ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,772)
  • American Chemical Society  (1,738)
  • American Institute of Physics (AIP)
  • Copernicus Publications
  • 2020-2024  (1,772)
  • 2024  (20)
  • 2022  (11)
  • 2021  (1,741)
Collection
  • Articles  (1,772)
Years
Year
  • 2024  (20)
  • 2022  (11)
  • 2021  (1,741)
  • 2023  (50)
  • 2020  (16)
Journal
  • 1
    Publication Date: 2023-03-13
    Description: Goniodomin A (GDA, 1) is a phycotoxin produced by at least four species of Alexandrium dinoflagellates that are found globally in brackish estuaries and lagoons. It is a linear polyketide with six oxygen heterocyclic rings that is cyclized into a macrocyclic structure via lactone formation. Two of the oxygen heterocycles in 1 comprise a spiro-bis-pyran, whereas goniodomin B (GDB) contains a 2,7-dioxabicyclo[3.3.1]nonane ring system fused to a pyran. When H2O is present, 1 undergoes facile conversion to isomer GDB and to an α,β-unsaturated ketone, goniodomin C (GDC, 7). GDB and GDC can be formed from GDA by cleavage of the spiro-bis-pyran ring system. GDA, but not GDB or GDC, forms a crown ether-type complex with K+. Equilibration of GDA with GDB and GDC is observed in the presence of H+ and of Na+, but the equilibrated mixtures revert to GDA upon addition of K+. Structural differences have been found between the K+ and Na+ complexes. The association of GDA with K+ is strong, while that with Na+ is weak. The K+ complex has a compact, well-defined structure, whereas Na+ complexes are an ill-defined mixture of species. Analyses of in vitro A. monilatum and A. hiranoi cultures indicate that only GDA is present in the cells; GDB and GDC appear to be postharvest transformation products.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Hydrology and Earth System Sciences, Copernicus Publications, 25(12), pp. 6239-6259, ISSN: 1027-5606
    Publication Date: 2023-10-30
    Description: 〈jats:p〉Abstract. Natural flood management (NFM) is the name given to nature-based solutions (NBS) for flood management in the UK. It is a holistic flood management technique that employs natural hydrological processes, through the installation of interventions, to slow the flow of water, creating a landscape-scale flood management system. Despite widespread interest and supporting policy from governments and non-profit organisations, NFM, as yet, has not been widely adopted as a mainstream flood management technique. A small number of academic studies examining perceived barriers to NFM adoption have identified a variety of individual factors as being responsible. It is commonly accepted that flood risk management broadly, and NFM specifically, are complex, challenges of interacting physical and human parameters, and that academic, institutional and policy divisions are rarely sympathetic to embracing these complexities. A transdisciplinary problem-framing study in conjunction with professionals experienced in the delivery of NFM projects in the UK aimed to capture these multifaceted parameters of flood management and strategic delivery at a landscape scale using group concept mapping, a systems approach to identify conceptual convergence. This policy-delivery impasse was further explored by quantifying the relative importance of individual barriers and conceptual groupings from the perspective of two different practitioner groups (flood risk managers and conservation practitioners). The results demonstrate that the NFM delivery system can be grouped into seven interacting elements, policy and regulation, politics, public perception, cross-cutting issues, funding, technical knowledge and evidence, of which each has a varying number of barriers that limit NFM uptake. Opinions differ as to the importance of these individual barriers; however, when considering the system broadly we identify that the institutional and social barriers are perceived as the most important, whilst technical knowledge and evidence are the areas of least concern. This paper aims to promote NBS flood management delivery in the UK and globally by generating, structuring and representing the multifaceted and multilevel NFM delivery system at a local level to evidence adaptive decision making at regional, national and global levels. Through problem structuring and an increased understanding and awareness of the structure and network of linking elements and perceived differences of practitioner groups that influence the system of delivery, steps can be taken towards solutions that are socially, scientifically and practically robust. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3Earth System Dynamics, Copernicus Publications, 13(4), pp. 1677-1688, ISSN: 2190-4979
    Publication Date: 2023-12-05
    Description: The ability to adapt to social and environmental change is an increasingly critical feature of environmental governance. However, an understanding of how specific features of governance systems influence how they respond to change is still limited. Here we focus on how system features like diversity, heterogeneity, and connectedness impact stability, which indicates a system's capacity to recover from perturbations. Through a framework that combines agent-based modeling with "generalized"dynamical systems modeling, we model the stability of thousands of governance structures consisting of groups of resource users and non-government organizations interacting strategically with the decision centers that mediate their access to a shared resource. Stabilizing factors include greater effort dedicated to venue shopping and a greater fraction of non-government organizations in the system. Destabilizing factors include greater heterogeneity among actors, a greater diversity of decision centers, and greater interdependence between actors. The results suggest that while complexity tends to be destabilizing, there are mitigating factors that may help balance adaptivity and stability in complex governance. This study demonstrates the potential in applying the insights of complex systems theory to managing complex and highly uncertain human-natural systems in the face of rapid social and environmental change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-08-01
