ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (8)
  • 04.08. Volcanology  (5)
  • Upwelling/downwelling  (3)
  • American Meteorological Society  (3)
  • Springer  (3)
  • EGU  (1)
  • Blackwell Publishing Ltd
  • Springer Nature
  • Springer Science + Business Media
  • 2020-2024  (3)
  • 2020-2023  (3)
  • 2020-2022  (2)
  • 2015-2019
  • 1935-1939
  • 2024  (3)
  • 2020  (5)
  • 2020  (5)
  • 2020  (5)
Collection
  • Articles  (8)
Publisher
Years
  • 2020-2024  (3)
  • 2020-2023  (3)
  • 2020-2022  (2)
  • 2015-2019
  • 1935-1939
Year
  • 1
    Publication Date: 2020-10-13
    Description: Magma transfer in an open-conduit volcano is a complex process that is still open to debate and not entirely understood. For this reason, a multidisciplinary monitoring of active volcanoes is not only welcome, but also necessary for a correct comprehension of how volcanoes work. Mt. Etna is probably one of the best test sites for doing this, because of the large multidisciplinary monitoring network setup by the Osservatorio Etneo of Istituto Nazionale di Geofisica e Vulcanologia (INGV-OE), the high frequency of eruptions and the relatively easy access to most of its surface. We present new data on integrated monitoring of volcanic tremor, plume sulphur dioxide (SO2) flux and soil hydrogen (H2) and carbon dioxide (CO2) concentration from Mt. Etna. The RMS amplitude of volcanic tremor was measured by seismic stations at various distances from the summit craters, plume SO2 flux was measured from nine stations around the volcano and soil gases were measured in a station located in a low-temperature (T ∼ 85 °C) fumarole field on the upper north side of the volcano. During our monitoring period, we observed clear and marked anomalous changes in all parameters, with a nice temporal sequence that started with a soil CO2 and SO2 flux increase, followed a few days later by a soil H2 spike-like increase and finally with sharp spike-like increases in RMS amplitude (about 24 h after the onset of the anomaly in H2) at all seismic stations. After the initial spikes, all parameters returned more or less slowly to their background levels. Geochemical data, however, showed persistence of slight anomalous degassing for some more weeks, even in the apparent absence of RMS amplitude triggers. This suggests that the conditions of slight instability in the degassing magma column inside the volcano conduits lasted for a long period, probably until return to some sort of balance with the “normal” pressure conditions. The RMS amplitude increase accompanied the onset of strong Strombolian activity at the Northeast Crater, one of the four summit craters of Mt. Etna, which continued during the following period of moderate geochemical anomalies. This suggests a cause-effect relationship between the anomalies observed in all parameters and magma migration inside the central conduits of the volcano. Volcanic tremor is a well-established key parameter in the assessment of the probability of eruptive activity at Etna and it is actually used as a basis for a multistation system for detection of volcanic anomalies that has been developed by INGV-OE at Etna. Adding the information provided by our geochemical parameters gave us more solid support to this system, helping us understand better the mechanisms of magma migration inside of an active, open-conduit basaltic volcano.
    Description: Published
    Description: online (due to Covid pandemic)
    Description: 4V. Processi pre-eruttivi
    Keywords: integrated monitoring ; soil gases ; plume SO2 ; volcanic tremor ; magma transfer ; Etna ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-12
    Description: Slope dynamics in volcanic environments comprise a wide spectrum of phenomena, from large lateral collapse to shallow debris remobilization, which may represent a major threat for human communities and infrastructures. Many volcanos built up from the ocean floor and large portions of the volcano edifice are submerged. In these settings, only the edifice’s summit can be investigated by terrestrial remote sensing and in-situ approaches. Growth and destruction, including tectonics and gravitational phenomena, affect entire volcano flanks and are not limited to the physical boundary of the sea level but could comprise their subaqueous parts.
    Description: Published
    Description: 2615–2618
    Description: 6V. Pericolosità vulcanica e contributi alla stima del rischio
    Description: JCR Journal
    Keywords: volcanoes ; flanks ; volcano-tectonics ; structure ; collapse ; stability ; 04.08. Volcanology ; 05.08. Risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(4), (2020): 887-905, doi:10.1175/JPO-D-19-0110.1.
