationship is found between storm-relative environmental helicity and the time elapsed between cell initiation and the onset of deviant motion. Initial cell motion is best approximated by the direction of the 0–6-km mean wind at two-thirds the speed. This is a result of advection and propagation in the 0–4- and 0–2-km layers, respectively. Unsurprisingly, Bunkers-right storm motion is a good estimate of post-turn motion, but storms that exhibit a post-turn motion left of Bunkers-right are less likely to be tornadic. These findings are relevant for real-time forecasting efforts in predicting the path and tornado potential of supercells up to hours in advance.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2021-03-22
    Description: Ocean heat transport (OHT) plays a key role in climate and its variability. Here, we identify modes of low-frequency North Atlantic OHT variability by applying a low-frequency component analysis (LFCA) to output from three global climate models. The first low-frequency component (LFC), computed using this method, is an index of OHT variability that maximizes the ratio of low-frequency variance (occurring at decadal and longer timescales) to total variance. Lead-lag regressions of atmospheric and ocean variables onto the LFC timeseries illuminate the dominant mechanisms controlling low-frequency OHT variability. Anomalous northwesterly winds from eastern North America over the North Atlantic act to increase upper ocean density in the Labrador Sea region, enhancing deep convection, which later increases OHT via changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The strengthened AMOC carries warm, salty water into the subpolar gyre, reducing deep convection and weakening AMOC and OHT. This mechanism, where changes in AMOC and OHT are driven primarily by changes in Labrador Sea deep convection, holds not only in models where the climatological (i.e., time-mean) deep convection is concentrated in the Labrador Sea, but also in models where the climatological deep convection is concentrated in the Greenland-Iceland-Norwegian (GIN) Seas or the Irminger and Iceland Basins. These results suggest that despite recent observational evidence suggesting that the Labrador Sea plays a minor role in driving the climatological AMOC, the Labrador Sea may still play an important role in driving low-frequency variability in AMOC and OHT.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2021-03-24
    Description: The prediction skill of the North Atlantic Oscillation (NAO) in boreal winter is assessed in the operational models of the WCRP/WWRP Subseasonal-to-Seasonal (S2S) prediction project. Model performance in representing the contribution of different processes to the NAO forecast skill is evaluated. The S2S models with relatively higher stratospheric vertical resolutions (high-top models) are in general more skillful in predicting the NAO than those models with relatively lower stratospheric resolutions (low-top models). Comparison of skill is made between different groups of forecasts based on initial condition characteristics: phase and amplitude of the NAO, easterly and westerly phases of the quasi-biennial oscillation (QBO), warm and cold phases of ENSO, and phase and amplitude of the Madden-Julia Oscillation (MJO). The forecasts with a strong NAO in the initial condition are more skillful than with a weak NAO. Those with negative NAO tend to have more skillful predictions than positive NAO. Comparisons of NAO skill between forecasts during easterly and westerly QBO and between warm and cold ENSO show no consistent difference for the S2S models. Forecasts with strong initial MJO tend to be more skillful in the NAO prediction than weak MJO. Among the eight phases of MJO in the initial condition, phases 3-4 and phase 7 have better NAO forecast skills compared with the other phases.The results of this study have implications for improving our understanding of sources of predictability of the NAO. The situation dependence of the NAO prediction skill is likely useful in identifying “ windows of opportunity” for subseasonal to seasonal predictions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2021-03-22
    Description: Specialized features of vasculature in the central nervous system greatly limit therapeutic treatment options for many neuropathologies. Focused ultrasound, in combination with circulating microbubbles, can be used to transiently and noninvasively increase cerebrovascular permeability with a high level of spatial precision. For minutes to hours following sonication, drugs can be administered systemically to extravasate in the targeted brain regions and exert a therapeutic effect, after which permeability returns to baseline levels. With the wide range of therapeutic agents that can be delivered using this approach and the growing clinical need, focused ultrasound and microbubble (FUS+MB) exposure in the brain has entered human testing to assess safety. This review outlines the use of FUS+MB-mediated cerebrovascular permeability enhancement as a drug delivery technique, details several technical and biological considerations of this approach, summarizes results from the clinical trials conducted to date, and discusses the future direction of the field. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 23 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1523-9829
    Electronic ISSN: 1545-4274
    Topics: Medicine , Technology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2021-03-22
    Description: Plants have an extraordinary diversity of transcription machineries, including five nuclear DNA-dependent RNA polymerases. Four of these enzymes are dedicated to the production of long noncoding RNAs (lncRNAs), which are ribonucleic acids with functions independent of their protein-coding potential. lncRNAs display a broad range of lengths and structures, but they are distinct from the small RNA guides of RNA interference (RNAi) pathways. lncRNAs frequently serve as structural, catalytic, or regulatory molecules for gene expression. They can affect all elements of genes, including promoters, untranslated regions, exons, introns, and terminators, controlling gene expression at various levels, including modifying chromatin accessibility, transcription, splicing, and translation. Certain lncRNAs protect genome integrity, while others respond to environmental cues like temperature, drought, nutrients, and pathogens. In this review, we explain the challenge of defining lncRNAs, introduce the machineries responsible for their production, and organize this knowledge by viewing the functions of lncRNAs throughout the structure of a typical plant gene. Expected final online publication date for the Annual Review of Plant Biology, Volume 72 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1543-5008
    Electronic ISSN: 1545-2123
    Topics: Biology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2021-02-01
    Description: The problem of planning for a robot that operates in environments containing a large number of objects, taking actions to move itself through the world as well as to change the state of the objects, is known as task and motion planning (TAMP). TAMP problems contain elements of discrete task planning, discrete–continuous mathematical programming, and continuous motion planning and thus cannot be effectively addressed by any of these fields directly. In this article, we define a class of TAMP problems and survey algorithms for solving them, characterizing the solution methods in terms of their strategies for solving the continuous-space subproblems and their techniques for integrating the discrete and continuous components of the search. Expected final online publication date for the Annual Review of Control, Robotics, and Autonomous Systems, Volume 4 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Electronic ISSN: 2573-5144
    Topics: Electrical Engineering, Measurement and Control Technology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2021-02-01
    Description: Multiple sclerosis (MS) is a chronic disease that is characterized by the inappropriate invasion of lymphocytes and monocytes into the central nervous system (CNS), where they orchestrate the demyelination of axons, leading to physical and cognitive disability. There are many reasons immunologists should be interested in MS. Aside from the fact that there is still significant unmet need for patients living with the progressive form of the disease, MS is a case study for how immune cells cross CNS barriers and subsequently interact with specialized tissue parenchymal cells. In this review, we describe the types of immune cells that infiltrate the CNS and then describe interactions between immune cells and glial cells in different types of lesions. Lastly, we provide evidence for CNS-compartmentalized immune cells and speculate on how this impacts disease progression for MS patients. Expected final online publication date for the Annual Review of Immunology, Volume 39 is April 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0732-0582
