ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (169)
  • Annual Reviews
  • 2020-2022  (169)
  • 2000-2004
  • 1950-1954
  • 2020  (169)
  • Physics  (169)
Collection
  • Articles  (169)
Years
  • 2020-2022  (169)
  • 2000-2004
  • 1950-1954
Year
Journal
  • 101
    Publication Date: 2020-10-05
    Description: From intracellular protein signaling to embryonic symmetry-breaking, fluid transport ubiquitously drives biological events in living systems. We provide an overview of the fundamental fluid mechanics and transport phenomena across a range of length scales in cellular systems, with emphasis on how cellular functions are influenced by fluid transport. We also highlight how understanding the physical basis of these fluid dynamic phenomena can be implemented to engineer increasingly complex multicellular systems that recapitulate tissue-level functions. Examples discussed include the manipulation of intracellular fluid volume to achieve cell differentiation[Formula: see text]dedifferentiation and the use of microfluidic systems to control the spatial and temporal distribution of morphogens and fluid forces to generate vascularized organoids. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 53 is January 6, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4189
    Electronic ISSN: 1545-4479
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 102
    Publication Date: 2020-10-06
    Description: For an infectious disease such as the coronavirus disease 2019 (COVID-19) to spread, contact needs to be established between an infected host and a susceptible one. In a range of populations and infectious diseases, peer-to-peer contact modes involve complex interactions of a pathogen with a fluid phase, such as isolated complex fluid droplets or a multiphase cloud of droplets. This is true for exhalations including coughs or sneezes in humans and animals, bursting bubbles leading to micron-sized droplets in a range of indoor and outdoor settings, or impacting raindrops and airborne pathogens in foliar diseases transferring pathogens from water to air via splashes. Our mechanistic understanding of how pathogens actually transfer from one host or reservoir to the next remains woefully limited, with the global consequences that we are all experiencing with the ongoing COVID-19 pandemic. This review discusses the emergent area of the fluid dynamics of disease transmission. It highlights a new frontier and the rich multiscale fluid physics, from interfacial to multiphase and complex flows, that govern contact between an infected source and a susceptible target in a range of diseases. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 53 is January 6, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4189
    Electronic ISSN: 1545-4479
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 103
    Publication Date: 2020-10-05
    Description: Transient growth and resolvent analyses are routinely used to assess nonasymptotic properties of fluid flows. In particular, resolvent analysis can be interpreted as a special case of viewing flow dynamics as an open system in which free-stream turbulence, surface roughness, and other irregularities provide sources of input forcing. We offer a comprehensive summary of the tools that can be employed to probe the dynamics of fluctuations around a laminar or turbulent base flow in the presence of such stochastic or deterministic input forcing and describe how input–output techniques enhance resolvent analysis. Specifically, physical insights that may remain hidden in the resolvent analysis are gained by detailed examination of input–output responses between spatially localized body forces and selected linear combinations of state variables. This differentiating feature plays a key role in quantifying the importance of different mechanisms for bypass transition in wall-bounded shear flows and in explaining how turbulent jets generate noise. We highlight the utility of a stochastic framework, with white or colored inputs, in addressing a variety of open challenges including transition in complex fluids, flow control, and physics-aware data-driven turbulence modeling. Applications with temporally or spatially periodic base flows are discussed and future research directions are outlined. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 53 is January 6, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4189
    Electronic ISSN: 1545-4479
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 104
    Publication Date: 2020-10-05
    Description: Nanofluidics has firmly established itself as a new field in fluid mechanics, as novel properties have been shown to emerge in fluids at the nanometric scale. Thanks to recent developments in fabrication technology, artificial nanofluidic systems are now being designed at the scale of biological nanopores. This ultimate step in scale reduction has pushed the development of new experimental techniques and new theoretical tools, bridging fluid mechanics, statistical mechanics, and condensed matter physics. This review is intended as a toolbox for fluids at the nanometer scale. After presenting the basic equations that govern fluid behavior in the continuum limit, we show how these equations break down and new properties emerge in molecular-scale confinement. A large number of analytical estimates and physical arguments are given to organize the results and different limits. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 53 is January 6, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4189
    Electronic ISSN: 1545-4479
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 105
    Publication Date: 2020-01-08
    Description: At present, meteorites collected in Antarctica dominate the total number of the world's known meteorites. We focus here on the scientific advances in cosmochemistry and planetary science that have been enabled by access to, and investigations of, these Antarctic meteorites. A meteorite recovered during one of the earliest field seasons of systematic searches, Elephant Moraine (EET) 79001, was identified as having originated on Mars based on the composition of gases released from shock melt pockets in this rock. Subsequently, the first lunar meteorite, Allan Hills (ALH) 81005, was also recovered from the Antarctic. Since then, many more meteorites belonging to these two classes of planetary meteorites, as well as other previously rare or unknown classes of meteorites (particularly primitive chondrites and achondrites), have been recovered from Antarctica. Studies of these samples are providing unique insights into the origin and evolution of the Solar System and planetary bodies. ▪ Antarctic meteorites dominate the inventory of the world's known meteorites and provide access to new types of planetary and asteroidal materials. ▪ The first meteorites recognized to be of lunar and martian origin were collected from Antarctica and provided unique constraints on the evolution of the Moon and Mars. ▪ Previously rare or unknown classes of meteorites have been recovered from Antarctica and provide new insights into the origin and evolution of the Solar System. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 106
    Publication Date: 2020-01-07
    Description: Continuously operating global positioning system sites in the North Island of New Zealand have revealed a diverse range of slow motion earthquakes on the Hikurangi subduction zone. These slow slip events (SSEs) exhibit diverse characteristics, from shallow (1 year), less frequent (approximately every 5 years) SSEs in the southern part of the subduction zone. Hikurangi SSEs show intriguing relationships to interseismic coupling, seismicity, and tectonic tremor, and they exhibit a diversity of interactions with large, regional earthquakes. Due to the marked along-strike variations in Hikurangi SSE characteristics, which coincide with changes in physical characteristics of the subduction margin, the Hikurangi subduction zone presents a globally unique natural laboratory to resolve outstanding questions regarding the origin of episodic, slow fault slip behavior. ▪ New Zealand's Hikurangi subduction zone hosts slow slip events with a diverse range of depth, size, duration, and recurrence characteristics. ▪ Hikurangi slow slip events show intriguing relationships with seismicity from small earthquakes and tremor to larger earthquakes. ▪ Slow slip events play a major role in the accommodation of plate motion at the Hikurangi subduction zone. ▪ Many aspects of the Hikurangi subduction zone make it an ideal natural laboratory to resolve the physical processes controlling slow slip. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 107
    Publication Date: 2020-02-11
    Description: Groundwater is a crucial resource for current and future generations, but it is not being sustainably used in many parts of the world. The objective of this review is to provide a clear portrait of global-scale groundwater sustainability, systems, and resources in the Anthropocene to inspire a pivot toward more sustainable pathways of groundwater use. We examine groundwater from three different but related perspectives of sustainability science, natural resource governance and management, and Earth System science. An Earth System approach thus highlights the connections between groundwater and the other parts of the system and how these connections are impacting, or are impacted by, groundwater pumping. Groundwater is the largest store of unfrozen freshwater on Earth and is heterogeneously connected to many Earth System processes on different timescales. We propose a definition of groundwater sustainability that has a direct link with observable data, governance, and management as well as the crucial functions and services of groundwater. ▪ Groundwater is depleted or contaminated in some regions; it is ubiquitously distributed, which, importantly, makes it broadly accessible but also slow and invisible and therefore challenging to govern and manage. ▪ Regional differences in priorities, hydrology, politics, culture, and economic contexts mean that different governance and management tools are important, but a global perspective can support higher level international policies in an increasingly globalized world that require broader analysis of interconnections and knowledge transfer between regions. ▪ A coherent, overarching framework of groundwater sustainability is more important for groundwater governance and management than the concepts of safe yield, renewability, depletion, or stress. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 108