    Description: The Equatorial Undercurrent (EUC) encounters the Galápagos Archipelago on the equator as it flows eastward across the Pacific. The impact of the Galápagos Archipelago on the EUC in the eastern equatorial Pacific remains largely unknown. In this study, the path of the EUC as it reaches the Galápagos Archipelago is measured directly using high-resolution observations obtained by autonomous underwater gliders. Gliders were deployed along three lines that define a closed region with the Galápagos Archipelago as the eastern boundary and 93°W from 2°S to 2°N as the western boundary. Twelve transects were simultaneously occupied along the three lines during 52 days in April–May 2016. Analysis of individual glider transects and average sections along each line show that the EUC splits around the Galápagos Archipelago. Velocity normal to the transects is used to estimate net horizontal volume transport into the volume. Downward integration of the net horizontal transport profile provides an estimate of the time- and areal-averaged vertical velocity profile over the 52-day time period. Local maxima in vertical velocity occur at depths of 25 and 280 m with magnitudes of (1.7 ± 0.6) × 10−5 m s−1 and (8.0 ± 1.6) × 10−5 m s−1, respectively. Volume transport as a function of salinity indicates that water crossing 93°W south (north) of 0.4°S tends to flow around the south (north) side of the Galápagos Archipelago. Comparisons are made between previous observational and modeling studies with differences attributed to effects of the strong 2015/16 El Niño event, the annual cycle of local winds, and varying longitudes between studies of the equatorial Pacific.
    Description: This work was supported by National Science Foundation (Grants OCE-1232971 and OCE-1233282) and the NASA Earth and Space Science Fellowship Program (Grant 80NSSC17K0443).
    Keywords: Tropics ; Boundary currents ; Topographic effects ; Transport ; Upwelling/downwelling ; In situ oceanic observations
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of the Atmospheric and Oceanic Technology 37(5), (2020): 825-840, doi:10.1175/JTECH-D-19-0145.1.
    Description: The study of ocean dynamics and biophysical variability at submesoscales of O(1) km and O(1) h raises several observational challenges. To address these by underway sampling, we recently developed a towed profiler called the EcoCTD, capable of concurrently measuring both hydrographic and bio-optical properties such as oxygen, chlorophyll fluorescence, and optical backscatter. The EcoCTD presents an attractive alternative to currently used towed platforms due to its light footprint, versatility in the field, and ease of deployment and recovery without cranes or heavy-duty winches. We demonstrate its use for gathering high-quality data at submesoscale spatiotemporal resolution. A dataset of bio-optical and hydrographic properties, collected with the EcoCTD during field trials in 2018, highlights its scientific potential for the study of physical–biological interactions at submesoscales.
    Description: Authors would like to acknowledge Melissa Omand, Ben Pietro, and Jing He for their valuable input during the design phase of the EcoCTD, as well as for their support for deploying the EcoCTD in the field. We are grateful to Eva Alou, Andrea Carbonero, and John Allen for providing calibrated data from the shipboard CTD. Authors would also like to thank Don Peters along with Dynamics System Analysis Ltd. for facilitating access to ProteusDS and providing support in using the software. We are grateful to the crew of the RV Armstrong and NRV Alliance for their support in the field. Development of the EcoCTD is supported by the Office of Naval Research (ONR) through the CALYPSO Departmental Research Initiative (Grant N000141613130). Advanced field testing was supported by Woods Hole Oceanographic Institution internal funding. MATLAB routines for data processing are publicly available at https://github.com/mfreilich1/ecoctd_processing.
    Description: 2020-11-08
    Keywords: Fronts ; Upwelling/downwelling ; Vertical motion ; Data processing ; Profilers ; oceanic ; Quality assurance/control
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: Author Posting. © American Meteorological Society, 2020. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 50(3), (2020): 715-726, doi:10.1175/JPO-D-19-0021.1.
    Description: Closing the overturning circulation of bottom water requires abyssal transformation to lighter densities and upwelling. Where and how buoyancy is gained and water is transported upward remain topics of debate, not least because the available observations generally show downward-increasing turbulence levels in the abyss, apparently implying mean vertical turbulent buoyancy-flux divergence (densification). Here, we synthesize available observations indicating that bottom water is made less dense and upwelled in fracture zone valleys on the flanks of slow-spreading midocean ridges, which cover more than one-half of the seafloor area in some regions. The fracture zones are filled almost completely with water flowing up-valley and gaining buoyancy. Locally, valley water is transformed to lighter densities both in thin boundary layers that are in contact with the seafloor, where the buoyancy flux must vanish to match the no-flux boundary condition, and in thicker layers associated with downward-decreasing turbulence levels below interior maxima associated with hydraulic overflows and critical-layer interactions. Integrated across the valley, the turbulent buoyancy fluxes show maxima near the sidewall crests, consistent with net convergence below, with little sensitivity of this pattern to the vertical structure of the turbulence profiles, which implies that buoyancy flux convergence in the layers with downward-decreasing turbulence levels dominates over the divergence elsewhere, accounting for the net transformation to lighter densities in fracture zone valleys. We conclude that fracture zone topography likely exerts a controlling influence on the transformation and upwelling of bottom water in many areas of the global ocean.