    Description: Marine particles of different nature are found throughout the global ocean. The term "marine particles"describes detritus aggregates and fecal pellets as well as bacterioplankton, phytoplankton, zooplankton and nekton. Here, we present a global particle size distribution dataset obtained with several Underwater Vision Profiler 5 (UVP5) camera systems. Overall, within the 64 μm to about 50 mm size range covered by the UVP5, detrital particles are the most abundant component of all marine particles; thus, measurements of the particle size distribution with the UVP5 can yield important information on detrital particle dynamics. During deployment, which is possible down to 6000 m depth, the UVP5 images a volume of about 1 L at a frequency of 6 to 20 Hz. Each image is segmented in real time, and size measurements of particles are automatically stored. All UVP5 units used to generate the dataset presented here were inter-calibrated using a UVP5 high-definition unit as reference. Our consistent particle size distribution dataset contains 8805 vertical profiles collected between 19 June 2008 and 23 November 2020. All major ocean basins, as well as the Mediterranean Sea and the Baltic Sea, were sampled. A total of 19 % of all profiles had a maximum sampling depth shallower than 200 dbar, 38 % sampled at least the upper 1000 dbar depth range and 11 % went down to at least 3000 dbar depth. First analysis of the particle size distribution dataset shows that particle abundance is found to be high at high latitudes and in coastal areas where surface productivity or continental inputs are elevated. The lowest values are found in the deep ocean and in the oceanic gyres. Our dataset should be valuable for more in-depth studies that focus on the analysis of regional, temporal and global patterns of particle size distribution and flux as well as for the development and adjustment of regional and global biogeochemical models. The marine particle size distribution dataset is available at 10.1594/PANGAEA.924375.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-03-16
    Description: The incorporation of water isotopologues into the hydrology of general circulation models (GCMs) facilitates the comparison between modeled and measured proxy data in paleoclimate archives. However, the variability and drivers of measured and modeled water isotopologues, as well as the diversity of their representation in different models, are not well constrained. Improving our understanding of this variability in past and present climates will help to better constrain future climate change projections and decrease their range of uncertainty. Speleothems are a precisely datable terrestrial paleoclimate archives and provide well-preserved (semi-)continuous multivariate isotope time series in the lower latitudes and mid-latitudes and are therefore well suited to assess climate and isotope variability on decadal and longer timescales. However, the relationships of speleothem oxygen and carbon isotopes to climate variables are influenced by site-specific parameters, and their comparison to GCMs is not always straightforward. Here we compare speleothem oxygen and carbon isotopic signatures from the Speleothem Isotopes Synthesis and Analysis database version 2 (SISALv2) to the output of five different water-isotope-enabled GCMs (ECHAM5-wiso, GISSE2-R, iCESM, iHadCM3, and isoGSM) over the last millennium (850–1850 CE). We systematically evaluate differences and commonalities between the standardized model simulation outputs. The goal is to distinguish climatic drivers of variability for modeled isotopes and compare them to those of measured isotopes. We find strong regional differences in the oxygen isotope signatures between models that can partly be attributed to differences in modeled surface temperature. At low latitudes, precipitation amount is the dominant driver for stable water isotope variability; however, at cave locations the agreement between modeled temperature variability is higher than for precipitation variability. While modeled isotopic signatures at cave locations exhibited extreme events coinciding with changes in volcanic and solar forcing, such fingerprints are not apparent in the speleothem isotopes. This may be attributed to the lower temporal resolution of speleothem records compared to the events that are to be detected. Using spectral analysis, we can show that all models underestimate decadal and longer variability compared to speleothems (albeit to varying extents). We found that no model excels in all analyzed comparisons, although some perform better than the others in either mean or variability. Therefore, we advise a multi-model approach whenever comparing proxy data to modeled data. Considering karst and cave internal processes, e.g., through isotope-enabled karst models, may alter the variability in speleothem isotopes and play an important role in determining the most appropriate model. By exploring new ways of analyzing the relationship between the oxygen and carbon isotopes, their variability, and co-variability across timescales, we provide methods that may serve as a baseline for future studies with different models using, e.g., different isotopes, different climate archives, or different time periods.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Chemical Society
    In:  EPIC3Environmental Science & Technology Letters, American Chemical Society
    Publication Date: 2024-01-24
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-22