    Electronic ISSN: 1545-3278
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2021-02-01
    Description: This study presents results from the Polar Amplification Multimodel Intercomparison Project (PAMIP) single-year time-slice experiments that aim to isolate the atmospheric response to Arctic sea ice loss at global warming levels of +2°C. Using two General Circulation Models (GCMs), the ensemble size is increased up to 300 ensemble members, beyond the recommended 100 members. After partitioning the response in groups of 100-ensemble members, the reproducibility of the results is evaluated, with a focus on the response of the mid-latitude jet streams in the North Atlantic and North Pacific. Both atmosphere-only and coupled ocean-atmosphere PAMIP experiments are analyzed. Substantial differences in the mid-latitude response are found among the different experiment subsets, suggesting that 100-member ensembles are still significantly influenced by internal variability, which can mislead conclusions. Despite an overall stronger response, the coupled ocean-atmosphere runs exhibit greater spread due to additional ENSO-related internal variability when the ocean is interactive. The lack of consistency in the response is true for anomalies that are statistically significant according to Student’s-t and False Discovery Rate tests. This is problematic for the multi-model assessment of the response, as some of the spread may be attributed to different model sensitivities while it is due to internal variability. We propose a method to overcome this consistency issue, that allows for more robust conclusions when only 100 ensemble members are used.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2021-03-22
    Description: Ancillary information that exists within rain gauge and radar-based data sets provides opportunities to better identify error and bias between the two observing platforms as compared to error and bias statistics without ancillary information. These variables include precipitation type identification, air temperature, and radar quality. There are two NEXRAD based data sets used for reference; the National Centers for Environmental Prediction (NCEP) stage IV and the NOAA NEXRAD Reanalysis (NNR) gridded data sets. The NCEP stage IV data set is available at 4km hourly and includes radar-gauge bias adjusted precipitation estimates. The NNR data set is available at 1km at 5-minute and hourly time intervals and includes several different variables such as reflectivity, radar-only estimates, precipitation flag, radar quality indicator, and radar-gauge bias adjusted precipitation estimates. The NNR data product provides additional information to apply quality control such as identification of precipitation type, identification of storm type and Z-R relation. Other measures of quality control are a part of the NNR data product development. In addition, some of the variables are available at 5-minute scale. We compare the radar-based estimates with the rain gauge observations from the U.S. Climate Reference Network (USCRN). The USCRN network is available at the 5-minute scale and includes observations of air temperature, wind, and soil moisture among others. We present statistical comparisons of rain gauge observations with radar-based estimates by segmenting information based on precipitation type, air temperature, and radar quality indicator.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2021-03-24
    Description: Current-topography interactions in the ocean give rise to eddies spanning a wide range of spatial and temporal scales. Latest modeling efforts indicate that coastal and underwater topography are important generation sites for submesoscale coherent vortices (SCVs), characterized by horizontal scales of (0.1 – 10) km. Using idealized, submesoscale and BBL-resolving simulations and adopting an integrated vorticity balance formulation, we quantify precisely the role of bottom boundary layers (BBLs) in the vorticity generation process. In particular, we show that vorticity generation on topographic slopes is attributable primarily to the torque exerted by the vertical divergence of stress at the bottom. We refer to this as the Bottom Stress Divergence Torque (BSDT). BSDT is a fundamentally nonconservative torque that appears as a source term in the integrated vorticity budget and is to be distinguished from the more familiar Bottom Stress Curl (BSC). It is closely connected to the bottom pressure torque (BPT) via the horizontal momentum balance at the bottom and is in fact shown to be the dominant component of BPT in solutions with a well-resolved BBL. This suggests an interpretation of BPT as the sum of a viscous, vorticity generating component (BSDT) and an inviscid, ‘flow-turning ’ component. Companion simulations without bottom drag illustrate that although vorticity generation can still occur through the inviscid mechanisms of vortex stretching and tilting, the wake eddies tend to have weaker circulation, be substantially less energetic, and have smaller spatial scales.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2021-03-22
    Description: The response of the meridional overturning circulation (MOC) to changes in Southern Ocean (SO) zonal wind forcing and Pacific basin vertical diffusivity is investigated under varying buoyancy forcings, corresponding to ‘warm’, ‘present-day’ and ‘cold’ states, in a two-basin general circulation model connected by a southern circumpolar channel. We find that the Atlantic MOC (AMOC) strengthens with increased SO wind stress or diffusivity in the model Pacific, under all buoyancy forcings. The sensitivity of the AMOC to wind stress increases as the buoyancy forcing is varied from a warm to a present-day or cold state, whereas it is most sensitive to the Pacific diffusivity in a present-day or warm state. Similarly, the AMOC is more sensitive to buoyancy forcing over the Southern Ocean under reduced wind stress or enhanced Pacific diffusivity. These results arise because of the increased importance of the Pacific pathway in the warmer climates, giving an increased linkage between the basins and so the opportunity for the diffusivity in the Pacific to affect the overturning in the Atlantic. In cooler states, such as in glacial climates, the two basins are largely decoupled and the wind strength over the SO is the primary determinant of the AMOC strength. Both wind- and diffusively-driven upwelling sustain the AMOC in the warmer (present-day) state. Changes in SO wind stress alone do not shoal the AMOC to resemble that observed at the last glacial maximum; changes in the buoyancy forcing are also needed to decouple the two basins.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    Publication Date: 2021-03-24
    Description: A previous study of currents in the Gulf of Mexico by the author used long-term means from three independent data sources. Ship-drift results are in good agreement with surface drifters, but these two do not agree with satellite sea-surface heights (SSH). The agreement between the first two suggested the possibility that there could be errors in the SSH or that the mean surface flow is not in geostrophic balance. The present results, using the addition of a fourth long-term mean from hydrographic data, which agrees with the SSH, resolves the issue. The lack of agreement between different long-term means is from inadequate coverage in space and time in data from ship drifts and drifters.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2021-03-22
    Description: The CSIRO Climate retrospective Analysis and Forecast Ensemble system: version 1 (CAFE60v1) provides a large (96 member) ensemble retrospective analysis of the global climate system from 1960 to present with sufficiently many realizations and at spatio-temporal resolutions suitable to enable probabilistic climate studies. Using a variant of the ensemble Kalman filter, 96 climate state estimates are generated over the most recent six decades. These state estimates are constrained by monthly mean ocean, atmosphere and sea ice observations such that their trajectories track the observed state while enabling estimation of the uncertainties in the approximations to the retrospective mean climate over recent decades. For the atmosphere, we evaluate CAFE60v1 in comparison to empirical indices of the major climate teleconnections and blocking with various reanalysis products. Estimates of the large scale ocean structure, transports and biogeochemistry are compared to those derived from gridded observational products and climate model projections (CMIP). Sea ice (extent, concentration and variability) and land surface (precipitation and surface air temperatures) are also compared to a variety of model and observational products. Our results show that CAFE60v1 is a useful, comprehensive and unique data resource for studying internal climate variability and predictability, including the recent climate response to anthropogenic forcing on multi-year to decadal time scales.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2021-03-22
