ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology  (10)
  • Elsevier  (10)
  • American Association for the Advancement of Science (AAAS)
  • American Association of Petroleum Geologists (AAPG)
  • American Geophysical Union (AGU)
  • 2020-2022  (10)
  • 1995-1999
  • 1965-1969
  • 2020  (10)
  • 1
    Publication Date: 2020-12-14
    Description: In the last few decades, advanced monitoring networks have been extended to the main active volcanoes, providing warnings for variations in volcano dynamics. However, one of the main tasks of modern volcanology is the correct interpretation of surface-monitored signals in terms of magma transfer through the Earth's crust. In this frame, it is crucial to investigate decompression-induced magma degassing as it controls magma ascent towards the surface and, in case of eruption, the eruptive style and the atmospheric dispersal of tephra and gases. Understanding the degassing behaviour is particularly intriguing in the case of poorly explored evolved alkaline magmas. In fact, these melts frequently feed hazardous, highly explosive volcanoes (e.g., Campi Flegrei, Somma-Vesuvius, Colli Albani, Tambora, Azores and Canary Islands), despite their low viscosity that usually promotes effusive and/or weakly explosive eruptions. Decompression experiments, together with numerical models, are powerful tools to examine magma degassing behaviour and constrain field observations from natural eruptive products and monitoring signals. These approaches have been recently applied to evolved alkaline melts, yet numerous open questions remain. To cast new light on the degassing dynamics of evolved alkaline magmas, in this study we present new results from decompression experiments, as well as a critical review of previous experimental works. We achieved a comprehensive dataset of key petrological parameters (i.e., 3D textural data for bubbles and microlites using X-ray computed microtomography, glass volatile contents and nanolite occurrence) from experimental samples obtained through high temperature-high pressure isothermal decompression experiments on trachytic alkaline melts at super-liquidus temperature. We explored systematically a range of final pressures (from 200 to 25 MPa), decompression rates (from 0.01 to 1 MPa s−1), and volatile (H2O and CO2) contents. On these grounds, we integrated coherently literature data from decompression experiments on evolved alkaline (trachytic and phonolitic) melts under various conditions, with the aim to fully constrain the degassing mechanisms and timescales in these magmas. Finally, we simulated numerically the experimental conditions to evaluate strengths and weaknesses in decrypting degassing behaviour from field observations. Our results highlight that bubble formation in evolved alkaline melts is primarily controlled by the initial volatile (H2O and CO2) content during magma storage. In these melts, bubble nucleation needs low supersaturation pressures (≤ 50–112 MPa for homogeneous nucleation, ≤ 13–25 MPa for heterogeneous nucleation), resulting in high bubble number density (~ 1012–1016 m−3), efficient volatile exsolution and thus in severe rheological changes. Moreover, the bubble number density is amplified in CO2-rich melts (mole fraction XCO2 ≥ 0.5), in which continuous bubble nucleation predominates on growth. These conditions typically lead to highly explosive eruptions. However, moving towards slower decompression rates (≤ 10−1 MPa s−1) and H2O-rich melts, permeable outgassing and inertial fragmentation occur, promoting weakly explosive eruptions. Finally, our findings suggest that the exhaustion of CO2 at deep levels, and the consequent transition to a H2O-dominated degassing, can crucially enhance magma vesiculation and ascent. In a hazard perspective, these constraints allow to postulate that time-depth variations of unrest signals could be significantly weaker/shorter (e.g., minor gas emissions and short-term seismicity) during major eruptions than in small-scale events.
