ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04.08. Volcanology  (8)
  • Upwelling/downwelling
  • American Meteorological Society  (3)
  • Elsevier Science Publishers B.V.  (3)
  • Società Geologica Italiana  (3)
  • EGU  (1)
  • Springer  (1)
  • Blackwell Publishing Ltd
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2024
  • 2020-2023  (3)
  • 2020-2022  (8)
  • 2015-2019
  • 1960-1964
  • 2020  (11)
  • 2020  (11)
  • 2020  (11)
Collection
Publisher
Years
  • 2020-2024
  • 2020-2023  (3)
  • 2020-2022  (8)
  • 2015-2019
  • 1960-1964
Year
  • 1
    Publication Date: 2020-12-10
    Description: The persistent open-vent mild explosive activity of Stromboli volcano is episodically interrupted by more violent and dangerous explosive events (major explosions and paroxysms). According to the nature of erupted products, paroxysms can be related either to the explosion of overpressured gas pockets located in the proximity of the magma column or to the sudden uprise of hot, gas-rich magma from a deep part of the plumbing system. In both cases, these more energetic explosive events should be preceded by an escape or a preferential uprise of the highly mobile volatiles which, in turn, should produce gas leakage anomalies at the surface in sites of high vertical permeability, such as deep-reaching faults. In order to identify such gas leaking sites, a systematic CO2 soil flux survey has been carried out on the island using an accumulation chamber. Four hundred sixty-one points have been measured with a high density in the summit crater area, where high flux values have been found (10−3–10−2 cm/s). Anomalous points are concentrated along the main NE–SW axial feeding system of the volcano. CO2 soil flux decreases from the crater zone to the base of the volcanic cone, where, however, an interesting gas leakage anomaly occurs (Pizzillo mofette). In the Pizzillo area thermal water wells also occur, whose chemistry indicates an origin by sea water heated by hot gas. Soil gases have been sampled in the sites with the highest CO2 flux in the crater area and at the base of the cone. Chemical and isotopic analyses indicate the presence of a deep gas component especially in the crater zone samples (high CO2, appreciable contents of He and H2, 3He/4He values up to 3.55, δ13C of CO2=−2 ‰). The SC5 low-flux fumarole on the crater rim has shown, during six years, a remarkable persistence of temperature (93–95°C), with only minor fluctuations of chemistry. Appearance of anomalous peaks of H2 in correspondence with strombolian explosions was observed during a 2-h 30-min experiment of continuous recording of hydrogen content of the fumarole. Together with previous data on H2O, CO2 and He, this experiment confirms that strombolian blasts produce rapid fluctuations in the fumarolic gas composition. In the light of this study, SC5 fumarole and Pizzillo mofette look promising sites for the testing of a continuous geochemical monitoring system of Stromboli volcano.
    Description: Gruppo Nazionale per la Vulcanologia CEC project “Pre-eruptive processes: Modelling and Parameterization”, contract no. ENV4-CT96-0259 (DG12–ESCY)
    Description: Published
    Description: 226-245
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: fluid geochemistry, soil CO2 flux, Stromboli ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-13
    Description: Magma transfer in an open-conduit volcano is a complex process that is still open to debate and not entirely understood. For this reason, a multidisciplinary monitoring of active volcanoes is not only welcome, but also necessary for a correct comprehension of how volcanoes work. Mt. Etna is probably one of the best test sites for doing this, because of the large multidisciplinary monitoring network setup by the Osservatorio Etneo of Istituto Nazionale di Geofisica e Vulcanologia (INGV-OE), the high frequency of eruptions and the relatively easy access to most of its surface. We present new data on integrated monitoring of volcanic tremor, plume sulphur dioxide (SO2) flux and soil hydrogen (H2) and carbon dioxide (CO2) concentration from Mt. Etna. The RMS amplitude of volcanic tremor was measured by seismic stations at various distances from the summit craters, plume SO2 flux was measured from nine stations around the volcano and soil gases were measured in a station located in a low-temperature (T ∼ 85 °C) fumarole field on the upper north side of the volcano. During our monitoring period, we observed clear and marked anomalous changes in all parameters, with a nice temporal sequence that started with a soil CO2 and SO2 flux increase, followed a few days later by a soil H2 spike-like increase and finally with sharp spike-like increases in RMS amplitude (about 24 h after the onset of the anomaly in H2) at all seismic stations. After the initial spikes, all parameters returned more or less slowly to their background levels. Geochemical data, however, showed persistence of slight anomalous degassing for some more weeks, even in the apparent absence of RMS amplitude triggers. This suggests that the conditions of slight instability in the degassing magma column inside the volcano conduits lasted for a long period, probably until return to some sort of balance with the “normal” pressure conditions. The RMS amplitude increase accompanied the onset of strong Strombolian activity at the Northeast Crater, one of the four summit craters of Mt. Etna, which continued during the following period of moderate geochemical anomalies. This suggests a cause-effect relationship between the anomalies observed in all parameters and magma migration inside the central conduits of the volcano. Volcanic tremor is a well-established key parameter in the assessment of the probability of eruptive activity at Etna and it is actually used as a basis for a multistation system for detection of volcanic anomalies that has been developed by INGV-OE at Etna. Adding the information provided by our geochemical parameters gave us more solid support to this system, helping us understand better the mechanisms of magma migration inside of an active, open-conduit basaltic volcano.