    Description: We detail the system design, model configuration and data assimilation evaluation for the CSIRO Climate retrospective Analysis and Forecast Ensemble system: version 1. CAFE60v1 has been designed with the intention of simultaneously generating both initial conditions for multi-year climate forecasts and a large ensemble retrospective analysis of the global climate system from 1960 to present. Strongly coupled data assimilation (SCDA) is implemented via an ensemble transform Kalman filter in order to constrain a general circulation climate model to observations. Satellite (altimetry, sea surface temperature, sea ice concentration) and in-situ ocean temperature and salinity profiles are directly assimilated each month, whereas atmospheric observations are sub-sampled from the JRA-55 atmospheric reanalysis. Strong coupling is implemented via explicit cross domain covariances between ocean, atmosphere, sea ice and ocean biogeochemistry. Atmospheric and surface ocean fields are available at daily resolution and monthly resolution for the land, subsurface ocean and sea ice. The system produces 96 climate trajectories (state estimates) over the most recent six decades as well as a complete data archive of initial conditions potentially enabling individual forecasts for all members each month over the 60 year period. The size of the ensemble and application of strongly coupled data assimilation lead to new insights for future reanalyses.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2021-03-24
    Description: The intermediate circulation of the Strait of Georgia, British Columbia, Canada, plays a key role in dispersing contaminants throughout the Salish Sea, yet little is known about its dynamics. Here, we use hydrographic observations and hindcast fields from a regional 3D model to approach the intermediate circulation from three perspectives. Firstly, we derive and model a “seasonality” tracer from temperature observations to age the water, estimate mixing, and infer circulation. Secondly, we analyze modeled velocity fields to create mean current maps and examine the advective and diffusive components of the mean flow field. Lastly, we calculate Lagrangian trajectories to derive Transit Time Distributions and Lagrangian statistics. In combination, these analyses provide an overview of the mean intermediate circulation that can be summarized as follows: subducting water in Haro Strait ventilates the intermediate water primarily via an up-strait boundary current that flows along the eastern shores of the southernmost basin in 1–2 months. This inflowing water is either incorporated into the interior of the basin, recirculated southwards, or transported into the northernmost basin, mixing steadily with adjacent water masses during its transit. A second, shallower ventilating jet emanates southwards from Discovery Passage, locally modifying the Haro Strait inflow signal. Outside of these well-defined advective features, diffusive transport dominates in the majority of the region. The intermediate renewal signal fully ventilates the region in 100–140 days, which serves as a benchmark for contaminant dispersal timescale estimates.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2021-03-22
    Description: Paleogeography is the study of the changing surface of Earth through time. Driven by plate tectonics, the configuration of the continents and ocean basins has been in constant flux. Plate tectonics pushes the land surface upward or pulls it apart, causing its collapse. All the while, the unrelenting forces of climate and weather slowly reduce mountains to sand and mud and redistribute these sediments to the sea. This article reviews the changing paleogeography of the past 600 million years. It describes the broad patterns of Phanerozoic paleogeography as well as many of the specific paleogeographic events that have shaped the modern continents and ocean basins. The focus is on the changing latitudinal distribution of the continents, fluctuations in sea level, the opening and closing of oceanic seaways, mountain building, and how these paleogeographic changes have affected global climate, ocean circulation, and the evolution of life. This review presents an atlas of 114 paleogeographic maps that illustrate how Earth's surface has evolved during the past 600 million years. During that time interval, Earth has witnessed the formation and breakup of two supercontinents: Pannotia and Pangea. The continents have been transformed from low-lying flooded platforms to high-standing land areas crisscrossed by the scars of past continental collisions. Oceans have opened and closed, and then opened again in a seemingly never-ending cycle. ▪ The changing configuration of the continents and ocean basins during the past 750 million years is illustrated in 114 paleogeographic maps. ▪ These maps describe how the surface of Earth has been continually modified by mountain building and erosion. ▪ The changing paleogeography has affected global climate, ocean circulation, and the evolution of life. ▪ The data and methods used to produce the maps are described in detail. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2021-03-22
    Description: As a frontal node in the primate social brain, the medial prefrontal cortex (MPFC) plays a critical role in coordinating one's own behavior with respect to that of others. Current literature demonstrates that single neurons in the MPFC encode behavior-related variables such as intentions, actions, and rewards, specifically for self and other, and that the MPFC comes into play when reflecting upon oneself and others. The social moderator account of MPFC function can explain maladaptive social cognition in people with autism spectrum disorder, which tips the balance in favor of self-centered perspectives rather than taking into consideration the perspective of others. Several strands of evidence suggest a hypothesis that the MPFC represents different other mental models, depending on the context at hand, to better predict others’ emotions and behaviors. This hypothesis also accounts for aberrant MPFC activity in autistic individuals while they are mentalizing others. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2021-03-22
    Description: The Cassini-Huygens mission that explored the Saturn system during the period 2004–2017 revolutionized our understanding of Titan, the only known moon with a dense atmosphere and the only body, besides Earth, with stable surface liquids. Its predominantly nitrogen atmosphere also contains a few percent of methane that is photolyzed on short geological timescales to form ethane and more complex organic molecules. The presence of a significant amount of methane and 40Ar, the decay product of 40K, argues for exchange processes from the interior to the surface. Here we review the information that constrains Titan's interior structure. Gravity and orbital data suggest that Titan is an ocean world, which implies differentiation into a hydrosphere and a rocky core. The mass and gravity data complemented by equations of state constrain the ocean density and composition as well as the hydrosphere thickness. We present end-member models, review the dynamics of each layer, and discuss the global evolution consistent with the Cassini-Huygens data. ▪ Titan is the only moon with a dense atmosphere where organic molecules are synthesized and have sedimented at the surface. ▪ The Cassini-Huygens mission demonstrated that Titan is an ocean world with an internal water shell and liquid hydrocarbon seas at the poles. ▪ Interactions between water, rock, and organics may have occurred during most of Titan's evolution, which has strong astrobiological implications. ▪ Data collected by the Dragonfly mission and comparison with the JUpiter ICy moons Explorer (JUICE) data for Ganymede will further reveal Titan's astrobiology potential. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2021-03-23
    Description: The occurrence of environmental disasters affects different social segments, impacting health, education, housing, economy and the provision of basic services. Thus, the objective of this study was to estimate the relationship between the occurrence of disasters and extreme climate, sociosanitary and demographic conditions in the Northeast region of Brazil during the period from 1993 to 2013. Initially, we analyzed the spatial pattern of the incidence of events and, subsequently, generalized additive models for location, scale and shape were used in order to identify and estimate the magnitude of associations between factors. Results showed that droughts are the predominant disasters in the NEB representing 81.1% of the cases, followed by events triggered by excessive rainfall such as flash floods (11.1%) and floods (7.8%). Climate conditions presented statistically significant associations with the analyzed disasters, in which indicators of excess rainfall positively contributed to the occurrence of flash floods and floods, but negatively contributed to the occurrence of drought. Sociosanitary factors, such as percentage of households with inadequate sewage, waste collection and water supply, were also positively associated with the model’s estimations, i.e., contributing to an increase in the occurrence of events, with the exception of floods, which were not significantly influenced by sociosanitary parameters. A decrease of 19% in the risk of drought occurrence was estimated, on average. On the other hand, events caused by excessive rainfall increased by 40% and 57%, in the cases of flash floods and floods, respectively.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2021-03-23