    Description: Published
    Description: 103402
    Description: 1V. Storia eruttiva
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 3V. Proprietà chimico-fisiche dei magmi e dei prodotti vulcanici
    Description: 4V. Processi pre-eruttivi
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-03-30
    Description: The dichotomy between explosive volcanic eruptions, which produce pyroclasts, and effusive eruptions, which produce lava, is defined by the presence or absence of fragmentation during magma ascent. For lava fountains the distinction is unclear, since the liquid phase in the rising magma may remain continuous to the vent, fragment in the fountain, then re-weld on deposition to feed rheomorphic lava flows. Here we use a numerical model to constrain the controls on basaltic eruption style, using Kilauea and Etna as case studies. Based on our results, we propose that lava fountaining is a distinct style, separate from effusive and explosive eruption styles, that is produced when magma ascends rapidly and fragments above the vent, rather than within the conduit. Sensitivity analyses of Kilauea and Etna case studies show that high lava fountains (〉50 m high) occur when the Reynolds number of the bubbly magma is greater than ∼0.1, the bulk viscosity is less than 10^6, and the gas is well-coupled to the melt. Explosive eruptions (Plinian and sub-Plinian) are predicted over a wide region of parameter space for higher viscosity basalts, typical of Etna, but over a much narrower region of parameter space for lower viscosity basalts, typical of Kilauea. Numerical results show also that the magma that feeds high lava fountains ascends more rapidly than the magma that feeds explosive eruptions, owing to its lower viscosity. For the Kilauea case study, waning ascent velocity is predicted to produce a progressive evolution from high to weak fountaining, to ultimate effusion; whereas for the Etna case study, small changes in parameter values lead to transitions to and from explosive activity, suggesting that eruption transitions may occur with little warning.
    Description: RCUK NERC DisEqm project
    Description: Published
    Description: 116658
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-22
    Description: Rare Earth Elements (REE; lanthanides and yttrium) are elements with high economic interest because they are critical elements for modern technologies. This study mainly focuses on the geochemical behavior of REE in hyperacid sulphate brines in volcanic-hydrothermal systems, where the precipitation of sulphate minerals occurs. Kawah Ijen lake, a hyperacid brine hosted in the Ijen caldera (Indonesia), was used as natural laboratory. ∑REE concentration in the lake water is high, ranging from 5.86 to 6.52 mg kg-1. The REE pattern of lake waters normalized to the average local volcanic rock is flat, suggesting isochemical dissolution. Minerals spontaneously precipitated in laboratory at 25 °C from water samples of Kawah Ijen were identified by XRD as gypsum. Microprobe analyses and the chemical composition of major constituents allow to identify possible other minerals precipitated: jarosite, Al-sulphate and Sr, Ba-sulphate. ∑REE concentration in minerals precipitated (mainly gypsum) range from 59.53 to 78.64 mg kg-1. The REE patterns of minerals precipitated normalized to the average local magmatic rock show enrichment in LREE. The REE distribution coefficient (KD), obtained from a ratio of its concentration in the minerals precipitated (mainly gypsum) and the lake water, shows higher values for LREE than HREE. KD-LREE/KD-HREE increases in the studied samples when the concentrations of BaO, MgO, Fe2O3, Al2O3, Na2O and the sum of total oxides (except SO3 and CaO) decrease in the solid phase. The presence of secondary minerals different than gypsum can be the cause of the distribution coefficient variations. High concentrations of REE in Kawah Ijen volcanic lake have to enhance the interest on these environments as possible REE reservoir, stimulating future investigations. The comparison of the KD calculated for REE after mineral precipitation (mainly gypsum) from Kawah Ijen and Poás hyperacid volcanic lakes allow to generalize that the gypsum precipitation removes the LREE from water.