    Description: Published
    Description: online (due to Covid pandemic)
    Description: 4V. Processi pre-eruttivi
    Keywords: integrated monitoring ; soil gases ; plume SO2 ; volcanic tremor ; magma transfer ; Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-09
    Description: The Pico do Fogo volcano, in the Cape Verde Archipelago off the western coasts of Africa, has been the most active volcano in the Macaronesia region in the Central Atlantic, with at least 27 eruptions during the last 500 years. Between eruptions fumarolic activity has been persisting in its summit crater, but limited information exists for the chemistry and output of these gas emissions. Here, we use the results acquired during a field survey in February 2019 to quantify the quiescent summit fumaroles’ volatile output for the first time. By combining measurements of the fumarole compositions (using both a portable Multi-GAS and direct sampling of the hottest fumarole) and of the SO2 flux (using near-vent UV Camera recording), we quantify a daily output of 1060±340 tons CO2, 780±320 tons H2O, 6.2±2.4 tons H2S, 1.4±0.4 tons SO2 and 0.05±0.022 tons H2. We show that the fumarolic CO2 output from Pico do Fogo exceeds (i) the time-averaged CO2 release during 2015-type recurrent eruptions and (ii) is larger than current diffuse soil degassing of CO2 on Fogo Island. When compared to worldwide volcanoes in quiescent hydrothermal-stage, Pico do Fogo is found to rank among the strongest CO2 emitters. Its substantial CO2 discharge implies a continuous deep supply of magmatic gas from the volcano’s plumbing system (verified by the low but measurable SO2 flux), that becomes partially affected by water condensation and sulphur scrubbing in fumarolic conduits prior to gas exit. Variable removal of magmatic H2O and S accounts for both spatial chemical heterogeneities in the fumarolic field and its CO2-enriched mean composition, that we infer at 64.1±9.2 mol. % H2O, 35.6±9.1 mol. % CO2, 0.26±0.14 mol. % total Sulfur (St), and 0.04±0.02 mol. % H2.
    Description: Published
    Description: 325-340
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Pico do Fogo volcano ; Cape Verde ; Volcanic gases ; CO2 output ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-06-14
    Description: The volcano Chichontepeque (San Vicente) is one of the nine recent volcanoes making up the El Salvador sector of the WNW-ESE-trending active Central American volcanic belt. Thermal activity is at present reduced to a few thermal springs and fumaroles. The most important manifestations (Agua Agria and Los Infernillos Ciegos) are boiling springs and fumaroles located on the northern slope of the volcano (850 m a.s.l.) along two radial faults. The chloride acid waters of the Los Infernillos area are partly fed by a deep hydrothermal aquifer (crossed at 1100–1300 m by a geothermal exploration well), which finds a preferential path to the surface through the radial fault system. C02 is the most important gas (〉90%) of the Los Infernillos Ciegos and Agua Agria fumaroles. Part of the Los Infernillos gases may also come from a deeper, hotter source, given their high HCl/Stot. ratio and their more reducing conditions. The application of geothermometric and geobarometric methods to the gases and thermal waters suggests that both thermal areas are linked to the identified 1100–1300 m reservoir, whose temperature (250°C), lateral extension and chemical composition, as resulting from this study, are of interest for industrial development.