    Description: Variability in the tropical atmosphere is concentrated at wavenumber-frequency combinations where linear theory indicates wave-modes can freely propagate, but with substantial power in between. This study demonstrates that such a power spectrum can arise from small scale convection triggering large scale waves via wave-wave interactions in a moderately turbulent fluid. Two key pieces of evidence are provided for this interpretation of tropical dynamics using a nonlinear rotating shallow water model: a parameter sweep experiment in which the amplitude of an external forcing is gradually ramped up, and also an external forcing in which only symmetric or only anti-symmetric modes are forced. These experiments do not support a commonly accepted mechanism involving the forcing projecting directly onto the wave-modes with a strong response, yet still simulate a power spectrum resembling that observed, though the linear projection mechanism could still complement the mechanism proposed here in observations. Interpreting the observed tropical power spectrum using turbulence offers a simple explanation as to why power should be concentrated at the theoretical wave-modes, and also provides a solid footing for the common assumption that the back-ground spectrum is red, even as it clarifies why there is no expectation for a turbulent cascade with a specific, theoretically derived slope such as -5/3. However it does explain why the cascade should be towards lower wavenumbers, that is an inverse energy cascade, similar to the midlatitudes even as compressible wave-modes are important for tropical dynamics.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2021-03-23
    Description: Since the tragic tornado outbreaks in Central Alabama and Joplin, Missouri in 2011, the National Weather Service (NWS) has increasingly emphasized the importance of supporting community partners who help protect public safety. Through impact-based decision support services (IDSS), NWS forecasters develop relationships with their core partners to meet their partners’ decision-making needs. IDSS presents a fundamental shift in NWS forecasting through highlighting the importance of connecting with partners instead of simply providing partners with forecasts. A critical challenge to the effective implementation of IDSS is a lack of social science research evaluating the success of IDSS. This paper addresses this gap through a cross-sectional survey with 119 NWS forecasters and managers in the Central and Southern regions of the U.S. Findings uncover how NWS forecasters and management team members evaluate the importance of IDSS. Findings also provide a new instrument for NWS field offices to assess and improve their relationships with core partners.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2021-03-23
    Description: Radiocarbon dates of fossil carbonates sampled from sediment cores and the seafloor have been used to infer that deep ocean ventilation during the last ice age was different from today. In this first of paired papers, the time-averaged abyssal circulation in the modern Atlantic is estimated by combining a hydrographic climatology, observational estimates of volume transports, Argo float velocities at 1000 m, radiocarbon data, and geostrophic dynamics. Different estimates of modern circulation, obtained from different prior assumptions about the abyssal flow and different errors in the geostrophic balance, are produced for use in a robust interpretation of fossil records in terms of deviations from the present-day flow, which is undertaken in the second paper.For all estimates, the meridional transport integrated zonally and averaged over a hemisphere, 〈Vk〉, is southward between 1000-4000 m in both hemispheres, northward between 4000-5000 m in the South Atlantic, and insignificant between 4000-5000 m in the North Atlantic. Estimates of 〈Vk〉 obtained from two distinct prior circulations - one based on a level of no motion at 4000 m and one based on Argo oat velocities at 1000 m - become statistically indistinguishable when Δ14C data are considered. The transport time scale, defined as τk = /〈Vk〉, where is the volume of the kth layer, is estimated to about a century between 1000-3000 m in both the South and North Atlantic, 124±9 yr (203±23 yr) between 3000-4000 m in the South (North) Atlantic, and 269±115 yr between 4000-5000 m in the South Atlantic.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2021-03-24
    Description: Here, the research field of nanoplasmonic sensors is placed under scrutiny, with focus on affinity-based detection using refractive index changes. This review describes how nanostructured plasmonic sensors can deliver unique advantages compared to the established surface plasmon resonance technique, where a planar metal surface is used. At the same time, it shows that these features are actually only useful in quite specific situations. Recent trends in the field are also discussed and some devices that claim extraordinary performance are questioned. It is argued that the most important challenges are related to limited receptor affinity and nonspecific binding rather than instrumental performance. Although some nanoplasmonic sensors may be useful in certain situations, it seems likely that conventional surface plasmon resonance will continue to dominate biomolecular interaction analysis. For detection of analytes in complex samples, plasmonics may be an important tool, but probably not in the form of direct refractometric detection. Expected final online publication date for the Annual Review of Analytical Chemistry, Volume 14 is June 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1936-1327
    Electronic ISSN: 1936-1335
    Topics: Chemistry and Pharmacology
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2021-03-24
    Description: Advances in the instrumentation and signal processing for simultaneously acquired electroencephalography and functional magnetic resonance imaging (EEG-fMRI) have enabled new ways to observe the spatiotemporal neural dynamics of the human brain. Central to the utility of EEG-fMRI neuroimaging systems are the methods for fusing the two data streams, with machine learning playing a key role. These methods can be dichotomized into those that are symmetric and asymmetric in terms of how the two modalities inform the fusion. Studies using these methods have shown that fusion yields new insights into brain function that are not possible when each modality is acquired separately. As technology improves and methods for fusion become more sophisticated, the future of EEG-fMRI for noninvasive measurement of brain dynamics includes mesoscale mapping at ultrahigh magnetic resonance fields, targeted perturbation-based neuroimaging, and using deep learning to uncover nonlinear representations that link the electrophysiological and hemodynamic measurements. Expected final online publication date for the Annual Review of Neuroscience, Volume 44 is July 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0147-006X
    Electronic ISSN: 1545-4126
    Topics: Biology , Medicine
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2021-03-10
    Description: Infrequent lightning flashes occurring outside of surface precipitation pose challenges to Impact-based Decision Support Services (IDSS) for outdoor activities. This paper examines the remote sensing observations from an event on 20 August 2019 where multiple cloud-to-ground flashes occurred over 10 km outside surface precipitation (lowest radar tilt reflectivity
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2021-03-10
    Description: Studies of biological systems and materials, together with recent experimental and theoretical advances in colloidal and nanoscale materials, have shown how nonequilibrium forcing can be used to modulate organization in many novel ways. In this review, we focus on how an accounting of energy dissipation, using the tools of stochastic thermodynamics, can constrain and provide intuition for the correlations and configurations that emerge in a nonequilibrium process. We anticipate that the frameworks reviewed here can provide a starting point to address some of the unique phenomenology seen in biophysical systems and potentially replicate them in synthetic materials.