    Description: Published
    Description: 140133
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: 2IT. Laboratori analitici e sperimentali
    Description: JCR Journal
    Keywords: Gypsum precipitation ; Rare Earth Elements ; Hyperacid crater lake ; Kawah Ijen volcano ; Poás volcano ; REE fractionation ; Geochemistry ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-10-06
    Description: The partitioning of carbon dioxide (CO〈sub〉2〈/sub〉) released by soils at Vulcano Island (Aeolian Islands, Italy) was performed by combining the CO〈sub〉2〈/sub〉 flux and the carbon isotope measurements. Based on this method, the amount of CO〈sub〉2〈/sub〉 of volcanic origin was quantified six times during the period 2015–2018. The data analysis allowed us to establish the correlation between CO〈sub〉2〈/sub〉 soil degassing and changes in the contribution of volcanic fluids. Carbon isotope determinations were performed in situ to enhance the coverage of data collection in space and time. These data were combined with both the CO〈sub〉2〈/sub〉 contents in the ground gases and the soil CO〈sub〉2〈/sub〉 flux. The amount of volcanic CO〈sub〉2〈/sub〉 was distinguished from that of biogenic origin by implementing a three-component mixing model. The results of this study indicate that the increase in CO〈sub〉2〈/sub〉 output in September 2018 reflects the increase in volcanic gas emissions. The measurement method and analysis presented in this work are sufficiently general to be applicable to the monitoring programs of active volcanoes.
    Description: Published
    Description: 106972
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Carbon dioxide ; CO2 flux ; CO2 isotope composition ; Volcano monitoring ; Volcanic unrest ; Volcanic degassing ; 04. Solid Earth ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-11-23
    Description: In the world, volcanic systems exhibit a wide range of eruption styles threatening the lives of millions of people. Relatively slow effusive eruptions generate lava flows (low viscosity magma) and lava domes (high viscosity magma) and tend to evolve over days to decades. Alternatively, explosive eruptions can inject very large volumes of fragmented magma and volcanic gas high into the atmosphere over shorter periods (minutes to weeks to months). Mitigation of the associated risk to populations, the built environment, and the cultural heritage relies upon our ability to accurately assess volcanic hazards, and this, in turn, depends on our understanding of the processes that control the style and scale of volcanic eruptions. To this end, technological developments over the last couple of decades have greatly improved our ability to characterize magmatic systems and detect precursors at high spatial and temporal resolution through the use of analytical and observational volcanology, including monitoring-derived data, and volcano geophysics. Numerical modeling of magma ascent can serve to link all of these data and processes to build effective near-real-time strategies. The complexity of the volcanic system, derived from the multiphase, multicomponent character of the magmatic mixtures and from their interaction dynamics with the surrounding host rocks, is however manifested in the complexity of its mathematical representation, and numerical models able to describe several interdependent processes, eventually at disequilibrium conditions, are required to capture the nature of volcanic systems with fidelity. In this chapter, we present the main equations governing magma ascent, highlighting the multiphase and disequilibrium nature of volcanic flows, and the presence of complex feedback mechanisms between gas exsolution, outgassing, and crystallization that are able to influence the most important characteristics of the resulting volcanic events. Then, a suite of numerical simulations is described to show the effect of some parameters and processes in controlling eruption style and scale, and thus the potential eruption hazard.
    Description: Published
    Description: 239-284
    Description: 5V. Processi eruttivi e post-eruttivi
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-25
    Description: Active lava lakes – as the exposed upper part of magmatic columns – are prime locations to investigate the conduit flow processes operating at active, degassing volcanoes. Persistent lava lakes require a constant influx of heat to sustain a molten state at the Earth's surface. Several mechanisms have been proposed to explain how such heat transfer can operate efficiently. These models make contrasting predictions with respect to the flow dynamics in volcanic conduits and should result in dissimilar volatile emissions at the surface. Here we look at high-frequency SO2 fluxes, plume composition, thermal emissions and aerial video footage from the Villarrica lava lake in order to determine the mechanism sustaining its activity. We found that while fluctuations are apparent in all datasets, none shows a stable periodic behaviour. These observations suggest a continuous influx of volatiles and magma to the Villarrica lava lake. We suggest that ascending volatile-rich and descending degassed magmas are efficiently mixed within the volcanic conduit, resulting in no clear periodic oscillations in the plume composition and flux. We compare our findings to those of other lava lakes where equivalent gas emission time-series have been acquired, and suggest that gas flux, magma viscosity and conduit geometry are key parameters determining which flow mechanism operates in a given volcanic conduit. The range of conduit flow regimes inferred from the few studied lava lakes gives a glimpse of the potentially wide spectrum of conduit flow dynamics operating at active volcanoes.