    Publication Date: 2020-02-11
    Description: Severe climatic and environmental changes are far more prevalent in Earth history than major extinction events, and the relationship between environmental change and extinction severity has important implications for the outcome of the ongoing anthropogenic extinction event. The response of mineralized marine plankton to environmental change offers an interesting contrast to the overall record of marine biota, which is dominated by benthic invertebrates. Here, we summarize changes in the species diversity of planktic foraminifera and calcareous nannoplankton over the Mesozoic–Cenozoic and that of radiolarians and diatoms over the Cenozoic. We find that, aside from the Triassic–Jurassic and Cretaceous–Paleogene mass extinction events, extinction in the plankton is decoupled from that in the benthos. Extinction in the plankton appears to be driven primarily by major climatic shifts affecting water column stratification, temperature, and, perhaps, chemistry. Changes that strongly affect the benthos, such as acidification and anoxia, have little effect on the plankton or are associated with radiation. ▪ Fossilizing marine plankton provide some of the most highly temporally and taxonomically resolved records of biodiversity since the Mesozoic. ▪ The record of extinction and origination in the plankton differs from the overall marine biodiversity record in revealing ways. ▪ Changes to water column stratification and global circulation are the main drivers of plankton diversity. ▪ Anoxia, acidification, and eutrophication (which strongly influence total marine fossil diversity) are less important in the plankton. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 109
    Publication Date: 2020-02-11
    Description: Jupiter is in the class of planets that we call gas giants, not because they consist of gas but because they were primarily made from hydrogen-helium gas, which upon gravitational compression becomes a metallic fluid.  Juno, in orbit about Jupiter since 2016, has changed our view: The gravity data are much improved, and the simplest interpretation of the higher order even harmonics implies that the planet may have a diluted central concentration of heavy elements.  Jupiter has strong winds extending to perhaps ∼3,000-km depth that are evident in the odd zonal harmonics of the gravity field. Jupiter's distinctive magnetic field displays some limited local structure, most notably the Great Blue Spot (a region of downward flux near the equator), and some evidence for secular variation, possibly arising from the winds. However, Juno is ongoing; it has not answered all questions and has posed new ones. ▪ Juno's mission reveals Jupiter's interior. ▪ A core exists but is diluted by hydrogen. ▪ The mission revealed wind depth and magnetic field. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 110
    Publication Date: 2020-01-10
    Description: A remarkable diversity of plant-eating mammals known as South American native ungulates (SANUs) flourished in South America for most of the Cenozoic. Although some of these species likely filled ecological niches similar to those of modern hoofed mammals, others differed substantially from extant artiodactyls and perissodactyls in their skull and limb anatomy and probably also in their ecology. Notoungulates and litopterns were the longest-lived and most diverse SANU clades and survived into the Quaternary; astrapotheres went extinct in the late Miocene, whereas other SANU groups were restricted to the Paleogene. Neogene notoungulates were quite specialized in craniodental structure, but many were rather unspecialized postcranially; in contrast, litopterns evolved limb specializations early in their history while maintaining more conservative dentitions. In this article, we review the current understanding of SANU evolutionary relationships and paleoecology, provide an updated compilation of genus temporal ranges, and discuss possible directions for future research. ▪ South American native ungulates (SANUs) were a diverse, long-lived, and independent radiation of mammals into varied terrestrial plant-eater niches. ▪ We review origins, evolution, and paleoecology the major SANU clades: Notoungulata, Litopterna, Astrapotheria, Xenungulata, and Pyrotheria. ▪ At their peak, during the Eocene and Oligocene, more than 40 genera of native ungulates inhabited South America at any one time. ▪ SANUs ranged from
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 111
    Publication Date: 2020-02-21
    Description: As the world overheats—potentially to conditions warmer than during the three million years over which modern humans evolved—suffering from heat stress will become widespread. Fundamental questions about humans’ thermal tolerance limits are pressing. Understanding heat stress as a process requires linking a network of disciplines, from human health and evolutionary theory to planetary atmospheres and economic modeling. The practical implications of heat stress are equally transdisciplinary, requiring technological, engineering, social, and political decisions to be made in the coming century. Yet relative to the importance of the issue, many of heat stress's crucial aspects, including the relationship between its underlying atmospheric drivers—temperature, moisture, and radiation—remain poorly understood. This review focuses on moist heat stress, describing a theoretical and modeling framework that enables robust prediction of the averaged properties of moist heat stress extremes and their spatial distribution in the future, and draws some implications for human and natural systems from this framework. ▪ Moist heat stress affects society; we summarize drivers of moist heat stress and assess future impacts on societal and global scales. ▪ Moist heat stress pattern scaling of climate models allows research on future heat waves, infrastructure planning, and economic productivity. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 112
    Publication Date: 2020-02-19
    Description: Climate extremes threaten human health, economic stability, and the well-being of natural and built environments (e.g., 2003 European heat wave). As the world continues to warm, climate hazards are expected to increase in frequency and intensity. The impacts of extreme events will also be more severe due to the increased exposure (growing population and development) and vulnerability (aging infrastructure) of human settlements. Climate models attribute part of the projected increases in the intensity and frequency of natural disasters to anthropogenic emissions and changes in land use and land cover. Here, we review the impacts, historical and projected changes, and theoretical research gaps of key extreme events (heat waves, droughts, wildfires, precipitation, and flooding). We also highlight the need to improve our understanding of the dependence between individual and interrelated climate extremes because anthropogenic-induced warming increases the risk of not only individual climate extremes but also compound (co-occurring) and cascading hazards. ▪ Climate hazards are expected to increase in frequency and intensity in a warming world. ▪ Anthropogenic-induced warming increases the risk of compound and cascading hazards. ▪ We need to improve our understanding of causes and drivers of compound and cascading hazards. Expected final online publication date for the Annual Review of Clinical Psychology, Volume 16 is May 7, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 113
    Publication Date: 2020-02-18
    Description: The sinking of organic matter to the deep ocean leaves extremely low concentrations of major and trace nutrients for photosynthetic organisms at the sunlit surface. As a result, marine phytoplankton make use of alternative sources of essential elements and have evolved to substitute some elements by others in various biochemical processes. A particularly intriguing example is that of Zn, which is used in many biochemical functions but is often depleted down to picomolar concentrations in surface seawater. Laboratory data show that many phytoplankton species are able to achieve high growth rates by replacing Zn with Cd or Co in cultures. One documented biochemical replacement occurs in some carbonic anhydrases that are used in the acquisition of inorganic carbon for photosynthesis. Field data show the existence of such enzymes in surface seawater and indicate a replacement of Zn by Cd and Co in the surface waters of the eastern tropical South Pacific. Those results point at interesting opportunities for future research. ▪ The dearth of essential elements in surface seawater has caused marine phytoplankton to substitute some trace metals by others in various biochemical processes. ▪ Many species can substitute Cd and/or Co for Zn as a metal center in carbonic anhydrase enzymes that are used in the acquisition of inorganic carbon for photosynthesis. ▪ Field data show the presence of such enzymes in the sea and indicate a replacement of Zn by Cd and Co in the surface upwelling waters of the eastern tropical South Pacific. ▪ New analytical and molecular tools provide opportunities to elucidate the unusual biochemistry of marine phytoplankton. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 114
    Publication Date: 2020-02-04
    Description: Seismology provides important constraints on the structure and dynamics of the deep mantle. Computational and methodological advances in the past two decades improved tomographic imaging of the mantle and revealed the fine-scale structure of plumes ascending from the core-mantle boundary region and slabs of oceanic lithosphere sinking into the lower mantle. We discuss the modeling aspects of global tomography including theoretical approximations, data selection, and model fidelity and resolution. Using spectral, principal component, and cluster analyses, we highlight the robust patterns of seismic heterogeneity, which inform us of flow in the mantle, the history of plate motions, and potential compositionally distinct reservoirs. In closing, we emphasize that data mining of vast collections of seismic waveforms and new data from distributed acoustic sensing, autonomous hydrophones, ocean-bottom seismometers, and correlation-based techniques will boost the development of the next generation of global models of density, seismic velocity, and attenuation. ▪ Seismic tomography reveals the 100-km to 1,000-km scale variation of seismic velocity heterogeneity in the mantle. Tomographic images are the most important geophysical constraints on mantle circulation and evolution. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 48 is May 29, 2020. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 115