    Print ISSN: 1947-5454
    Electronic ISSN: 1947-5462
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2021-03-10
    Description: This study evaluates the historical climatology and future changes of the atmospheric water cycle for the Laurentian Great Lakes region using 15 Coupled Model Intercomparison Project Phase 6 (CMIP6) models. While the models have unique seasonal characteristics in the historical (1981 – 2010) simulations, common patterns emerge by the mid-century SSP2-4.5 scenario (2041 – 2070), including a prevalent shift in the precipitation seasonal cycle with summer drying and wetter winter-spring months, and a ubiquitous increase in the magnitudes of convective precipitation, evapotranspiration, and moisture inflow into the region. The seasonal cycle of moisture flux convergence is amplified (i.e., the magnitude of winter convergence and summer divergence increases), which is the primary driver of future total precipitation changes. Precipitation recycling ratio is also projected to decline in summer and increase in winter by the mid-century, signifying a larger contribution of the regional moisture (via evapotranspiration) to total precipitation in the colder months. Many models (6/15) do not include representation of the Great Lakes, while others (4/15) have major inconsistencies in how the lakes are simulated both in terms of spatial representation and treatment of lake processes. In models with some lake presence, contribution of lake grid cells to the regional evapotranspiration magnitude can be more than 50% in winter. In future, winter months have a larger increase in evaporation over water surfaces than the surrounding land, which corroborates past findings of sensitivity of deep lakes to climate warming and highlights the importance of lake representation in these models for reliable regional hydroclimatic assessments.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2021-03-16
    Description: 1-second resolution US radiosonde data are analyzed for unstable layers, where the potential temperature decreases with increasing altitude, in the troposphere and lower stratosphere (LS). Care is taken to exclude spurious unstable layers arising from noise in the soundings and also to allow for the destabilizing influence of water vapor in saturated layers. Riverton, WY, and Greensboro, NC, in the extratropics, are analyzed in detail, where it is found that the annual and diurnal variations are largest, and the interannual variations are smallest in the LS. More unstable layer occurrences in the LS at Riverton are found at 00 UT, while at Greensboro, more unstable layer occurrences in the LS are at 12 UT, consistent with a geographical pattern where greater unstable layer occurrences in the LS are at 00 UT in the western US, while greater unstable layer occurrences are at 12 UT in the eastern US. The picture at Koror, Palau, in the tropics is different in that the diurnal and interannual variations in unstable layer occurrences in the LS are largest, with much smaller annual variations. At Koror, more frequent unstable layer occurrences in the LS occur at 00 UT. Also, a “notch” in the frequencies of occurrence of thin unstable layers at about 12 km is observed at Koror, with large frequencies of occurrence of thick layers at that altitude. Histograms are produced for the two midlatitude and one tropical station analyzed. The log-log slopes for troposphere histograms are in reasonable agreement with earlier results, but the LS histograms show a steeper log-log slope, consistent with more thin unstable layers and less thick unstable layers there. Some radiosonde stations are excluded from this analysis since a marked change in unstable layer occurrences was identified when a change in radiosonde instrumentation occurred.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2021-03-18
    Description: Super El Niño has been a research focus since the first event occurred. Based on observations and models, we propose that a super El Niño emerges if El Niño is an early-onset type coincident with the distribution of an Atlantic Niña (AN) in summer and a positive Indian Ocean Dipole (IOD) in autumn which is called Indo-Atlantic Booster (IAB). The underlying physical mechanisms refer to three-ocean interactions with seasonality. Early onset endows super El Niño with adequate strength in summer to excite wind-driven responses over the Indian and Atlantic Oceans, which further facilitate IAB formation by coupling with the seasonal cycle. In return, IAB alternately produces additional zonal winds over the Pacific (U), augmenting super El Niño via the Bjerknes feedback. Adding AN and IOD indices into the regression model of U leads to a better performance than the single Niño3.4 model, with a rise in the total explained variances by 10–20% and a reduction in the misestimations of super El Niños by 50%. Extended analyses using Coupled Model Intercomparison Project models further confirm the sufficiency and necessity of early onset and IAB on super El Niño formation. Approximately, 70% of super El Niños are early-onset types accompanied by IAB and 60% of early-onset El Niños with IAB finally grow into extreme events. These results highlight the super El Niño as an outcome of pantropical interactions, so including both the Indian and Atlantic Oceans and their teleconnections with the Pacific will greatly improve super El Niño prediction.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2021-03-18
    Description: Texas is subject to severe droughts, including the record-breaking one in 2011. To investigate the critical hydrometeorological processes during drought, we use a land surface model, Noah-MP, to simulate water availability and investigate the causes of the record drought. We conduct a series of experiments with runoff schemes, vegetation phenology, and plant rooting depth. Observation-based terrestrial water storage, evapotranspiration, runoff, and leaf area index are used to compare with results from the model. Overall, the results suggest that using different parameterizations can influence the modeled water availability, especially during drought. The drought-induced vegetation responses not only interact with water availability but also affect the ground temperature. Our evaluation shows that Noah-MP with a groundwater scheme produces a better temporal relationship in terrestrial water storage compared with observations. Leaf area index from dynamic vegetation is better simulated in wet years than dry years. Reduction of positive biases in runoff and reduction of negative biases in evapotranspiration are found in simulations with groundwater, dynamic vegetation, and deeper rooting zone depth. Multi-parameterization experiments show the uncertainties of drought monitoring and provide a mechanistic understanding of disparities in dry anomalies.