    Description: 〈jats:p〉Abstract. Understanding the future evolution of permafrost requires a better understanding of its climatological past. This requires permafrost models to efficiently simulate the thermal dynamics of permafrost over the past centuries to millennia, taking into account highly uncertain soil and snow properties. In this study, we present a computationally efficient numerical permafrost model which satisfactorily reproduces the current ground temperatures and active layer thicknesses of permafrost in the Arctic and their trends over recent centuries. The performed simulations provide insights into the evolution of permafrost since the 18th century and show that permafrost on the North American continent is subject to early degradation, while permafrost on the Eurasian continent is relatively stable over the investigated 300-year period. Permafrost warming since industrialization has occurred primarily in three “hotspot” regions in northeastern Canada, northern Alaska, and, to a lesser extent, western Siberia. We find that the extent of areas with a high probability (p3 m>0.9) of near-surface permafrost (i.e., 3 m of permafrost within the upper 10 m of the subsurface) has declined substantially since the early 19th century, with loss accelerating during the last 50 years. Our simulations further indicate that short-term climate cooling due to large volcanic eruptions in the Northern Hemisphere in some cases favors permafrost aggradation within the uppermost 10 m of the ground, but the effect only lasts for a relatively short period of a few decades. Despite some limitations, e.g., with respect to the representation of vegetation, the presented model shows great potential for further investigation of the climatological past of permafrost, especially in conjunction with paleoclimate modeling. 〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications
    In:  EPIC3The Cryosphere, Copernicus Publications, 16(3), pp. 1057-1069, ISSN: 1994-0416
    Publication Date: 2024-05-07
    Description: Most earth system models (ESMs) neglect climate feedbacks arising from carbon release from thawing permafrost, especially from thawing of subsea permafrost (SSPF). To assess the fate of SSPF in the next 1000 years, we implemented SSPF into JSBACH, the land component of the Max Planck Institute Earth System Model (MPI-ESM). This is the first implementation of SSPF processes in an ESM component. We investigate three extended scenarios from the 6th phase of the Coupled Model Intercomparison Project (CMIP6). In the 21st century only small differences are found among the scenarios, but in the upper-end emission scenario SSP5-8.5 (shared socio-economic pathway), especially in the 22nd century, SSPF ice melting is more than 15 times faster than in the pre-industrial period. In this scenario about 35ĝ% of total SSPF volume and 34ĝ% of SSPF area are lost by the year 3000 due to climatic changes. In the more moderate scenarios, the melting rate maximally exceeds that of pre-industrial times by a factor of 4, and the climate change induced SSPF loss (volume and area) by the year 3000 does not exceed 14ĝ%. Our results suggest that the rate of melting of SSPF ice is related to the length of the local open-water season and thus that the easily observable sea ice concentration may be used as a proxy for the change in SSPF.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-14
    Description: The area near Dome C, East Antarctica, is thought to be one of the most promising targets for recovering a continuous ice-core record spanning more than a million years. The European Beyond EPICA consortium has selected Little Dome C (LDC), an area ∼35 km southeast of Concordia Station, to attempt to recover such a record. Here, we present the results of the final ice-penetrating radar survey used to refine the exact drill site. These data were acquired during the 2019-2020 austral summer using a new, multi-channel highresolution very high frequency (VHF) radar operating in the frequency range of 170-230 MHz. This new instrument is able to detect reflectors in the near-basal region, where previous surveys were largely unable to detect horizons. The radar stratigraphy is used to transfer the timescale of the EPICA Dome C ice core (EDC) to the area of Little Dome C, using radar isochrones dating back past 600 ka. We use these data to derive the expected depth-age relationship through the ice column at the now-chosen drill site, termed BELDC (Beyond EPICA LDC). These new data indicate that the ice at BELDC is considerably older than that at EDC at the same depth and that there is about 375m of ice older than 600 kyr at BELDC. Stratigraphy is well preserved to 2565 m, ∼93% of the ice thickness, below which there is a basal unit with unknown properties. An ice-flow model tuned to the isochrones suggests ages likely reach 1.5 Myr near 2500 m, ∼65m above the basal unit and ∼265m above the bed, with sufficient resolution (19±2 kyrm-1) to resolve 41 kyr glacial cycles.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-04-22
    Description: Boreal forests in permafrost regions make up around one-third of the global forest cover and are an essential component of regional and global climate patterns. Further, climatic change can trigger extensive ecosystem shifts such as the partial disappearance of near-surface permafrost or changes to the vegetation structure and composition. Therefore, our aim is to understand how the interactions between the vegetation, permafrost, and the atmosphere stabilize the forests and the underlying permafrost. Existing model setups are often static or are not able to capture important processes such as the vertical structure or the leaf physiological properties. There is a need for a physically-based model with a robust radiative transfer scheme through the canopy. A one-dimensional land surface model (CryoGrid) is adapted for the application in vegetated areas by coupling a multilayer canopy model (CLM-ml v0; Community Land Model) and is used to reproduce the energy transfer and thermal regime at a study site (63.18946∘ N, 118.19596∘ E) in mixed boreal forest in eastern Siberia. An extensive comparison between measured and modeled energy balance variables reveals a satisfactory model performance justifying its application to investigate the thermal regime; surface energy balance; and the vertical exchange of radiation, heat, and water in this complex ecosystem. We find that the forests exert a strong control on the thermal state of permafrost through changing the radiation balance and snow cover phenology. The forest cover alters the surface energy balance by inhibiting over 90 % of the solar radiation and suppressing turbulent heat fluxes. Additionally, our simulations reveal a surplus in longwave radiation trapped below the canopy, similar to a greenhouse, which leads to a magnitude in storage heat flux comparable to that simulated at the grassland site. Further, the end of season snow cover is 3 times greater at the forest site, and the onset of the snow-melting processes are delayed.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...