    Publication Date: 2020-11-06
    Description: The fracture of highly deformable soft materials is of great practical importance in a wide range of technological applications, emerging in fields such as soft robotics, stretchable electronics, and tissue engineering. From a basic physics perspective, the failure of these materials poses fundamental challenges due to the strongly nonlinear and dissipative deformation involved. In this review, we discuss the physics of cracks in soft materials and highlight two length scales that characterize the strongly nonlinear elastic and dissipation zones near crack tips in such materials. We discuss physical processes, theoretical concepts, and mathematical results that elucidate the nature of the two length scales and show that the two length scales can classify a wide range of materials. The emerging multiscale physical picture outlines the theoretical ingredients required for the development of predictive theories of the fracture soft materials. We conclude by listing open challenges and future investigation directions. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 12 is March 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1947-5454
    Electronic ISSN: 1947-5462
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 116
    Publication Date: 2020-11-06
    Description: Mars is the nearest planet that potentially harbors life and that can be explored by humans, so its history of water is of considerable importance. Water was abundant on early Mars but disappeared as Mars became the cold, dry planet we see today. Loss of water to space played a major role in the history of this water. Variability of components of the atmosphere that can drive escape has taken place on all timescales, from interannual to the 105-, 106-, and 〉107-year timescales of obliquity variations to the 4 billion-year timescale of large-scale climate evolution. These variations have had a major impact on the behavior of the atmosphere, climate, and water. They also make it difficult to evaluate quantitatively where the water has gone. Despite this uncertainty, the observed enrichment in the ratio of deuterium/hydrogen requires that loss to space has been substantial. ▪ Mars is the nearest planet that potentially harbors life and that can be explored by humans, so its history of water is important. ▪ The Mars atmosphere has varied on all timescales, from year to year to its 4 billion-year history, driving the evolution of water. ▪ Loss of water from the Martian atmosphere to space has been a major process in Mars’ atmospheric evolution. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 28, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 117
    Publication Date: 2020-11-18
    Description: Solar cells are semiconductor devices that generate electricity through charge generation upon illumination. For optimal device efficiency, the photogenerated carriers must reach the electrical contact layers before they recombine. A deep understanding of the recombination process and transport behavior is essential to design better devices. Halide perovskite solar cells are commonly made of a polycrystalline absorber layer, but there is no consensus on the nature and role of grain boundaries. This review concerns theoretical approaches for the investigation of extended defects. We introduce recent computational studies on grain boundaries, and their influence on point-defect distributions, in halide perovskite solar cells. We conclude with a discussion of future research directions. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 12 is March 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1947-5454
    Electronic ISSN: 1947-5462
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 118
    Publication Date: 2020-11-23
    Description: This article reviews the physical principles of stem cell populations as active many-particle systems that are able to self-renew, control their density, and recover from depletion. We illustrate the dynamical and statistical hallmarks of homeostatic mechanisms, from stem cell density fluctuations and transient large-scale oscillation dynamics during recovery to the scaling behavior of clonal dynamics and front-like boundary propagation during regeneration. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 12 is March 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1947-5454
    Electronic ISSN: 1947-5462
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 119
    Publication Date: 2020-11-23
    Description: Nature has designed multifaceted cellular structures to support life. Cells contain a vast array of enzymes that collectively perform essential tasks by harnessing energy from chemical reactions. Despite the complexity, intra- and intercellular motility at low Reynolds numbers remain the epicenter of life. In the past decade, detailed investigations on enzymes that are freely dispersed in solution have revealed concentration-dependent enhanced diffusion and chemotactic behavior during catalysis. Theoretical calculations and simulations have determined the magnitude of the impulsive force per turnover; however, an unequivocal consensus regarding the mechanism of enhanced diffusion has not been reached. Furthermore, this mechanical force can be transferred from the active enzymes to inert particles or surrounding fluid, thereby providing a platform for the design of biomimetic systems. Understanding the factors governing enzyme motion would help us to understand organization principles for dissipative self-assembly and the fabrication of molecular machines. The purpose of this article is to review the different classes of enzyme motility and discuss the possible mechanisms as gleaned from experimental observations and theoretical modeling. Finally, we focus on the relevance of enzyme motion in biology and its role in future applications. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 12 is March 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1947-5454
    Electronic ISSN: 1947-5462
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 120
    Publication Date: 2020-11-02
    Description: In this review, we discuss recent advances in the investigation of colloidal systems interacting via a combination of short-range attraction and long-range repulsion. The prototypical examples of this phenomenology are charged colloids with depletion interactions, but the results apply, to a large extent, also to suspensions of globular proteins, clays, and, in general, to systems with competing attractive (hydrophobic) and repulsive (polar) contributions. After a brief introduction to the problem, we focus on the three disordered states that characterize these systems: equilibrium cluster phase, equilibrium gel, and Wigner glass of clusters. We provide a comparison of their static and dynamic observables, mainly by means of numerical simulations. Next, we discuss the few available studies on their viscoelastic properties and on their response to an external shear. Finally, we provide a summary of the current findings and also raise the main open questions and challenges for the future in this topic. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 12 is March 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1947-5454
    Electronic ISSN: 1947-5462
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 121
    Publication Date: 2020-11-09
    Description: Minoru Ozima describes important influences in his scientific life, from the trauma of World War II during adolescence to studying with such giants of Earth science as J. Tuzo Wilson. He benefited from international collaborations in helping to establish noble gas geochemistry as an important discipline that reveals much about the origin and evolution of our planet Earth. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 28, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 122
    Publication Date: 2020-12-08
    Description: Understanding the evolution and processes that shape our planet critically depends on the robustness of the absolute ages and process durations obtained from rocks and crystals. Two main aspects of time information on magmatic systems are currently at the forefront of new knowledge. The capacity to determine process durations on human timescales makes it possible to relate the magma dynamics below active volcanoes with the monitoring signals measured at the surface, thereby improving eruption hazards mitigation. The combination of precise in situ dating of accessory minerals and diffusion chronometry is unraveling the incremental growth of large silica-rich magma reservoirs over thousands to hundreds of thousands of years and illuminates the complex relationships between plutonic and volcanic systems. Further progress could be made by decreasing the volume of the analyzed crystals and the error of time determinations, addressing the crystal representativeness and sampling bias, and connecting the time information with physicochemical models of magmatic systems. ▪ Rock-forming minerals are time capsules of magmatic processes that occur on human timescales and can help to better anticipate volcanic eruptions. ▪ In situ dating of accessory minerals reveals that large magma reservoirs evolve through multiple thermal fluctuations of over tens to hundreds of thousands of years. ▪ Progress on conceptual models of magma storage and rejuvenation requires improved error analysis of timescales and representativeness of crystal populations. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 28, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 123
    Publication Date: 2020-11-30