    Print ISSN: 1525-755X
    Electronic ISSN: 1525-7541
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2021-03-18
    Description: Based on daily data from the Japanese 55-year Reanalysis (JRA-55) covering the springs from 1958 to 2018, this study examines the formation mechanisms and climate impacts of springtime western Pacific (WP) pattern as subseasonal climate variability over North Pacific. Results suggest that the springtime WP pattern arises from a weak dipole-like disturbance over North Pacific and disturbances over East Asia. The energetic analysis suggests that the baroclinic energy conversion acts as an important energy source to balance the available potential energy loss caused by transient eddies and diabatic heating and acts as a kinetic energy (KE) source for the WP pattern. For the feedback forcing by total transient eddies, it acts as a major KE source for the WP pattern before day 0 and acts as a strong KE sink after day 0. It turns out that the barotropic energy conversion makes only weak KE contribution to the WP pattern.Once the WP pattern forms, East Asia and North America experience strong surface air temperature anomalies of opposite signs, while strong sea surface temperature anomalies are found to occur over mid-latitude and tropical North Pacific at the same time. Concurrently, the Pacific jet and the storm track shift north-southward around their climatological position. In addition, a dipole-like shallow convective anomaly appears over mid-latitude North Pacific, and a band of anomalous deep convection tends to occur in the tropics as the energy of the WP pattern propagates into the region.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2021-03-10
    Description: Properly fitting ocean models to observations is crucial for improving model performance and understanding ocean dynamics. Near-surface velocity measurements from the Global Drifter Program (GDP) contain valuable information about upper ocean circulation and air-sea fluxes on various space and time scales. This study explores whether GDP measurements can be used for usefully constraining the surface circulation from coarse-resolution ocean models, using global solutions produced by the consortium for Estimating the Circulation and Climate of the Ocean (ECCO) as an example. To address this problem, a careful examination of velocity data errors is required. Comparisons between an ECCO model simulation, performed without any data constraints, and GDP and Ocean Surface Current Analyses Real-time (OSCAR) velocity data, over the period 1992–2017, reveal considerable differences in magnitude and pattern. These comparisons are used to estimate GDP data errors in the context of the time-mean and time-variable surface circulations. Both instrumental errors and errors associated with limitations in model physics and resolution (representation errors) are considered. Given the estimated model-data differences, errors and signal-to-noise ratios, our results indicate that constraining ocean state estimates to GDP can have a substantial impact on the ECCO large-scale time-mean surface circulation over extensive areas. Impact of GDP data constraints on the ECCO time-variable circulation would be weaker and mainly limited to low latitudes. Representation errors contribute substantially to degrading the data impacts.
    Print ISSN: 0739-0572
    Electronic ISSN: 1520-0426
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2021-03-10
    Description: Symmetric instability (SI) extracts kinetic energy from fronts in the surface mixed layer (SML), potentially affecting the SML structure and dynamics. Here, a global submesoscale-permitting ocean model named MITgcm LLC4320 simulation is used to examine the Stone (1966) linear prediction of the maximum SI scale to estimate grid spacings needed to begin resolving SI. Furthermore, potential effects of SI on the usable wind-work are estimated roughly: this estimate of SI “activity” is useful for assessing if these modes should be resolved or parameterized. The maximum SI scale varies by latitude with median values of 568 m to 23 m. Strong seasonality is observed in the SI scale and activity. The median scale in winter is 188 m globally, 2.5 times of that of summer (75 m). SI is more active in winter: 15% of the time compared with 6% in summer. The strongest SI activity is found in the western Pacific, western Atlantic, and Southern Oceans. The required grid spacings for a global model to begin resolving SI eddies in the SML are 24 m (50% of regions resolved) and 7.9 m (90%) in winter, decreasing to 9.4 m (50%) and 3.6 m (90%) in summer. It is also estimated that SI may reduce usable wind-work by an upper bound of 0.83 mW m−2 globally, or 5% of the global magnitude. The sensitivity of these estimates to empirical thresholds is provided in the text.
    Print ISSN: 0022-3670
    Electronic ISSN: 1520-0485
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2021-03-10
    Description: Operational Arctic sea ice forecasts are of crucial importance to science and to society in the Arctic region. Currently, statistical and numerical climate models are widely used to generate the Arctic sea ice forecasts at weather time-scales. Numerical models require near real-time input of relevant environmental conditions consistent with the model equations and they are computationally expensive. In this study, we propose a deep learning approach, namely Convolutional Long Short Term Memory Networks (ConvLSTM), to forecast sea ice in the Barents Sea at weather to sub-seasonal time scales. This is an unsupervised learning approach. It makes use of historical records and it exploits the covariances between different variables, including spatial and temporal relations. With input fields from reanalysis data, we demonstrate that ConvLSTM is able to learn the variability of the Arctic sea ice and can forecast regional sea ice concentration skillfully at weekly to monthly time scales. It preserves the physical consistency between predictors and predictands, and generally outperforms forecasts with climatology, persistence and a statistical model. Based on the known sources of predictability, sensitivity tests with different climate fields as input for learning were performed. The impact of different predictors on the quality of the forecasts are evaluated and we demonstrate that the surface energy budget components have a large impact on the predictability of sea ice at weather time scales. This method is promising to enhance operational Arctic sea ice forecasting in the near future.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2021-03-10
    Description: The recent development of artificially fabricated van der Waals nanostructures makes it possible to design and control the symmetry of solids and to find novel physical properties and related functionalities. A characteristic physical property reflecting such symmetry breaking is the nonlinear response, which is typically studied as the second harmonic generation of light, although studies have recently expanded to include various transport phenomena. An important aspect of nonlinear transport for modern condensed matter physics is that it is not only a unique functionality of noncentrosymmetric systems but also an emergent property reflecting underlying physics such as spin–orbit interaction, superconductivity, magnetism, and band geometry/topology. In this article, we review the nonlinear electrical transport in noncentrosymmetric van der Waals nanostructures obtained by exfoliation, nano-structure fabrication, or the application of an electric field, in particular, nonreciprocal transport resulting from inversion symmetry breaking and the bulk photovoltaic effect in nanomaterials without conventional p- n junctions.
