ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • In situ oceanic observations  (15)
  • Ocean dynamics  (13)
  • Turbulence  (8)
  • Atmosphere-ocean interaction  (6)
  • Continental shelf/slope  (5)
  • Fronts  (5)
  • Climate variability
  • Seismology
  • Southern Ocean
  • American Meteorological Society  (42)
  • Cambridge University Press  (1)
  • American Physical Society (APS)
  • Inst. f. Geophys., Univ.
  • National Academy of Sciences
  • Wiley
  • 2020-2023  (43)
  • 1975-1979
  • 1930-1934
  • 2022  (21)
  • 2021  (22)
Collection
Keywords
Publisher
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Meteorological Society
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(9), (2020): 2491-2506, doi:10.1175/JPO-D-20-0056.1.
    Description: An idealized two-layer shallow water model is applied to the study of the dynamics of the Arctic Ocean halocline. The model is forced by a surface stress distribution reflective of the observed wind stress pattern and ice motion and by an inflow representing the flow of Pacific Water through Bering Strait. The model reproduces the main elements of the halocline circulation: an anticyclonic Beaufort Gyre in the western basin (representing the Canada Basin), a cyclonic circulation in the eastern basin (representing the Eurasian Basin), and a Transpolar Drift between the two gyres directed from the upwind side of the basin to the downwind side of the basin. Analysis of the potential vorticity budget shows a basin-averaged balance primarily between potential vorticity input at the surface and dissipation at the lateral boundaries. However, advection is a leading-order term not only within the anticyclonic and cyclonic gyres but also between the gyres. This means that the eastern and western basins are dynamically connected through the advection of potential vorticity. Both eddy and mean fluxes play a role in connecting the regions of potential vorticity input at the surface with the opposite gyre and with the viscous boundary layers. These conclusions are based on a series of model runs in which forcing, topography, straits, and the Coriolis parameter were varied.
    Description: This study was supported by National Science Foundation Grant OPP-1822334. Comments and suggestions from two anonymous referees greatly helped to improve the paper.
    Description: 2021-02-17
    Keywords: Eddies ; Ekman pumping/transport ; Ocean circulation ; Ocean dynamics ; Potential vorticity ; Shallow-water equations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(10), (2020): 2849-2871, https://doi.org/10.1175/JPO-D-20-0086.1.
    Description: The structure, transport, and seasonal variability of the West Greenland boundary current system near Cape Farewell are investigated using a high-resolution mooring array deployed from 2014 to 2018. The boundary current system is comprised of three components: the West Greenland Coastal Current, which advects cold and fresh Upper Polar Water (UPW); the West Greenland Current, which transports warm and salty Irminger Water (IW) along the upper slope and UPW at the surface; and the Deep Western Boundary Current, which advects dense overflow waters. Labrador Sea Water (LSW) is prevalent at the seaward side of the array within an offshore recirculation gyre and at the base of the West Greenland Current. The 4-yr mean transport of the full boundary current system is 31.1 ± 7.4 Sv (1 Sv ≡ 106 m3 s−1), with no clear seasonal signal. However, the individual water mass components exhibit seasonal cycles in hydrographic properties and transport. LSW penetrates the boundary current locally, through entrainment/mixing from the adjacent recirculation gyre, and also enters the current upstream in the Irminger Sea. IW is modified through air–sea interaction during winter along the length of its trajectory around the Irminger Sea, which converts some of the water to LSW. This, together with the seasonal increase in LSW entering the current, results in an anticorrelation in transport between these two water masses. The seasonality in UPW transport can be explained by remote wind forcing and subsequent adjustment via coastal trapped waves. Our results provide the first quantitatively robust observational description of the boundary current in the eastern Labrador Sea.