    Description: The influence of the continental lithosphere and its root (or keel) on the continental drift of Earth is a key element in the history of plate tectonics. Previous geodynamic studies of mantle flow suggested that the cratonic root is moderately mechanically coupled with the underlying mantle, and stable continental drift on Earth's timescales occurs when the effective viscosity contrast between the continental lithosphere and the underlying mantle is approximately 103. Both geodynamics and seismological studies indicate that mechanically weak mobile belts (i.e., orogenic or suture zones) that surround cratons may play a role in the longevity of the cratonic lithosphere over geologically long timescales (i.e., over 1,000 million years) because they act as a buffer region against the high-viscosity cratons. Low-viscosity asthenosphere, characterized by slow seismic velocities, reduces the basal drag force acting on the cratonic root, which may also contribute to the longevity of the cratonic lithosphere. ▪ The role of the continental lithosphere and its root on the continental drift is reviewed from recent geodynamic and seismological studies. ▪ The cratonic root is moderately mechanically coupled with the underlying mantle and deformed by mantle flow over geological timescales. ▪ Orogenic belts or suture zones that surround cratons act as a buffer to protect cratons and are essential for their longevity. ▪ Low-viscosity asthenosphere may reduce the basal drag acting on the cratonic root and also contribute to its stability and longevity. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 28, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 124
    Publication Date: 2020-11-30
    Description: The martian surface preserves a record of aqueous fluids throughout the planet's history, but when, where, and even whether such fluids exist at the contemporary surface remains an area of ongoing research. Large water volumes remain on the planet today, but mostly bound in minerals or frozen in the subsurface, with limited direct evidence for aquifers. A role for water has been suggested to explain active surface processes monitored by orbital and landed spacecraft, such as gullies and slope streaks across a range of latitudes; however, dry mechanisms appear at least equally plausible for many active slopes. The low modern atmospheric density and cold surface temperatures challenge models for producing sufficient volumes of water to do the observed geomorphic work. The seeming ubiquity of salts in martian soils facilitates liquid stability but also has implications for the habitability of any such liquids. ▪ A thin modern atmosphere and low temperatures make pure liquid water unstable on the surface of modern Mars. ▪ Widespread salts could enhance liquid durability by lowering the freezing point and slowing evaporation. ▪ Dielectric measurements suggest active brines deep beneath the south pole and, in transient thin films, within shallow polar soils. ▪ Some characteristics of gullies, recurring slope lineae, and other active features challenge both current wet and dry formation models. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 28, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 125
    Publication Date: 2020-11-30
    Description: Pluto and Charon are strikingly diverse in their range of geologies, surface compositions, and crater retention ages. This is despite the two having similar densities and presumed bulk compositions. Much of Pluto's surface reflects surface-atmosphere interactions and the mobilization of volatile ices by insolation. Abundant evidence, including past and present N2 ice glacial activity, implies that Pluto has undergone substantial climate evolution. An ancient impact basin contains a massive, convectively overturning N2 ice reservoir, whose position and surrounding tectonics suggest a subsurface ocean. Aligned blades of methane ice hundreds of meters tall, found only at high altitude, likely cover much of Pluto's low latitudes and may be a consequence of obliquity variation driven volatile migration. Multikilometer-high possible cryovolcanic constructs and apparent fissure eruptions indicate relatively late endogenic activity on Pluto. Pluto's range of surface ages is extreme, whereas Charon's surface, while old, displays a large resurfaced plain and globally engirdling extensional tectonic network attesting to earlier endogenic vigor. ▪ The vast N2 ice sheet Sputnik Planitia controls Pluto's atmosphere and climate, comparable in importance with the role of Greenland and Antarctica on the climate of Earth. ▪ Spectacular evidence for erosion such as now-unoccupied glacial valley networks implies a vigorous early climate, and more widespread N2 ice glaciation, on Pluto. ▪ Geological activity on both bodies requires or required sustained internal heat release and suggests a past (Charon) or present (Pluto) ammoniated, subsurface ocean. ▪ The varieties of geologic experience witnessed on Pluto and Charon should play out among the many and varied dwarf planets of the Kuiper belt Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 28, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 126
    Publication Date: 2020-11-23
    Description: Polyelectrolyte complex coacervates represent a wide class of materials with applications ranging from coatings and adhesives to pharmaceutical technologies. They also underpin multiple biological processes, which are only now beginning to be deciphered. The means by which molecular-scale architecture propagates into macroscopic structure, thermodynamics, and dynamics in complex coacervates is of central concern in physics, chemistry, biology, and materials science. How does polyion charge sequence dictate thermodynamic behavior? How does one tailor rheology or interfacial tension using macromolecular architecture? What emergent functionality from polymer complex coacervates has biological consequences? Recent developments in coacervate science shed light on many of these issues and raise exciting new challenges for the close integration of theory, simulations, and experiment. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 12 is March 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1947-5454
    Electronic ISSN: 1947-5462
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 127
    Publication Date: 2020-12-07
    Description: In this article, we provide a pedagogical review of the theory of topological quantum chemistry and topological crystalline insulators. We begin with an overview of the properties of crystal symmetry groups in position and momentum space. Next, we introduce the concept of a band representation, which quantifies the symmetry of topologically trivial band structures. By combining band representations with symmetry constraints on the connectivity of bands in momentum space, we show how topologically nontrivial bands can be cataloged and classified. We present several examples of new topological phases discovered using this paradigm and conclude with an outlook toward future developments. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 12 is March 10, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1947-5454
    Electronic ISSN: 1947-5462
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 128
    Publication Date: 2020-12-04
    Description: The Laurentian Great Lakes are vast, spatially heterogeneous, and changing. Across these hydrologically linked basins, some conditions approach biogeochemical extremes for freshwater systems anywhere. Some of the biogeochemical processes operate over nearly as broad a range of temporal and spatial scales as is possible to observe in freshwater. What we know about the biogeochemistry of this system is strongly influenced by an intense focus on phosphorus loading, eutrophication, and partial recovery; therefore, some important biogeochemical processes are known in detail while others are scarcely described. These lakes serve as a life support system for tens of millions of people, and they generate trillions of dollars of economic activity. Many biogeochemical changes that have occurred have surprised us. Biogeochemistry affects how these lakes perform these functions and should be a higher research priority. ▪ The biogeochemical functioning of the Great Lakes affects tens of millions of people and trillions of dollars of economy, but our knowledge of their biogeochemistry is fragmentary. ▪ The history of environmental damage and recovery in the Great Lakes is long and includes many surprises. ▪ Large lakes such as the Great Lakes combine characteristics of small lakes and the world's oceans, making them worthy objects of study to advance fundamental understanding. ▪ The Great Lakes are understudied relative to their scale and importance. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 28, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 129
    Publication Date: 2020-12-07
    Description: Sound-induced mechanical stimuli are detected by elaborate mechanosensory transduction (MT) machinery in highly specialized hair cells of the inner ear. Genetic studies of inherited deafness in the past decades have uncovered several molecular constituents of the MT complex, and intense debate has surrounded the molecular identity of the pore-forming subunits. How the MT components function in concert in response to physical stimulation is not fully understood. In this review, we summarize and discuss multiple lines of evidence supporting the hypothesis that transmembrane channel-like 1 is a long-sought MT channel subunit. We also review specific roles of other components of the MT complex, including protocadherin 15, cadherin 23, lipoma HMGIC fusion partner-like 5, transmembrane inner ear, calcium and integrin-binding family member 2, and ankyrins. Based on these recent advances, we propose a unifying theory of hair cell MT that may reconcile most of the functional discoveries obtained to date. Finally, we discuss key questions that need to be addressed for a comprehensive understanding of hair cell MT at molecular and atomic levels. Expected final online publication date for the Annual Review of Biophysics, Volume 50 is May 6, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 1936-122X
    Electronic ISSN: 1936-1238
    Topics: Biology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 130
    Publication Date: 2020-12-18
    Description: Hydrogen and deuterium isotopic evidence indicates that the source of terrestrial water was mostly meteorites, with additional influx from nebula gas during accretion. There are two Earth models, with large (7–12 ocean masses) and small (1–4 ocean masses) water budgets that can explain the geochemical, cosmochemical, and geological observations. Geophysical and mineral physics data indicate that the upper and lower mantles are generally dry, whereas the mantle transition zone is wetter, with heterogeneous water distribution. Subducting slabs are a source of water influx, and there are three major sites of deep dehydration: the base of the upper mantle, and the top and bottom of the lower mantle in addition to slabs in the shallow upper mantle. Hydrated regions surround these dehydration sites. The core may be a hidden reservoir of hydrogen under the large water budget model. ▪ Earth is a water planet. Where and when was water delivered, and how much? How does water circulate in Earth? This review looks at the current answers to these fundamental questions. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 131