    Description: Salvadorian State Agency for Electric Power (CEL)
    Description: Published
    Description: 83-97
    Description: 1TR. Georisorse
    Description: JCR Journal
    Keywords: geochemistry, thermal springs, fumaroles, San Vicente, El Salvador ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-14
    Description: The eruption of Mt. Etna which occurred on December 24th 2018 was characterized by strombolian activity and fire fountains, emitted by the New South-East Crater and along a fissure that propagated towards the SE. The influence of volcanic emissions on atmospheric deposition was clearly detectable at several kilometres from the source. Wet and dry (bulk) deposition samples were collected each month, through a network of eleven collectors, in the areas of Milazzo, and Priolo between June 2018 and June 2019. They were analysed for major ions and trace elements concentrations. The pH values range from 3.9 to 8.3, while the EC values range from 7 to 396 μS cm-1. An extensive neutralization of the acidity has been recognised mainly due to the suspended alkaline dust particles, which have a buffering role in rainwater. A high load of Na+ and Cl- was observed at all sites, related to the closeness of the study areas to the coast, showing a high positive correlation (R2 = 0.989) along the line of Na+/Cl- ratio in seawater. During the eruption, the volcanic plume was carried by the winds for long distance (more than 300 km) affecting the area of Priolo but not that of Milazzo, which was upwind with respect to Mt. Etna. The impact of volcanic HF was clearly recognised in the samples collected after the eruption. Volcanic SO2 and HCl had a lower impact due to the overwhelming input of anthropogenic sulfate and marine chloride. On the contrary, the signature of the Mt. Etna eruption can be well recognised in the high concentrations of certain trace elements in the samples collected immediately after the eruption. The strongest contrast between affected and non-affected samples was recognised in Al, Cd, and especially in the volatile elements Tl and Te, which are typically enriched in volcanic emissions. The results showed that volcanic eruptions might have a relevant effect on the atmospheric chemistry and on the composition of rainwater up to distances of 80 km from the emission vents.
    Description: Published
    Description: 341-358
    Description: 6A. Geochimica per l'ambiente e geologia medica
    Description: JCR Journal
    Keywords: rainwater ; fluoride ; trace elements ; volcanic emissions ; 01. Atmosphere ; 03. Hydrosphere ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-12
    Description: Slope dynamics in volcanic environments comprise a wide spectrum of phenomena, from large lateral collapse to shallow debris remobilization, which may represent a major threat for human communities and infrastructures. Many volcanos built up from the ocean floor and large portions of the volcano edifice are submerged. In these settings, only the edifice’s summit can be investigated by terrestrial remote sensing and in-situ approaches. Growth and destruction, including tectonics and gravitational phenomena, affect entire volcano flanks and are not limited to the physical boundary of the sea level but could comprise their subaqueous parts.
    Description: Published
    Description: 2615–2618
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanoes ; flanks ; volcano-tectonics ; structure ; collapse ; stability ; 04.08. Volcanology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-11-09
    Description: This work presents chemical and isotopic (δ13C-CO2, δ13C-CH4, 3He, 4He, 20Ne, 40Ar, 36Ar, δ18O and δD) data on fluid discharges from the Colpitas-Taapaca volcanic-hydrothermal system, located close to the Taapaca Volcanic Complex, with the aim to investigate the physical-chemical conditions of the fluid source and to provide a preliminary evaluation of the geothermic potential of the study area. Colpitas thermal springs (to 56 °C) and part of the cold springs (≤18°C) from this area have a Na+-Cl- composition and Total Dissolved Solids (TDS) values (from 6,059 to 19,118 mg/L). Putre springs also show a Na+-Cl- composition, TDS values up to 7,887 mg/L, and outlet temperatures from 21 to 31 °C. Colpitas cold springs, with a Ca2+-SO4 2- composition and relatively low TDS values (≤1,350 mg/L), are likely produced by interaction of shallow water with uprising H2S-rich hydrothermal gases. This process is likely also controlling the chemistry of Jurase thermal springs, which have the highest outlet temperatures of the study area (up to 68 °C), a Ca2+-SO4 2- composition and TDS values ≤2,355 mg/L. Eventually, Las Cuevas springs have temperatures up to 36 °C, a Na+-HCO3 - composition and low TDS values (≤1,067 mg/L), typical features of springs related to a shallow aquifer. The δ18OH 2O and δD-H2O values indicate that all waters have a dominant meteoric origin. Enrichments in 18O and D shown by Colpitas and Putre thermal waters are likely due to steam loss and waterrock interaction, masking a possible direct steam contribution from magmatic degassing. Gas emissions from Colpitas bubbling pools are dominated by CO2, with significant concentrations of CH4, H2S and H2. The Rc/Ra values (up to 2.04) of Colpitas gases indicate a significant contribution of magmatic to mantle He, whereas the high CO2/3He ratios, combined with δ13C-CO2 values ranging from -7.66 to -5.63 ‰ vs. PDB, imply a dominant crustal CO2 source, mostly involving limestone. Estimated temperatures based on the composition of waters and gases from Colpitas are up to 215 °C. Higher temperatures (240 °C) are estimated for Putre thermal waters, although these waters, as well as those from Jurase and Las Cuevas, are too immature for a reliable application of geothermometric techniques. Based on the theoretical reservoir temperature and the measured Cl total output, the thermal energy released from Colpitas thermal area is estimated at up to 13.9 Mw. Such results suggest the occurrence of a promising heat source, possibly related to Taapaca volcanic complex, and encourage the development of future research based on combined geophysical and geochemical approaches, in order to provide a reliable evaluation of the geothermal potential of the whole area.