    Description: A.P., R.S.P., F.B., D.J.T., and A.L.R. were funded by Grants OCE-1259618 and OCE-1756361 from the National Science Foundation. I.L.B, F.S., and J.H. were supported by U.S. National Science Foundation Grants OCE-1258823 and OCE-1756272. Mooring data from MA2 was funded by the European Union 7th Framework Programme (FP7 2007-2013) under Grant 308299 (NACLIM) and the Horizon 2020 research and innovation program under Grant 727852 (Blue-Action). J.K. and M.O. acknowledge EU Horizon 2020 funding Grants 727852 (Blue-action) and 862626 (EuroSea) and from the German Ministry of Research and Education (RACE Program). G.W.K.M. acknowledges funding from the Natural Sciences and Engineering Research Council.
    Keywords: Boundary currents ; Convection ; Deep convection ; Transport ; In situ oceanic observations ; Seasonal cycle
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-10-26
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Baker, M. G., Aster, R. C., Wiens, D. A., Nyblade, A., Bromirski, P. D., Gerstoft, P., & Stephen, R. A. Teleseismic earthquake wavefields observed on the Ross Ice Shelf. Journal of Glaciology, 67(261), (2021): 58-74, https://doi.org/10.1017/jog.2020.83.
    Description: Observations of teleseismic earthquakes using broadband seismometers on the Ross Ice Shelf (RIS) must contend with environmental and structural processes that do not exist for land-sited seismometers. Important considerations are: (1) a broadband, multi-mode ambient wavefield excited by ocean gravity wave interactions with the ice shelf; (2) body wave reverberations produced by seismic impedance contrasts at the ice/water and water/seafloor interfaces and (3) decoupling of the solid Earth horizontal wavefield by the sub-shelf water column. We analyze seasonal and geographic variations in signal-to-noise ratios for teleseismic P-wave (0.5–2.0 s), S-wave (10–15 s) and surface wave (13–25 s) arrivals relative to the RIS noise field. We use ice and water layer reverberations generated by teleseismic P-waves to accurately estimate the sub-station thicknesses of these layers. We present observations consistent with the theoretically predicted transition of the water column from compressible to incompressible mechanics, relevant for vertically incident solid Earth waves with periods longer than 3 s. Finally, we observe symmetric-mode Lamb waves generated by teleseismic S-waves incident on the grounding zones. Despite their complexity, we conclude that teleseismic coda can be utilized for passive imaging of sub-shelf Earth structure, although longer deployments relative to conventional land-sited seismometers will be necessary to acquire adequate data.
    Description: This research was supported by NSF grants PLR-1142518, 1141916, 1142126, 1246151, 1246416 and OPP-1744852 and 1744856.
    Keywords: Glacier geophysics ; Ice shelves ; Seismology
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-10-12
    Description: Author Posting. © American Meteorological Society, 2022. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 52(10), (2022): 2325–2341, https://doi.org/10.1175/jpo-d-21-0015.1.
    Description: The ocean surface boundary layer is a gateway of energy transfer into the ocean. Wind-driven shear and meteorologically forced convection inject turbulent kinetic energy into the surface boundary layer, mixing the upper ocean and transforming its density structure. In the absence of direct observations or the capability to resolve subgrid-scale 3D turbulence in operational ocean models, the oceanography community relies on surface boundary layer similarity scalings (BLS) of shear and convective turbulence to represent this mixing. Despite their importance, near-surface mixing processes (and ubiquitous BLS representations of these processes) have been undersampled in high-energy forcing regimes such as the Southern Ocean. With the maturing of autonomous sampling platforms, there is now an opportunity to collect high-resolution spatial and temporal measurements in the full range of forcing conditions. Here, we characterize near-surface turbulence under strong wind forcing using the first long-duration glider microstructure survey of the Southern Ocean. We leverage these data to show that the measured turbulence is significantly higher than standard shear-convective BLS in the shallower parts of the surface boundary layer and lower than standard shear-convective BLS in the deeper parts of the surface boundary layer; the latter of which is not easily explained by present wave-effect literature. Consistent with the CBLAST (Coupled Boundary Layers and Air Sea Transfer) low winds experiment, this bias has the largest magnitude and spread in the shallowest 10% of the actively mixing layer under low-wind and breaking wave conditions, when relatively low levels of turbulent kinetic energy (TKE) in surface regime are easily biased by wave events.