    Publication Date: 2020-11-03
    Description: Complex fluids exist in nature and are continually engineered for specific applications involving the addition of macromolecules to a solvent, among other means. This imparts viscoelasticity to the fluid, a property responsible for various flow instabilities and major modifications to the fluid dynamics. Recent developments in the numerical methods for the simulation of viscoelastic fluid flows, described by continuum-level differential constitutive equations, are surveyed, with a particular emphasis on the finite-volume method. This method is briefly described, and the main benchmark flows currently used in computational rheology to assess the performance of numerical methods are presented. Outstanding issues in numerical methods and novel and challenging applications of viscoelastic fluids, some of which require further developments in numerical methods, are discussed. Expected final online publication date for the Annual Review of Fluid Mechanics, Volume 53 is January 6, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0066-4189
    Electronic ISSN: 1545-4479
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 132
    Publication Date: 2020-12-21
    Description: Higher boreal summer insolation in the early to middle Holocene drove thousands of years of summer warming across the Arctic. Modern-day warming has distinctly different causes, but geologic data from this past warm period hold lessons for the future. We compile Holocene temperature reconstructions from ice, lake, and marine cores around Greenland, where summer temperatures are globally important due to their influence on ice sheet mass balance, ocean circulation, and sea ice. Highlighting and accounting for some key issues with proxy interpretation, we find that much of Greenland experienced summers 3 to 5°C warmer than the mid-twentieth century in the early Holocene—earlier and stronger warming than often presumed. Warmth had dramatic consequences: Many glaciers disappeared, perennial sea ice retreated, plants and animals migrated northward, the Greenland Ice Sheet shrank rapidly, and increased meltwater discharge led to strong marine water stratification and enhanced winter sea ice in some areas. ▪ Summer air temperatures and open ocean temperatures around much of Greenland peaked in the early Holocene in response to elevated summer insolation. ▪ Peak summer air temperatures ranged from 3 to 5°C warmer than the mid-twentieth century in northwest and central Greenland to perhaps 1 to 2°C in south Greenland. ▪ Many differences between records can be explained by proxy seasonality, ice sheet elevation changes, vegetation analogs and lags, and the nearshore effects of ice sheet meltwater. ▪ Early Holocene warmth dramatically affected glaciers and the Greenland Ice Sheet; meltwater discharge, nearshore ocean salinity, and sea ice; and diverse flora and fauna. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
    Print ISSN: 0084-6597
    Electronic ISSN: 1545-4495
    Topics: Geosciences , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 133
    Publication Date: 2020-10-19
    Description: Although the dark matter is usually assumed to be made up of some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to 1016–1017 g, 1020–1024 g, and 10–103 M⊙. The last possibility is contentious but of special interest in view of the recent detection of black hole mergers by LIGO/Virgo. PBHs might have important consequences and resolve various cosmological conundra even if they account for only a small fraction of the dark matter density. In particular, those larger than 103 M⊙ could generate cosmological structures through the seed or Poisson effect, thereby alleviating some problems associated with the standard cold dark matter scenario, and sufficiently large PBHs might provide seeds for the supermassive black holes in galactic nuclei. More exotically, the Planck-mass relics of PBH evaporations or stupendously large black holes bigger than 1012 M⊙ could provide an interesting dark component.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 134
    Publication Date: 2020-10-19
    Description: Ultraperipheral collisions (UPCs) of heavy ions and protons are the energy frontier for electromagnetic interactions. Both photonuclear and two-photon collisions are studied at collision energies that are far higher than those available elsewhere. In this review, we discuss physics topics that can be addressed with UPCs, including nuclear shadowing, nuclear structure, and searches for physics beyond the Standard Model.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 135
    Publication Date: 2020-10-19
    Description: The quark–gluon plasma (QGP) produced by collisions between ultrarelativistic heavy nuclei is well described in the language of hydrodynamics. Noncentral collisions are characterized by very large angular momentum, which in a fluid system manifests as flow vorticity. This rotational structure can lead to a spin polarization of the hadrons that eventually emerge from the plasma, and thus these collisions provide experimental access to flow substructure at unprecedented detail. Recently, the first observations of Λ hyperon polarization along the direction of collisional angular momentum were reported. These measurements are in broad agreement with hydrodynamic and transport-based calculations and reveal that the QGP is the most vortical fluid ever observed. However, there remain important tensions between theory and observation that might be fundamental in nature. In the relatively mature field of heavy-ion physics, the discovery of global hyperon polarization and 3D simulations of the collision have opened an entirely new direction of research. We discuss the current status of this rapidly developing area and directions for future research.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 136
    Publication Date: 2020-10-19
    Description: The center of the Galaxy is one of the prime targets in the search for a signal of annihilating (or decaying) dark matter. If such a signal were to be detected, it would shed light on one of the biggest mysteries in physics today: What is dark matter? Fundamental properties of the particle nature of dark matter, such as its mass, annihilation cross section, and annihilation final states, could be measured for the first time. Several experiments have searched for such a signal, and some have measured excesses that are compatible with it. A long-standing and compelling excess is observed in γ-rays by the Fermi Large Area Telescope ( Fermi–LAT). This excess is consistent with a dark matter particle with a mass of approximately 50 (up to ∼200) GeV annihilating with a velocity-averaged cross section of ∼10−26 cm3 s−1. Although a dark matter origin of the excess remains viable, other interpretations are possible. In particular, there is some evidence that the excess is produced by a population of unresolved point sources of γ-rays—for example, millisecond pulsars. In this article, I review the current status of the observation of the Fermi–LAT Galactic center excess, the possible interpretations of the excess, the evidence and counterevidence for each, and the prospects for resolving its origin with future measurements.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 137
    Publication Date: 2020-10-19
    Description: In this informal memoir, the author describes his passage through a golden age of elementary particle physics. It includes not only his career trajectory as a theoretical physicist but also his excursions into experimental physics and particle accelerator theory. While his successes are highlighted, some unsuccessful efforts are included in the narrative as well. Those “losers” were arguably as pleasurable as the less-frequent “winners.” Since retirement, the author has become interested in gravitation theory and cosmology—a new golden age. This activity is also briefly described.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 138
    Publication Date: 2020-10-19
    Description: In this review, we consider a general theoretical framework for fermionic color-singlet states—including a singlet, a doublet, and a triplet under the Standard Model SU(2)L gauge symmetry, corresponding to the bino, higgsino, and wino in supersymmetric theories—generically dubbed electroweakinos for their mass eigenstates. Depending on the relations among these states’ three mass parameters and their mixing after the electroweak symmetry breaking, this sector leads to a rich phenomenology that may be accessible in current and near-future experiments. We discuss the decay patterns of electroweakinos and their observable signatures at colliders, review the existing bounds on the model parameters, and summarize the current statuses of the comprehensive searches by the ATLAS and CMS Collaborations at the Large Hadron Collider. We also comment on the prospects for future colliders. An important feature of the theory is that the lightest neutral electroweakino can be identified as a weakly interacting massive particle cold dark matter candidate. We take into account the existing bounds on the parameters from the dark matter direct detection experiments and discuss the complementarity of the electroweakino searches at colliders.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 139
    Publication Date: 2020-04-20
    Description: Biological phase separation is known to be important for cellular organization, which has recently been extended to a new class of biomolecules that form liquid-like droplets coexisting with the surrounding cellular or extracellular environment. These droplets are termed membraneless organelles, as they lack a dividing lipid membrane, and are formed through liquid-liquid phase separation (LLPS). Elucidating the molecular determinants of phase separation is a critical challenge for the field, as we are still at the early stages of understanding how cells may promote and regulate functions that are driven by LLPS. In this review, we discuss the role that disorder, perturbations to molecular interactions resulting from sequence, posttranslational modifications, and various regulatory stimuli play on protein LLPS, with a particular focus on insights that may be obtained from simulation and theory. We finally discuss how these molecular driving forces alter multicomponent phase separation and selectivity.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 140