    Print ISSN: 1947-5454
    Electronic ISSN: 1947-5462
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2021-03-12
    Description: Tornadoes cause billions of dollars in damage and over 100 fatalities on average annually. Yet, an indirect cost to these storms is found in lost sales and/or lost productivity from responding to over 2,000 warnings per year. This project responds to the Weather Research and Forecasting Innovation Act of 2017, H.R. 353, which calls for the use of social and behavioral science to study and improve storm warning systems. Our goal is to provide an analysis of cost avoidance that could accrue from a change to the warning paradigm, particularly to include probabilistic hazard information at storm scales. A survey of nearly 500 firms was conducted in and near the Dallas/Fort Worth metropolitan area asking questions about experience with tornadoes, sources of information for severe weather, expected cost of responding to tornado warnings and how the firm would respond to either deterministic or probabilistic warnings. We find a dramatic change from deterministic warnings compared to the proposed probabilistic and that a probabilistic information system produces annual cost avoidance in a range of $2.3 to $7.6 billion compared to the current deterministic warning paradigm.
    Print ISSN: 0882-8156
    Electronic ISSN: 1520-0434
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2021-03-12
    Description: The ability of cells to generate mechanical forces, but also to sense, adapt to, and respond to mechanical signals, is crucial for many developmental, postnatal homeostatic, and pathophysiological processes. However, the molecular mechanisms underlying cellular mechanotransduction have remained elusive for many decades, as techniques to visualize and quantify molecular forces across individual proteins in cells were missing. The development of genetically encoded molecular tension sensors now allows the quantification of piconewton-scale forces that act upon distinct molecules in living cells and even whole organisms. In this review, we discuss the physical principles, advantages, and limitations of this increasingly popular method. By highlighting current examples from the literature, we demonstrate how molecular tension sensors can be utilized to obtain access to previously unappreciated biophysical parameters that define the propagation of mechanical forces on molecular scales. We discuss how the methodology can be further developed and provide a perspective on how the technique could be applied to uncover entirely novel aspects of mechanobiology in the future. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1936-122X
    Electronic ISSN: 1936-1238
    Topics: Biology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2021-02-18
    Description: An emergent constraint (EC) is a popular model evaluation technique, which offers the potential to reduce intermodel variability in projections of climate change. Two examples have previously been laid out for future surface albedo feedbacks (SAF) stemming from loss of Northern Hemisphere (NH) snow cover (SAFsnow) and sea ice (SAFice). These processes also have a modern-day analog that occurs each year as snow and sea ice retreat from their seasonal maxima, which is strongly correlated with future SAF across an ensemble of climate models. The newly released CMIP6 ensemble offers the chance to test prior constraints through out-of-sample verification, an important examination of EC robustness. Here, we show that the SAFsnow EC is equally strong in CMIP6 as it was in past generations, while the SAFice EC is also shown to exist in CMIP6, but with different, slightly weaker characteristics. We find that the CMIP6 mean NH SAF exhibits a global feedback of 0.25 ± 0.05 Wm-2K-1, or ∼61% of the total global albedo feedback, largely in line with prior generations despite its increased climate sensitivity. The NH SAF can be broken down into similar contributions from snow and sea ice over the 21st century in CMIP6. Crucially, intermodel variability in seasonal SAFsnow and SAFice is largely unchanged from CMIP5 because of poor outlier simulations of snow cover, surface albedo, and sea ice thickness. These outliers act to mask the noted improvement from many models when it comes to SAFice, and to a lesser extent SAFsnow.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2021-02-02
    Description: Multisource satellite remote sensing data have been used to analyze the strong upwelling event off the southern coast of Sri Lanka in 2013 and its relationship with Indian Ocean Dipole (IOD) events. The upwelling area in 2013 is 5.7 times larger than that in a normal year, and lasts from June to August, with the peaks of the cooling anomaly reaching -1.5 °C and the positive chlorophyll-a concentration anomaly exceeding 3.1 mg m-3. In 2013, the negative unseasonable IOD (IODJJA) event enhances the southwest monsoon, while the blocking of the monsoon wind by the island results in a stronger westerly/northwesterly wind stress off the southern coast of Sri Lanka and a weaker westerly/northwesterly wind stress over the eastern Sri Lanka waters. This causes stronger offshore transport and positive Ekman pumping off the southern coast, forming a strong upwelling event there. Further analysis indicates that the interannual variability of the upwelling, as represented by a newly constructed index based on satellite observations, is primarily caused by the variations of local wind associated with the IOD. The upwelling off the southern coast of Sri Lanka weakens (strengthens) in the positive (negative) IOD years. However, an analysis based on 21 IOD events during 1982-2019 demonstrates that the effects of the three types of IOD events, including IODJJA, prolonged IOD (IODLONG) and normal IOD (IODSON), on the upwelling are different. Compared to the IODSON events, the IODJJA and IODLONG events tend to have stronger influences due to their earlier developing phases.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2021-02-02
    Description: The complex interaction between the Indian Ocean Dipole (IOD) and El Niño-Southern Oscillation (ENSO) is further investigated in this study, with a focus on the impacts of the IOD on ENSO in the subsequent year (ENSO(+1)). The interaction between the IOD and the concurrent ENSO (ENSO(0)) can be summarized as follows: ENSO(0) can trigger and enhance the IOD, while the IOD can enhance ENSO(0) and accelerate its demise. Regarding the impacts of IOD(0) on the subsequent ENSO(+1), it is revealed that the IOD can lead to anomalous SST cooling patterns over the equatorial Pacific after the winter following the IOD, indicating the formation of a La Niña-like pattern in the subsequent year. While the SST cooling tendency associated with a positive IOD is attributable primarily to net heat flux (thermodynamic processes) from autumn to the ensuing spring, after the ensuing spring the dominant contribution comes from oceanic processes (dynamic processes) instead. From autumn to the ensuing spring, the downward shortwave flux response contributes the most to SST cooling over the central and eastern Pacific, due to the cloud-radiation-SST feedback. From the ensuing winter to the ensuing summer, changes in latent heat flux (LHF) are important for SST cooling, indicating that the release of LHF from the ocean into the atmosphere increases due to strong evaporation and leads to SST cooling through the wind-evaporation-SST feedback. The wind stress response and thermocline shoaling verify that local Bjerknes feedback is crucial for the initiation of La Niña in the later stage.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2021-02-03
    Description: High-resolution, bias-corrected climate data is necessary for climate impact studies at local scales. Gridded historical data is convenient for bias-correction but may contain biases resulting from interpolation. Long-term, quality-controlled station data represent true climatological measurements, but as the distribution of climate stations is irregular, station data are challenging to incorporate into downscaling and bias-correction approaches. Here, we compared six novel methods for constructing full-coverage, high-resolution, bias-corrected climate products using daily maximum temperature simulations from a regional climate model (RCM). Only station data were used for bias-correction. We quantified performance of the six methods with the root-mean-square-error (RMSE) and Perkins skill score (PSS) and used two ANOVA models to analyze how performance varied among methods. We validated the six methods using two calibration periods of observed data (1980-1989 and 1980-2014) and two testing sets of RCM data (1990-2014 and 1980-2014). RMSE for all methods varied throughout the year and was larger in cold months, while PSS was more consistent. Quantile-mapping bias-correction techniques substantially improved PSS, while simple linear transfer functions performed best in improving RMSE. For the 1980-1989 calibration period, simple quantile-mapping techniques outperformed empirical quantile mapping (EQM) in improving PSS. When calibration and testing time periods were equivalent, EQM resulted in the largest improvements in PSS. No one method produced substantial improvements in both RMSE and PSS. Our results indicate that simple quantile-mapping techniques are less prone to overfitting than EQM and are suitable for processing future climate model output, while EQM is ideal for bias-correcting historical climate model output.