    Description: This paper is VIMS Contribution 4103. Computational resources were provided by the VIMS Ocean-Atmosphere and Climate Change Research Fund. AUSSOM was supported by the OCE Division of the National Science Foundation (1558639).
    Keywords: Turbulence ; Wind shear ; Boundary layer ; Parameterization
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1), (2021): 19-35, https://doi.org/10.1175/JPO-D-19-0233.1.
    Description: In the Beaufort Sea in September of 2015, concurrent mooring and microstructure observations were used to assess dissipation rates in the vicinity of 72°35′N, 145°1′W. Microstructure measurements from a free-falling profiler survey showed very low [O(10−10) W kg−1] turbulent kinetic energy dissipation rates ε. A finescale parameterization based on both shear and strain measurements was applied to estimate the ratio of shear to strain Rω and ε at the mooring location, and a strain-based parameterization was applied to the microstructure survey (which occurred approximately 100 km away from the mooring site) for direct comparison with microstructure results. The finescale parameterization worked well, with discrepancies ranging from a factor of 1–2.5 depending on depth. The largest discrepancies occurred at depths with high shear. Mean Rω was 17, and Rω showed high variability with values ranging from 3 to 50 over 8 days. Observed ε was slightly elevated (factor of 2–3 compared with a later survey of 11 profiles taken over 3 h) from 25 to 125 m following a wind event which occurred at the beginning of the mooring deployment, reaching a maximum of ε= 6 × 10−10 W kg−1 at 30-m depth. Velocity signals associated with near-inertial waves (NIWs) were observed at depths greater than 200 m, where the Atlantic Water mass represents a reservoir of oceanic heat. However, no evidence of elevated ε or heat fluxes was observed in association with NIWs at these depths in either the microstructure survey or the finescale parameterization estimates.
    Description: This work was supported by NSF Grants PLR 14-56705 and PLR-1303791 and by NSF Graduate Research Fellowship Grant DGE-1650112.
    Keywords: Ocean ; Arctic ; Internal waves ; Turbulence ; Diapycnal mixing
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(1),(2021): 3-17, https://doi.org/10.1175/JPO-D-20-0064.1.
    Description: The strong El Niño of 2014–16 was observed west of the Galápagos Islands through sustained deployment of underwater gliders. Three years of observations began in October 2013 and ended in October 2016, with observations at longitudes 93° and 95°W between latitudes 2°N and 2°S. In total, there were over 3000 glider-days of data, covering over 50 000 km with over 12 000 profiles. Coverage was superior closer to the Galápagos on 93°W, where gliders were equipped with sensors to measure velocity as well as temperature, salinity, and pressure. The repeated glider transects are analyzed to produce highly resolved mean sections and maps of observed variables as functions of time, latitude, and depth. The mean sections reveal the structure of the Equatorial Undercurrent (EUC), the South Equatorial Current, and the equatorial front. The mean fields are used to calculate potential vorticity Q and Richardson number Ri. Gradients in the mean are strong enough to make the sign of Q opposite to that of planetary vorticity and to have Ri near unity, suggestive of mixing. Temporal variability is dominated by the 2014–16 El Niño, with the arrival of depressed isopycnals documented in 2014 and 2015. Increases in eastward velocity advect anomalously salty water and are uncorrelated with warm temperatures and deep isopycnals. Thus, vertical advection is important to changes in heat, and horizontal advection is relevant to changes in salt. Implications of this work include possibilities for future research, model assessment and improvement, and sustained observations across the equatorial Pacific.
    Description: We gratefully acknowledge the support of the National Science Foundation (OCE-1232971, OCE-1233282) and the Ocean Observing and Monitoring Division of the National Oceanographic and Atmospheric Administration (NA13OAR4830216).
    Keywords: Ocean ; Tropics ; Currents ; El Nino ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 38(1), (2021): 3-16, https://doi.org/10.1175/JTECH-D-20-0110.1.