    Publication Date: 2020-04-20
    Description: This review summarizes progress in understanding electron transfer from photoexcited nanocrystals to redox enzymes. The combination of the light-harvesting properties of nanocrystals and the catalytic properties of redox enzymes has emerged as a versatile platform to drive a variety of enzyme-catalyzed reactions with light. Transfer of a photoexcited charge from a nanocrystal to an enzyme is a critical first step for these reactions. This process has been studied in depth in systems that combine Cd-chalcogenide nanocrystals with hydrogenases. The two components can be assembled in close proximity to enable direct interfacial electron transfer or integrated with redox mediators to transport charges. Time-resolved spectroscopy and kinetic modeling have been used to measure the rates and efficiencies of the electron transfer. Electron transfer has been described within the framework of Marcus theory, providing insights into the factors that can be used to control the photochemical activity of these biohybrid systems. The range of potential applications and reactions that can be achieved using nanocrystal–enzyme systems is expanding, and numerous fundamental and practical questions remain to be addressed.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 141
    Publication Date: 2020-04-20
    Description: At the intersection of spectroscopy and microscopy lie techniques that are capable of providing subnanometer imaging of excited states of individual molecules or nanoparticles. Such approaches are particularly important for imaging macromolecules or nanoparticles large enough to have a high probability of containing a defect. These inevitable defects often control properties and function despite an otherwise ideal structure. We discuss real-space imaging techniques such as using scanning tunneling microscopy tips to enhance optical measurements and electron energy-loss spectroscopy in a scanning transmission electron microscope, which is based on focused electron beams to obtain high-resolution spatial information on excited states. The outlook for these methods is bright, as they will provide critical information for the characterization and improvement of energy-switching, electron-switching, and energy-harvesting materials.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 142
    Publication Date: 2020-04-20
    Description: Ever since Clausius in 1865 and Boltzmann in 1877, the concepts of entropy and of its maximization have been the foundations for predicting how material equilibria derive from microscopic properties. But, despite much work, there has been no equally satisfactory general variational principle for nonequilibrium situations. However, in 1980, a new avenue was opened by E.T. Jaynes and by Shore and Johnson. We review here maximum caliber, which is a maximum-entropy-like principle that can infer distributions of flows over pathways, given dynamical constraints. This approach is providing new insights, particularly into few-particle complex systems, such as gene circuits, protein conformational reaction coordinates, network traffic, bird flocking, cell motility, and neuronal firing.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 143
    Publication Date: 2020-04-20
    Description: Ions transiting biomembranes might pass readily from water through ion-specific membrane proteins if these protein channels provide environments similar to the aqueous solution hydration environment. Indeed, bulk aqueous solution is an important reference condition for the ion permeation process. Assessment of this hydration mimicry concept depends on understanding the hydration structure and free energies of metal ions in water in order to provide a comparison for the membrane channel environment. To refine these considerations, we review local hydration structures of ions in bulk water and the molecular quasi-chemical theory that provides hydration free energies. In doing so, we note some current views of ion binding to membrane channels and suggest new physical chemical calculations and experiments that might further clarify the hydration mimicry concept.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 144
    Publication Date: 2020-04-20
    Description: The structure–function relationships of biomolecules have captured the interest and imagination of the scientific community and general public since the field of structural biology emerged to enable the molecular understanding of life processes. Proteins that play numerous functional roles in cellular processes have remained in the forefront of research, inspiring new characterization techniques. In this review, we present key theoretical concepts and recent experimental strategies using femtosecond stimulated Raman spectroscopy (FSRS) to map the structural dynamics of proteins, highlighting the flexible chromophores on ultrafast timescales. In particular, wavelength-tunable FSRS exploits dynamic resonance conditions to track transient-species-dependent vibrational motions, enabling rational design to alter functions. Various ways of capturing excited-state chromophore structural snapshots in the time and/or frequency domains are discussed. Continuous development of experimental methodologies, synergistic correlation with theoretical modeling, and the expansion to other nonequilibrium, photoswitchable, and controllable protein systems will greatly advance the chemical, physical, and biological sciences.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 145
    Publication Date: 2020-04-20
    Description: Gram-negative bacteria are protected by a multicompartmental molecular architecture known as the cell envelope that contains two membranes and a thin cell wall. As the cell envelope controls influx and efflux of molecular species, in recent years both experimental and computational studies of such architectures have seen a resurgence due to the implications for antibiotic development. In this article we review recent progress in molecular simulations of bacterial membranes. We show that enormous progress has been made in terms of the lipidic and protein compositions of bacterial systems. The simulations have moved away from the traditional setup of one protein surrounded by a large patch of the same lipid type toward a more bio-logically representative viewpoint. Simulations with multiple cell envelope components are also emerging. We review some of the key method developments that have facilitated recent progress, discuss some current limitations, and offer a perspective on future directions.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 146
    Publication Date: 2020-04-20
    Description: The gas-phase ground-state dissociation energy D0( S0) of an isolated and cold bimolecular complex is a fundamental measure of the intermolecular interaction strength between its constituents. Accurate D0 values are important for the understanding of intermolecular bonding, for benchmarking high-level theoretical calculations, and for the parameterization of dispersion-corrected density functionals or force-field models that are used in fields ranging from crystallography to biochemistry. We review experimental measurements of the gas-phase D0( S0) and D0( S1) values of 55 different M⋅S complexes, where M is a (hetero)aromatic molecule and S is a closed-shell solvent atom or molecule. The experiments employ the triply resonant SEP-R2PI laser method, which involves M-centered ( S0 → S1) electronic excitation, followed by S1 → S0 stimulated emission spanning a range of S0 state vibrational levels. At sufficiently high vibrational energy, vibrational predissociation of the M⋅S complex occurs. A total of 49 dissociation energies were bracketed to within ≤1.0 kJ/mol, providing a large experimental database of accurate noncovalent interactions.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 147
    Publication Date: 2020-04-20
    Description: Chromatosomes are fundamental units of chromatin structure that are formed when a linker histone protein binds to a nucleosome. The positioning of the linker histone on the nucleosome influences the packing of chromatin. Recent simulations and experiments have shown that chromatosomes adopt an ensemble of structures that differ in the geometry of the linker histone–nucleosome interaction. In this article we review the application of Brownian, Monte Carlo, and molecular dynamics simulations to predict the structure of linker histone–nucleosome complexes, to study the binding mechanisms involved, and to predict how this binding affects chromatin fiber structure. These simulations have revealed the sensitivityof the chromatosome structure to variations in DNA and linker histone sequence, as well as to posttranslational modifications, thereby explaining the structural variability observed in experiments. We propose that a concerted application of experimental and computational approaches will reveal the determinants of chromatosome structural variability and how it impacts chromatin packing.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 148
    Publication Date: 2020-04-20
    Description: Modern computational chemistry has reached a stage at which massive exploration into chemical reaction space with unprecedented resolution with respect to the number of potentially relevant molecular structures has become possible. Various algorithmic advances have shown that such structural screenings must and can be automated and routinely carried out. This will replace the standard approach of manually studying a selected and restricted number of molecular structures for a chemical mechanism. The complexity of the task has led to many different approaches. However, all of them address the same general target, namely to produce a complete atomistic picture of the kinetics of a chemical process. It is the purpose of this overview to categorize the problems that should be targeted and to identify the principal components and challenges of automated exploration machines so that the various existing approaches and future developments can be compared based on well-defined conceptual principles.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 149
    Publication Date: 2020-04-20