    Description: This research was conducted as part of the “Trail By Fire” expedition (PI: Y. Moussallam). The project was supported by the Royal Geographical Society (with the Institute of British Geographers) with the Land Rover Bursary; the Deep Carbon Observatory DECADE Initiative; Ocean Optics; Crowcon; Air Liquide; Thermo Fisher Scientific; Santander; Cactus Outdoor; Turbo Ace and Team Black Sheep. We thank Sebastien Carretier and Rose-Marie Ojeda together with IRD South-America personnel for all their logistical help. We further thank the CONAF and DGAC for their help. YM acknowledges support from the Scripps Institution of Oceanography Postdoctoral Fellowship program. CIS acknowledges a research startup grant from Victoria University of Wellington
    Description: Published
    Description: 237-247
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanic degassing ; Multi-GAS ; UAV ; Trail By Fire ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-10-16
    Description: Individual volcanoes can produce both effusive and explosive eruptions. A transition between these two eruption styles dramatically changes the hazards and can occur either between distinct eruption events or within one eruption episode. The causes of these transitions are difficult to determine due to the number of system parameters that can influence whether or not magma fragments in a runaway process. We apply a numerical model of magma ascent in a volcanic conduit to isolate and test the effects of key parameters related to magma rheology and system geometry. We find that for a given volcanic system, parameters that control magma viscosity, such as initial water mass fraction, initial crystal volume fraction, and temperature, have the greatest influence on whether or not magma fragments during ascent and erupts explosively. We also define a ‘critical condition’ for the full set of initial parameters under which a transition in eruption style, from effusive to explosive or the reverse, is more likely to occur. Under these conditions, small heterogeneities in the water or crystal content of the magma, or small perturbations to the conduit pressure gradient due to magma chamber overpressure or dome growth or collapse, can disrupt the magmatic conditions and cause a transition in eruption style. The 2010 VEI 4 eruption of Merapi Volcano included both effusive and explosive phases and was larger by an order of magnitude than its eruptions during the previous century. We constrain our model for the Merapi system using published literature values and show that between the previous eruption in 2006 and the 2010 eruption, the shallow magmatic system at Merapi reached critical conditions due to the ascent from depth of a large, hotter, more volatile-rich magma. Under these critical conditions and according to our model results, small changes in the volatile content of the magma, small dome collapses, subtle changes in degassing rate, or the addition of CO2 to the magma through decarbonation of the bedrock, are all feasible mechanisms for triggering rapid transitions between effusive and explosive activity during the 2010 eruption period.
    Description: Published
    Description: 106767
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Merapi ; Explosive-effusive transitions ; Eruption rate ; Fragmentation ; Lava domes ; Explosive eruptions ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-18
    Description: Hekla is a frequently active volcano with an infamously short pre-eruptive warning period. Our project contributes to the ongoing work on improving Hekla’s monitoring and early warning systems. In 2012 we began monitoring gas release at Hekla. The dataset comprises semi-permanent near-real time measurements with a MultiGAS system, quantification of diffuse gas flux, and direct samples analysed for composition and isotopes (δ13C, δD and δ18O). In addition, we used reaction path modelling to derive information on the origin and reaction pathways of the gas emissions. Hekla’s quiescent gas composition was CO2-dominated (0.8 mol fraction) and the δ13C signature was consistent with published values for Icelandic magmas. The gas is poor in H2O and S compared to hydrothermal manifestations and syn-eruptive emissions from other active volcanic systems in Iceland. The total CO2 flux from Hekla central volcano (diffuse soil emissions) is at least 44 T d−1, thereof 14 T d−1 are sourced from a small area at the volcano’s summit. There was no detectable gas flux at other craters, even though some of them had higher ground temperatures and had erupted more recently. Our measurements are consistent with a magma reservoir at depth coupled with a shallow dike beneath the summit. In the current quiescent state, the composition of the exsolved gas is substantially modified along its pathway to the surface through cooling and interaction with wall-rock and groundwater. The modification involves both significant H2O condensation and scrubbing of S-bearing species, leading to a CO2-dominated gas emitted at the summit. We conclude that a compositional shift towards more S- and H2O-rich gas compositions if measured in the future by the permanent MultiGAS station should be viewed as sign of imminent volcanic unrest on Hekla.