    Print ISSN: 1558-8424
    Electronic ISSN: 1558-8432
    Topics: Geography , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2021-02-03
    Description: The Asian monsoon has large spatial-temporal variabilities in winds and precipitation. This study reveals that the Asia monsoon also exhibits pronounced regional differences in cloud regimes and cloud-rainfall relationship at a wide range of timescales from diurnal, seasonal, to interannual. Over South (East) Asia, the convectively-active regime of deep convection (CD) occurs frequently in June–September (March–September) with a late afternoon peak (morning feature). The intermediate mixture (IM) regime over South Asia mainly occurs in summer and maximizes near noon. It develops as CD at late afternoon and dissipates as convective cirrus (CC) after midnight, showing a life cycle of thermal convection in response to solar radiation. Over East Asia, IM is dominant in cold seasons with a small diurnal cycle, indicating a prevalence of mid-level stratiform clouds. Further analyses show that CD/CC contribute 80–90% of the rainfall amount and most of the intense rainfall in the two key regions. The CD-related rainfall also accounts for the pronounced diurnal cycles of summer rainfall with a late-afternoon peak (morning feature) over North India (Southeast China). The afternoon CD-related rainfall mainly results from thermal convection under the moderate humidity but warm conditions particularly over North India, while the morning CD-related rainfall over Southeast China is more related to the processes with high humidity. The CD/CC-related rainfall also exhibits large interannual variations that explain ∼90% of the interannual variance of summer rainfall. The interannual variations of CD/CC occurrence are positively correlated with the moist southerlies and induced convergence, especially over Southeast China, suggesting a close relationship between cloud regimes and monsoon activities.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2021-02-03
    Description: Assessments of spatiotemporal severe hail fall characteristics using hail reports are plagued by serious limitations in report databases, including biases in reported sizes, occurrence time, and location. Multiple studies have used Next Generation Weather Radar (NEXRAD) network observations or environmental hail proxies from reanalyses. Previous work has specifically utilized the single-polarization radar parameter “maximum expected size of hai” (MESH). In addition to previous work being temporally limited, updates are needed to include recent improvements that have been made to MESH. This study aims to quantify severe hail fall characteristics during a 23-year period, markedly longer than previous studies, using both radar observations and reanalysis data. First, the improved MESH configuration is applied to the full archive of gridded hourly radar observations known as GridRad (1995-2017). Next, environmental constraints from the Modern-Era Retrospective analysis for Research and Applications, Version 2 are applied to the MESH distributions to produce a corrected hail fall climatology that accounts for the reduced likelihood of hail reaching the ground. Spatial, diurnal, and seasonal patterns show that in contrast to the report climatology indicating one high-frequency hail maximum centered on the Great Plains, the MESH-only method characterizes two regions, the Great Plains and the Gulf Coast. The environmentally-filtered MESH climatology reveals improved agreement between report characteristics (frequency, location, and timing) and the recently improved MESH calculation methods and reveals an overall increase in diagnosed hail days and westward broadening in the spatial maximum in the Great Plains than that seen in reports.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2021-02-03
    Description: It is widely known that strong vertical wind shear (exceeding 10 m s-1) often weakens tropical cyclones (TCs). However, in some circumstances, a TC is able to resist this strong shear and even re-strengthen. To better understand this phenomenon, a series of idealized simulations are conducted, followed by a statistical investigation of forty years of northern hemisphere TCs. In the idealized simulations, a TC is embedded within a time-varying point downscaling framework, which is used to gradually increase the environmental vertical wind shear to 14 m s-1 and then hold it constant. This controlled framework also allows for the separation of the TC-induced flow from the prescribed environmental flow. The TC-induced outflow is found to withstand the strong upper-tropospheric environmental flow, and this is manifested in the TC-induced shear difference (TCSD) vector. The TCSD vector, together with the environmental shear vector, defines an azimuthal range within which most of the asymmetric convection is located. The statistical analysis confirms the findings from the idealized simulations, and the results are not strongly sensitive to the TC intensity or basin. Moreover, compared with total shear, the inclusion of TCSD information creates a slightly better correlation with TC intensity change. Overall, the TCSD vector serves as a diagnostic to explain the ability of a TC to resist strong environmental shear through its outflow, and it could potentially be used as a parameter to predict future intensity change.
    Print ISSN: 0022-4928
    Electronic ISSN: 1520-0469
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    Publication Date: 2021-02-03
    Description: The ability of six CMIP6 models to reproduce the observed cold season teleconnection between tropical Indo-Pacific sea surface temperatures (SSTs) and precipitation in Southwest Asia, the coastal Middle East (CME), and Northern Pakistan and India (NPI) is examined. The 1979-2014 period is analyzed, to maximize observations over both the tropical ocean and the regions. Nine historical simulations for the same period are examined for each model, to account for the internal variability of the coupled system. The teleconnection is examined in terms of SSTs, precipitation, 200 hPa geopotential heights, and derived quantities.All the models capture some of the broadest features of the teleconnections, but there is a wide range in the ability of the models to reproduce the magnitude and details. The differences appear related to both the models’ ability to capture the details of the tropical variability, including the position and strength of the precipitation anomalies in the Indo-west Pacific, as well as the models’ ability to accurately propagate the tropically-forced response into the region. The teleconnections to the CME and NPI regions on the eastern and western margins, respectively, of the strongest signal are very similar in structure and have similar results, except that the models’ ability to reproduce the strength and details of the teleconnection is even more limited, consistent with their marginal locations and known influence of other modes of variability. For all three areas, the wide range in model ability to capture the leading teleconnection suggests caution in interpreting climate regional projections.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...