    Description: Bose–Einstein condensation describes the macroscopic occupation of a single-particle mode: the condensate. This state can in principle be realized for any particles obeying Bose–Einstein statistics; this includes hybrid light-matter excitations known as polaritons. Some of the unique optoelectronic properties of organic molecules make them especially well suited for the realization of polariton condensates. Exciton-polaritons form in optical cavities when electronic excitations couple collectively to the optical mode supported by the cavity. These polaritons obey bosonic statistics at moderate densities, are stable at room temperature, and have been observed to form a condensed or lasing state. Understanding the optimal conditions for polariton condensation requires careful modeling of the complex photophysics of organic molecules. In this article, we introduce the basic physics of exciton-polaritons and condensation and review experiments demonstrating polariton condensation in molecular materials.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 150
    Publication Date: 2020-04-20
    Description: This review examines low-frequency vibrational modes of proteins and their coupling to enzyme catalytic sites. That protein motions are critical to enzyme function is clear, but the kinds of motions present in proteins and how they are involved in function remain unclear. Several models of enzyme-catalyzed reaction suggest that protein dynamics may be involved in the chemical step of the catalyzed reaction, but the evidence in support of such models is indirect. Spectroscopic studies of low-frequency protein vibrations consistently show that there are underdamped modes of the protein with frequencies in the tens of wavenumbers where overdamped behavior would be expected. Recent studies even show that such underdamped vibrations modulate enzyme active sites. These observations suggest that increasingly sophisticated spectroscopic methods will be able to unravel the link between low-frequency protein vibrations and enzyme function.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 151
    Publication Date: 2020-04-20
    Description: Various organic reactions, including important synthetic reactions involving C–C, C–N, and C–O bond formation as well as reactions of biomolecules, are accelerated when the reagents are present in sprayed or levitated microdroplets or in thin films. The reaction rates increase by orders of magnitude with decreasing droplet size or film thickness. The effect is associated with reactions at the solution–air interface. A key factor is partial solvation of the reagents at the interface, which reduces the critical energy for reaction. This phenomenon is of intrinsic interest and potentially of practical value as a simple, rapid method of performing small-scale synthesis.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 152
    Publication Date: 2020-04-20
    Description: Machine learning (ML) is transforming all areas of science. The complex and time-consuming calculations in molecular simulations are particularly suitable for an ML revolution and have already been profoundly affected by the application of existing ML methods. Here we review recent ML methods for molecular simulation, with particular focus on (deep) neural networks for the prediction of quantum-mechanical energies and forces, on coarse-grained molecular dynamics, on the extraction of free energy surfaces and kinetics, and on generative network approaches to sample molecular equilibrium structures and compute thermodynamics. To explain these methods and illustrate open methodological problems, we review some important principles of molecular physics and describe how they can be incorporated into ML structures. Finally, we identify and describe a list of open challenges for the interface between ML and molecular simulation.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 153
    Publication Date: 2020-04-20
    Description: Nonstatistical dynamics is important for many chemical reactions. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory of unimolecular kinetics assumes a reactant molecule maintains a statistical microcanonical ensemble of vibrational states during its dissociation so that its unimolecular dynamics are time independent. Such dynamics results when the reactant's atomic motion is chaotic or irregular. Intrinsic non-RRKM dynamics occurs when part of the reactant's phase space consists of quasiperiodic/regular motion and a bottleneck exists, so that the unimolecular rate constant is time dependent. Nonrandom excitation of a molecule may result in short-time apparent non-RRKM dynamics. For rotational activation, the 2J + 1 K levels for a particular J may be highly mixed, making K an active degree of freedom, or K may be a good quantum number and an adiabatic degree of freedom. Nonstatistical dynamics is often important for bimolecular reactions and their intermediates and for product-energy partitioning of bimolecular and unimolecular reactions. Post–transition state dynamics is often highly complex and nonstatistical.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 154
    Publication Date: 2020-04-20
    Description: Intriguing properties of photoemission from free, unsupported particles and droplets were predicted nearly 50 years ago, though experiments were a technical challenge. The last few decades have seen a surge of research in the field, due to advances in aerosol technology (generation, characterization, and transfer into vacuum), the development of photoelectron imaging spectrometers, and advances in vacuum ultraviolet and ultrafast light sources. Particles and droplets offer several advantages for photoemission studies. For example, photoemission spectra are dependent on the particle's size, shape, and composition, providing a wealth of information that allows for the retrieval of genuine electronic properties of condensed phase. In this review, with a focus on submicrometer-sized, dielectric particles and droplets, we explain the utility of photoemission from such systems, summarize several applications from the literature, and present some thoughts on future research directions.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 155
    Publication Date: 2020-04-20
    Description: We review recent advances in the characterization of electronic forms of energy transport in emerging semiconductors. The approaches described all temporally and spatially resolve the evolution of initially localized populations of photogenerated excitons or charge carriers. We first provide a comprehensive background for describing the physical origin and nature of electronic energy transport both microscopically and from the perspective of the observer. We introduce the new family of far-field, time-resolved optical microscopies developed to directly resolve not only the extent of this transport but also its potentially temporally and spatially dependent rate. We review a representation of examples from the recent literature, including investigation of energy flow in colloidal quantum dot solids, organic semiconductors, organic-inorganic metal halide perovskites, and 2D transition metal dichalcogenides. These examples illustrate how traditional parameters like diffusivity are applicable only within limited spatiotemporal ranges and how the techniques at the core of this review,especially when taken together, are revealing a more complete picture of the spatiotemporal evolution of energy transport in complex semiconductors, even as a function of their structural heterogeneities.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 156
    Publication Date: 2020-04-20
    Description: Roaming reactions were first clearly identified in photodissociation of formaldehyde 15 years ago, and roaming dynamics are now recognized as a universal aspect of chemical reactivity. These reactions typically involve frustrated near-dissociation of a quasibound system to radical fragments, followed by reorientation at long range and intramolecular abstraction. The consequences can be unexpected formation of molecular products, depletion of the radical pool in chemical systems, and formation of products with unusual internal state distributions. In this review, I examine some current aspects of roaming reactions with an emphasis on experimental results, focusing on possible quantum effects in roaming and roaming dynamics in bimolecular systems. These considerations lead to a more inclusive definition of roaming reactions as those for which key dynamics take place at long range.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 157
    Publication Date: 2020-04-20
    Description: Dynamic nuclear polarization (DNP) is one of the most prominent methods of sensitivity enhancement in nuclear magnetic resonance (NMR). Even though solid-state DNP under magic-angle spinning (MAS) has left the proof-of-concept phase and has become an important tool for structural investigations of biomolecules as well as materials, it is still far from mainstream applicability because of the potentially overwhelming combination of unique instrumentation, complex sample preparation, and a multitude of different mechanisms and methods available. In this review, I introduce the diverse field and history of DNP, combining aspects of NMR and electron paramagnetic resonance. I then explain the general concepts and detailed mechanisms relevant at high magnetic field, including solution-state methods based on Overhauser DNP but with a greater focus on the more established MAS DNP methods. Finally, I review practical considerations and fields of application and discuss future developments.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 158
    Publication Date: 2020-04-20
    Description: Intrinsically disordered proteins (IDPs) are now widely recognized as playing critical roles in a broad range of cellular functions as well as being implicated in diverse diseases. Their lack of stable secondary structure and tertiary interactions, coupled with their sensitivity to measurement conditions, stymies many traditional structural biology approaches. Single-molecule Förster resonance energy transfer (smFRET) is now widely used to characterize the physicochemical properties of these proteins in isolation and is being increasingly applied to more complex assemblies and experimental environments. This review provides an overview of confocal diffusion-based smFRET as an experimental tool, including descriptions of instrumentation, data analysis, and protein labeling. Recent papers are discussed that illustrate the unique capability of smFRET to provide insight into aggregation-prone IDPs, protein–protein interactions involving IDPs, and IDPs in complex experimental milieus.