    Description: Published
    Description: 359-373
    Description: 2V. Struttura e sistema di alimentazione dei vulcani
    Description: JCR Journal
    Keywords: Colpitas-Taapaca geothermal system ; Fluid geochemistry ; volcanic-hydrothermal system ; geothermal potential ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-10
    Description: All the actions carried out in 1992 to protect the village of Zafferana Etnea from being invaded by lava are described. An earthen barrier 234 m long and 21 m high was firstly built in January 1992 by accumulating with mechanical escavators 370,000 m3 of earth, scoriae and stones. This embankment contained the lava for about one month and was overflowed by April 9, 1992. Three additional smaller earthen barriers (lenght: 90–160 m; height: 6–12 m) were built in April to gain time while the lava front was descending towards Zafferana from the overflowed first embankment. The major effort of the 1992 operation consisted of several attempts at stopping the lava front advance by diverting the flow out from the natural and extensively tunnelled channel through a skylight near the vent. The main intervention point was located in Valle del Bove at an elevation of 2000 m, at 8 km from Zafferana, in a zone almost unaccessible from land: helicopters were hence extensively used during the whole operation. Initial interventions called for attempts at plugging a tunnel by dumping into it linked concrete blocks, hedgehogs and blasted portions of the solid levee. Each intervention caused the partial obstruction of the tunnelled channel, which determined major increases of lava overflow in Valle del Bove and the consequent halt of the most advanced fronts. However, benefits were of brief duration, at the most two weeks of respite, before new lava fronts approached again and again the outskirts of Zafferana. The final successful intervention was carried out on May 27–29. An artificial channel was dug departing from the natural one. The solid separation levee was thinned to 3 m and blasted by 7000 kg of explosives. After the explosion, of the lava flowed spontaneously in the artificial channel and then the total diversion was obtained, the tunnel being plugged by dumping into the natural flow 230 m3 of lava boulders. As a consequence of the intervention the active natural lava front, that on May 27 was only 850 m from Zafferana, came to an halt, as did the entire flow downhill from the diversion point, bringing back the situation as it was five months earlier, a few days after the beginning of the eruption, with the new front of the diverted flow at 6–7 km from Zafferana. In June 1992, the effusion rate halved from 30 to 15 m3/s and with this reduced thrust the lava was no longer capable of covering long distances. Five months after the conclusive intervention, the diverted lava continues to flow over its initial natural field but remaining confined in the upper Valle del Bove, without any new threat to Zafferana.
    Description: Published
    Description: 1-34
    Description: 5V. Processi eruttivi e post-eruttivi
    Description: JCR Journal
    Keywords: Etna volcano, eruption, lava flows, hazard, ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 887-905, doi:10.1175/JPO-D-19-0110.1.
    Description: The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.
    Description: This work was supported by National Science Foundation (Grants OCE-1232971 and OCE-1233282) and the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443).
    Keywords: Tropics ; Boundary currents ; Topographic effects ; Transport ; Upwelling/downwelling ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 825-840, doi:10.1175/JTECH-D-19-0145.1.
    Description: The study of ocean dynamics and biophysical variability at submesoscales of O(1) km and O(1) h raises several observational challenges. To address these by underway sampling, we recently developed a towed profiler called the EcoCTD, capable of concurrently measuring both hydrographic and bio-optical properties such as oxygen, chlorophyll fluorescence, and optical backscatter. The EcoCTD presents an attractive alternative to currently used towed platforms due to its light footprint, versatility in the field, and ease of deployment and recovery without cranes or heavy-duty winches. We demonstrate its use for gathering high-quality data at submesoscale spatiotemporal resolution. A dataset of bio-optical and hydrographic properties, collected with the EcoCTD during field trials in 2018, highlights its scientific potential for the study of physical–biological interactions at submesoscales.
    Description: Authors would like to acknowledge Melissa Omand, Ben Pietro, and Jing He for their valuable input during the design phase of the EcoCTD, as well as for their support for deploying the EcoCTD in the field. We are grateful to Eva Alou, Andrea Carbonero, and John Allen for providing calibrated data from the shipboard CTD. Authors would also like to thank Don Peters along with Dynamics System Analysis Ltd. for facilitating access to ProteusDS and providing support in using the software. We are grateful to the crew of the RV Armstrong and NRV Alliance for their support in the field. Development of the EcoCTD is supported by the Office of Naval Research (ONR) through the CALYPSO Departmental Research Initiative (Grant N000141613130). Advanced field testing was supported by Woods Hole Oceanographic Institution internal funding. MATLAB routines for data processing are publicly available at https://github.com/mfreilich1/ecoctd_processing.
    Description: 2020-11-08
    Keywords: Fronts ; Upwelling/downwelling ; Vertical motion ; Data processing ; Profilers ; oceanic ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...