    Description: The research leading to these results has received funding from the Icelandic Centre for Research (RANNIS, grant number 110002-0031); the European Community’s Seventh Framework Programme under Grant Agreement No. 308377 (Project FUTUREVOLC); and the International Civil Aviation Organization.
    Description: Published
    Description: 80-99
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: Hekla ; Multi-GAS ; degassing ; volcanic unrest ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-03-02
    Description: Volcanic activity atMt. Etna in the last decade hasmostly beenmanifested by sequences of short paroxysmal episodes characterised by powerful lava fountains and high eruption columns. On the 23 February 2013, an exceptionally intense episode occurred at the New South-East Crater, producing a fountain N800 m high (among the highest ever recorded at Etna) and a ~9 km eruption column that dispersed ash N400 kmfromthe vent. Textural and petrographic analyses of lapilli revealed that magma erupted during the high-intensity phase is characterised by lowmicrolite contents (b7 area%), high vesicularity (76–83%), and high vesicle number densities (6–8.2 × 106 cm−3). The short-lived initial Strombolian explosions removed viscous magma from the conduit, enabling the rapid ascent of gas-rich, microlite-poor magma and the eruption of an 800 mhigh fountain and 9 kmhigh eruption column. For the 23 February eruption, the high vesicularity and lowmicrolite content of the pyroclasts support the hypothesis that volatile-rich magma was the driver of the high intensity lava fountain. This eruptive event, along with three other recent events at Etna over the last 15 years, can be defined as subplinian based on eruption rate and column height, but also generated incandescent 800–1000 m fountains. For these reasons, we propose to term this event, and others at Etna characterised by similar eruption features and parameters, as subplinian fountaining events.
    Description: Published
    Description: 241-250
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Eruption dynamics - 23 February 2013 - lava fountain - subplinian ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-06-30
    Description: Quantification of the CO2 released by the volcanoes to the atmosphere is relevant for the evaluation of the balance between deep-derived, biogenic and anthropogenic contributions. The current study estimates the CO2 released from Furnas do Enxofre degassing area (Terceira Island, Azores archipelago) by applying an approach that integrates the flux of CO2 fromthe soilwith the δ13C-CO2 values. A deep-derived CO2 output of 2.54 t d−1 is estimated for an area of ~23,715 m2. High biogenic-derived CO2 flux values (~45 g m−2 d−1) associated with light carbon isotopic content (δ13C=−28‰±1.1‰) are detected and explained by the type of vegetation that characterizes the study site. Carbon isotopic compositions of the CO2 (−6.4‰±1.2‰) measured in olivine-hosted fluid inclusions of the Terceira basalts are presented for the first time and contribute to defining the mantle-CO2 signature. Differences between these values and heavier carbon isotope values from gas in fumaroles at Furnas do Enxofre (−4.66‰to−4.27‰) are explained by the carbon isotopic fractionation occurring when CO2 reacts to form calcite in the geothermal reservoir at temperatures N180 °C. A clear correlation between the soil temperature and deep CO2 fluxes is observed and the integration of the diffuse degassing information with the composition of the fumarolic emissions allows estimating a thermal energy flux of 1.1 MW.
    Description: Published
    Description: 106968
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: 4V. Processi pre-eruttivi
    Description: JCR Journal
    Keywords: Soil diffuse degassing ; CO2 fluxes ; Carbon isotopic composition ; Hydrothermal systems ; 04.08. Volcanology ; 04.01. Earth Interior
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...