    Print ISSN: 0066-426X
    Electronic ISSN: 1545-1593
    Topics: Chemistry and Pharmacology , Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 159
    Publication Date: 2020-10-19
    Description: This review provides an overview of the conceptual issues regarding the interpretation of so-called direct top quark mass measurements, which are based on the kinematic reconstruction of top quark decay products at the Large Hadron Collider (LHC). These measurements quote the top mass parameter [Formula: see text] of Monte Carlo event generators with current uncertainties of around 0.5 GeV. The problem of finding a rigorous relation between [Formula: see text] and top mass renormalization schemes defined in field theory is unresolved to date and touches perturbative as well as nonperturbative aspects and the limitations of state-of-the-art Monte Carlo event generators. I review the status of LHC top mass measurements, illustrate how conceptual limitations enter the picture, and explain a controversy that has permeated the community in the context of the interpretation problem related to [Formula: see text]. I then summarize recent advances in acquiring first principles insights and outline what else has to be understood to fully resolve the issue. I conclude with recommendations on how to deal with the interpretation problem for the time being when making top mass–dependent theoretical predictions.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 160
    Publication Date: 2020-10-19
    Description: Following a major shortage of 99Mo in the 2009–2010 period, concern grew that the aging reactor production facilities needed to be replaced. Most producers were using highly enriched 235U (HEU) as the target material. The Organisation for Economic Co-operation and Development and the International Atomic Energy Agency sought to remedy these issues by removing HEU from medical isotope production and implementing full cost recovery to enable new production entities to compete with the existing multipurpose reactor facilities, which were heavily subsidized by their respective governments. This review examines the various approaches to producing 99Mo and/or 99mTc with a critical eye toward their potential success in ( a) producing the medical isotopes and ( b) being able to successfully enter and compete in the market. Because many of the new approaches are adapting existing technologies for commercial businesses, some of the details are of a proprietary nature and not available for in-depth technical review.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 161
    Publication Date: 2020-10-19
    Description: The interplay of quantum anomalies with strong magnetic fields and vorticity in chiral systems could lead to novel transport phenomena, such as the chiral magnetic effect (CME), the chiral magnetic wave (CMW), and the chiral vortical effect (CVE). In high-energy nuclear collisions, these chiral effects may survive the expansion of a quark–gluon plasma fireball and be detected in experiments. The experimental searches for the CME, the CMW, and the CVE have aroused extensive interest over the past couple of decades. The main goal of this article is to review the latest experimental progress in the search for these novel chiral transport phenomena at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. Future programs to help reduce uncertainties and facilitate the interpretation of the data are also discussed.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 162
    Publication Date: 2020-10-19
    Description: The accident at the Fukushima Daiichi Nuclear Power Station (FDNPS) following the Great East Japan Earthquake and the subsequent tsunami in March 2011 changed people's perceptions regarding nuclear power generation in Japan and worldwide. The failure to prevent the accident and the response to it had an enormous impact specifically on the communities close to the site but also across Japan and globally. In this review, I discuss radiation detection technologies, their use and limits in the immediate assessment and response, and improvements since then. In particular, I examine recent developments in radiation detection and imaging systems that, in combination with the enormous advances in computer vision, provide new means to detect, map, and visualize radiation using manned and unmanned deployment platforms. In addition to smarter and more adaptable technologies to prevent and minimize the impact of such events, an important outcome of this accident is the need for informed and resilient citizens who are empowered by knowledge and technologies to make rational decisions. The accident at FDNPS leaves a legacy concerning the importance of historical information, technologies, and resilience as well as challenges regarding powerful technologies that can provide substantial benefits to human society but that are also associated with risks of which we must be aware.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 163
    Publication Date: 2020-10-19
    Description: With the first observation of a binary neutron star merger through gravitational waves and light, GW170817, compact binary mergers have now taken the center stage in nuclear astrophysics. They are thought to be one of the main astrophysical sites of production of r-process elements, and merger observations have become a fundamental tool to constrain the properties of matter. Here, we review our current understanding of the dynamics of neutron star mergers in general and of GW170817 in particular. We discuss the physical processes governing the inspiral, merger, and postmerger evolution, and we highlight the connections between these processes, the dynamics, and the multimessenger observables. Finally, we discuss open questions and issues in the field and the need to address them through a combination of better theoretical models and new observations.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 164
    Publication Date: 2020-10-19
    Description: How does subatomic matter organize itself? Neutron stars are cosmic laboratories uniquely poised to answer this fundamental question that lies at the heart of nuclear science. Newly commissioned rare isotope facilities, telescopes operating across the entire electromagnetic spectrum, and ever more sensitive gravitational wave detectors will probe the properties of neutron-rich matter with unprecedented precision over an enormous range of densities. A coordinated effort between observation, experiment, and theoretical research is of paramount importance for realizing the full potential of these investments. Theoretical nuclear physics provides valuable insights into the properties of neutron-rich matter in regimes that are not presently accessible to experiment or observation. In particular, nuclear density functional theory is likely the only tractable framework that can bridge the entire nuclear landscape by connecting finite nuclei to neutron stars. This compelling connection is the main scope of the present review.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 165
    Publication Date: 2020-10-19
    Description: More than 30 years have passed since the successful detection of supernova (SN) neutrinos from SN 1987A. In the last few decades, remarkable progress has been made in neutrino detection techniques, through which it may be possible to detect neutrinos from a new source, presupernova (pre-SN) neutrinos. They are emitted from a massive star prior to core bounce. Because neutrinos escape from the core freely, they carry information about the stellar physics directly. Pre-SN neutrinos may play an important role in verifying our understanding of stellar evolution for massive stars. Observation of pre-SN neutrinos, moreover, may serve as an alarm regarding an SN explosion a few days in advance if the progenitor is located in our vicinity, enabling us to observe the next galactic SN. In this review, we summarize the current status of pre-SN neutrino studies from both the theoretical and observational points of view.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 166
    Publication Date: 2020-10-19
    Description: Hardware-based track reconstruction in the CMS and ATLAS trigger systems for the high-luminosity upgrade of the LHC (HL-LHC) will provide unique capabilities. In this review, we present an overview of earlier track trigger systems at hadron colliders, in particular those at the Tevatron CDF and DØ experiments. We discuss the plans of the CMS and ATLAS experiments to implement hardware-based track reconstruction for the HL-LHC. Particular focus is placed on the track trigger capability of the upgraded CMS experiment. We discuss the challenges and opportunities of this novel capability, review the alternatives that were considered for its implementation, and discuss its expected performance. The planned track trigger systems for CMS and ATLAS have different goals, and we compare and contrast the two approaches.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 167
    Publication Date: 2020-10-19
    Description: Extended scalar sectors appear in various extensions of the Standard Model of particle physics, such as supersymmetric models. They are also generic extensions of the Standard Model and can address a number of its shortcomings. Direct searches for additional Higgs bosons and measurements of the 125-GeV Higgs boson, both of which provide insights into the different possible sectors, are carried out at the LHC. This review gives an overview of searches for the additional Higgs bosons and their implications for different models. The discussed analyses comprise searches for neutral and charged Higgs bosons that decay in various final states. In addition, the review summarizes the constraints from precision measurements, including in particular the observed couplings of the 125-GeV Higgs boson. While several models naturally incorporate a Higgs boson with couplings that are similar to the ones in the Standard Model, the measurements of the 125-GeV Higgs boson provide constraints on all considered extensions.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 168
    Publication Date: 2020-10-19
    Description: Astrophysical simulations require knowledge of a wide array of reaction rates. For a number of reasons, many of these reaction rates cannot be measured directly and instead are probed with indirect nuclear reactions. We review the current state of the art regarding the techniques used to extract reaction information that is relevant to describe stars, including their explosions and collisions. We focus on the theoretical developments over the last decade that have had an impact on the connection between the laboratory indirect measurement and the astrophysical desired reaction. This review includes three major probes that have been, and will continue to be, widely used in our community: transfer reactions, breakup reactions, and charge-exchange reactions.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 169
    Publication Date: 2020-10-19
    Description: We review the current status of parton distribution function (PDF) determinations for unpolarized and longitudinally polarized protons and for unpolarized nuclei, which are probed by high-energy hadronic scattering in perturbative quantum chromodynamics (QCD). We present the established theoretical framework, the experimental information, and the methodological aspects inherent to any modern PDF extraction. Furthermore, we summarize the present knowledge of PDFs and discuss their limitations in both accuracy and precision relevant to advancing our understanding of QCD proton substructure and pursuing our quest for precision in the Standard Model and beyond. In this respect, we highlight various achievements, discuss contemporary issues in PDF analyses, and outline future directions of progress.
    Print ISSN: 0163-8998
    Electronic ISSN: 1545-4134
    Topics: Physics
    Published by Annual Reviews
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...