    Description: Airborne expendable bathythermographs (AXBTs) are air-launched, single-use temperature–depth probes that telemeter temperature observations as VHF-modulated frequencies. This study describes the AXBT Real-Time Editing System (ARES), which is composed of two components: the ARES Data Acquisition System, which receives telemetered temperature–depth profiles with no external hardware other than a VHF radio receiver, and the ARES Profile Editing System, which quality controls AXBT temperature–depth profiles. The ARES Data Acquisition System performs fast Fourier transforms on windowed segments of the demodulated signal transmitted from the AXBT. For each segment, temperature is determined from peak frequency and depth from elapsed time since profile start. Valid signals are distinguished from noise by comparing peak signal levels and signal-to-noise ratios to predetermined thresholds. When evaluated using 387 profiles, the ARES Data Acquisition System produced temperature–depth profiles nearly identical to those generated using a Sippican MK-21 processor, while reducing the amount of noise from VHF interference included in those profiles. The ARES Profile Editor applies a series of automated checks to identify and correct common profile discrepancies before displaying the profile on an editing interface that provides simple user controls to make additional corrections. When evaluated against 1177 tropical Atlantic and Pacific AXBT profiles, the ARES automated quality control system successfully corrected 87% of the profiles without any required manual intervention. Necessary future work includes improvements to the automated quality control algorithm and algorithm evaluation against a broader dataset of temperature–depth profiles from around the world across all seasons.
    Description: This work was sponsored by the Office of Naval Research (Grants N000141812819 and N0001420WX00345) and the U.S. Navy’s Civilian Institution Office with the MIT–WHOI Joint Program.
    Keywords: Ocean ; In situ oceanic observations ; Profilers, oceanic
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(11), (2020): 3235–3251, https://doi.org/10.1175/JPO-D-20-0095.1.
    Description: The dense outflow through Denmark Strait is the largest contributor to the lower limb of the Atlantic meridional overturning circulation, yet a description of the full velocity field across the strait remains incomplete. Here we analyze a set of 22 shipboard hydrographic–velocity sections occupied along the Látrabjarg transect at the Denmark Strait sill, obtained over the time period 1993–2018. The sections provide the first complete view of the kinematic components at the sill: the shelfbreak East Greenland Current (EGC), the combined flow of the separated EGC, and the North Icelandic Jet (NIJ), and the northward-flowing North Icelandic Irminger Current (NIIC). The total mean transport of overflow water is 3.54 ± 0.29 Sv (1 Sv ≡ 106 m3 s−1), comparable to previous estimates. The dense overflow is partitioned in terms of water mass constituents and flow components. The mean transports of the two types of overflow water—Atlantic-origin Overflow Water and Arctic-origin Overflow Water—are comparable in Denmark Strait, while the merged NIJ–separated EGC transports 55% more water than the shelfbreak EGC. A significant degree of water mass exchange takes place between the branches as they converge in Denmark Strait. There are two dominant time-varying configurations of the flow that are characterized as a cyclonic state and a noncyclonic state. These appear to be wind-driven. A potential vorticity analysis indicates that the flow through Denmark Strait is subject to symmetric instability. This occurs at the top of the overflow layer, implying that the mixing/entrainment process that modifies the overflow water begins at the sill.
    Description: Funding for the study was provided by National Science Foundation (NSF) Grants OCE-1259618, OCE-1756361, and OCE-1558742. The German research cruises were financially supported through various EU Projects (e.g. THOR, NACLIM) and national projects (most recently TRR 181 “Energy Transfer in Atmosphere and Ocean” funded by the German Research Foundation and RACE II “Regional Atlantic Circulation and Global Change” funded by the German Federal Ministry for Education and Research). GWKM acknowledges the support of the Natural Sciences and Engineering Research Council of Canada. LP was supported by NSF Grant OCE-1657870.
    Keywords: Currents ; Instability ; Ocean circulation ; Ocean dynamics ; Potential vorticity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(2), (2021): 457–474, https://doi.org/10.1175/JPO-D-20-0088.1.