    Description: The data used in this study were collected in the context of several projects funded by the U.S. National Science Foundation (NSF), in particular BBTRE (OCE-9415589 and OCE-9415598) and DoMORE (OCE-1235094). Funding for the analysis was provided as part of the NSF DoMORE and DECIMAL (OCE-1735618) projects. Author Ijichi is a Japan Society for the Promotion of Science (JSPS) Overseas Research Fellow. Comments on an early draft of this paper by Jim Ledwell and Bryan Kaiser, as well as topical discussions with Jörn Callies and Trevor McDougall, are gratefully acknowledged. The paper was greatly improved during the review process, in particular because of the critical comments from one of the two anonymous reviewers.
    Keywords: Diapycnal mixing ; Topographic effects ; Turbulence ; Upwelling/downwelling ; Bottom currents/bottom water
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-05-16
    Description: This review summarizes what the volcanology community has learned thus far from studying the deposits of pyroclastic currents (PCs) from the 1980 eruption sequence at Mount St. Helens. The review includes mass flow events during the May 18 eruption, including the lateral blast, the afternoon column collapse and boil-over PC activity, and some aspects of the debris avalanche. We also include a summary of PCs generated in the smaller eruptions following the climactic May 18 event. Our objective is to summarize the state of our understanding of PC transport and emplacement mechanisms from the combination of field and laboratory observations, granular flow experiments, and numerical modeling techniques. Specifically, we couple deposit characteristics, experiments, and numerical modeling techniques to critically address the problems of (1) constraining conditions in the flow boundary zone at the time of deposition; (2) the influence of substrate roughness and topography on PC behavior; (3) the prevalence, causes, and consequences of substrate erosion by PCs; and (4) the reconstruction of PC transportation and sedimentation processes from a combination of geophysical and sedimentological observations. We conclude by providing opportunities for future research as our field, experimental, and numerical research techniques advance.
    Description: Published
    Description: 24
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: numerical modeling, mount St. Helens, physical volcanology ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-06-13
    Description: A detailed study of past eruptive activity is crucial to understanding volcanic systems and associated hazards. We present a meticulous stratigraphic analysis, a comprehensive chronological reconstruction, thorough tephra mapping, and a detailed analysis of the interplay between primary and secondary volcanic processes of the post-900 AD activity of La Fossa caldera, including the two main systems of La Fossa volcano and Vulcanello cones (Vulcano Island, Italy). Our analyses demonstrate how the recent volcanic activity of La Fossa caldera is primarily characterized by effusive and Strombolian activity and Vulcanian eruptions, combined with sporadic sub-Plinian events and both impulsive and long-lasting phreatic explosions, all of which have the capacity to severely impact the entire northern sector of Vulcano island. We document a total of 30 eruptions, 25 from the La Fossa volcano and 5 from Vulcanello cones, consisting of ash to lapilli deposits and fields of ballistic bombs and blocks. Volcanic activity alternated with significant erosional phases and volcaniclastic re-sedimentation. Large-scale secondary erosion processes occur in response to the widespread deposition of fine-grained ash blankets, both onto the active cone of La Fossa and the watersheds conveying their waters into the La Fossa caldera. The continuous increase in ground height above sea level, particularly in the western sector of the caldera depression where key infrastructure is situated, is primarily attributed to long-term alluvial processes. We demonstrate how a specific methodological approach is key to the characterization and hazard assessment of low-to-high intensity volcanic activity, where tephra is emitted over long time periods and is intercalated with phases of erosion and re-sedimentation.
    Description: Open access funding provided by Istituto Nazionale di Geofisica e Vulcanologia within the CRUI-CARE Agreement.
    Description: Published
    Description: 47
    Description: OSV2: Complessità dei processi vulcanici: approcci multidisciplinari e multiparametrici
    Description: JCR Journal
    Keywords: Active caldera; Aeolian archipelago; Historical eruptions; Island of Vulcano; Tephra; Volcano stratigraphy ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2024-07-09
    Description: Published
    Description: OS: Terza missione
    Keywords: 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...