    Description: The meridional shift of the Kuroshio Extension (KE) front and changes in the formation of the North Pacific Subtropical Mode Water (STMW) during 1979–2018 are reported. The surface-to-subsurface structure of the KE front averaged over 142°–165°E has shifted poleward at a rate of ~0.23° ± 0.16° decade−1. The shift was caused mainly by the poleward shift of the downstream KE front (153°–165°E, ~0.41° ± 0.29° decade−1) and barely by the upstream KE front (142°–153°E). The long-term shift trend of the KE front showed two distinct behaviors before and after 2002. Before 2002, the surface KE front moved northward with a faster rate than the subsurface. After 2002, the surface KE front showed no obvious trend, but the subsurface KE front continued to move northward. The ventilation zone of the STMW, defined by the area between the 16° and 18°C isotherms or between the 25 and 25.5 kg m−3 isopycnals, contracted and displaced northward with a shoaling of the mixed layer depth hm before 2002 when the KE front moved northward. The STMW subduction rate was reduced by 0.76 Sv (63%; 1 Sv ≡ = 106 m3 s−1) during 1979–2018, most of which occurred before 2002. Of the three components affecting the total subduction rate, the temporal induction (−∂hm/∂t) was dominant accounting for 91% of the rate reduction, while the vertical pumping (−wmb) amounted to 8% and the lateral induction (−umb ⋅ ∇hm) was insignificant. The reduced temporal induction was attributed to both the contracted ventilation zone and the shallowed hm that were incurred by the poleward shift of KE front.
    Description: Xiaopei Lin is supported by the National Natural Science Foundation of China (41925025 and 92058203) and China’s national key research and development projects (2016YFA0601803). Baolan Wu is supported by the China Scholarship Council (201806330010). Lisan Yu thanks NOAA for support for her study on climate change and variability.
    Keywords: Boundary currents ; Decadal variability ; Fronts ; Water masses/storage
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-27
    Description: Author Posting. © American Meteorological Society, 2021. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 51(8),(2021): 2463–2482, https://doi.org/10.1175/JPO-D-20-0291.1.
    Description: This paper presents analyses of drifters with drogues at different depths—1, 10, 30, and 50 m—that were deployed in the Mediterranean Sea to investigate frontal subduction and upwelling. Drifter trajectories were used to estimate divergence, vorticity, vertical velocity, and finite-size Lyapunov exponents (FTLEs) and to investigate the balance of terms in the vorticity equation. The divergence and vorticity are O(f) and change sign along trajectories. Vertical velocity is O(1 mm s−1), increases with depth, indicates predominant upwelling with isolated downwelling events, and sometimes changes sign between 1 and 50 m. Vortex stretching is one of the significant terms, but not the only one, in the vorticity balance. Two-dimensional FTLEs are 2 × 10−5 s−1 after 1 day, 2 times as large as in a 400-m-resolution numerical model. Three-dimensional FTLEs are 50% larger than 2D FTLEs and are dominated by the vertical shear of horizontal velocity. Bootstrapping suggests uncertainty levels of ~10% of the time-mean absolute values for divergence and vorticity. Analysis of simulated drifters in a model suggests that drifter-based estimates of divergence and vorticity are close to the Eulerian model estimates, except when drifters get aligned into long filaments. Drifter-based vertical velocity is close to the Eulerian model estimates at 1 m but differs at deeper depths. The errors in the vertical velocity are largely due to the lateral separation between drifters at different depths and are partially due to only measuring at four depths. Overall, this paper demonstrates how drifters, heretofore restricted to 2D near-surface observations, can be used to learn about 3D flow properties throughout the upper layer of the water column.
    Description: Authors Rypina and Pratt were supported by U.S. Office of Naval Research (ONR) Grant N000141812417. Author Getscher acknowledges support from the U.S. Navy Civilian Institution Office with the MIT–WHOI Joint Program. Author Mourre acknowledges support from ONR Grant N00014-16-1-3130. We also thank Eugenio Cutolo for the initial technical support in the implementation of the ultra-high-resolution WMOP simulation. CALYPSO is a Departmental Research Initiative funded by the ONR.
    Description: 2022-01-16
    Keywords: Convergence/divergence ; Fronts ; Nonlinear dynamics ; Small scale processes ; Trajectories ; Upwelling/downwelling ; Vertical motion
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...