ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (65)
  • Aircraft Propulsion and Power  (65)
  • 2020-2022
  • 2015-2019  (65)
  • 2000-2004
  • 1950-1954
  • 1935-1939
  • 2017  (65)
  • 1
    Publication Date: 2019-07-12
    Description: NASA is developing a suite of hybrid-electric propulsion technologies for aircraft. These technologies have the benefit of lower emissions, diminished noise, increased efficiency, and reduced fuel burn. These will provide lower operating costs for aircraft operators. Replacing internal combustion engines with distributed electric propulsion is a keystone of this technology suite, but presents many new problems to aircraft system designers. One of the problems is how to cool these electric motors without adding significant aerodynamic drag, cooling system weight or fan power. This paper discusses the options evaluated for cooling the motors on SCEPTOR (Scalable Convergent Electric Propulsion Technology and Operations Research): a project that will demonstrate Distributed Electric Propulsion technology in flight. Options for external and internal cooling, inlet and exhaust locations, ducting and adjustable cowling, and axial and centrifugal fans were evaluated. The final design was based on a trade between effectiveness, simplicity, robustness, mass and performance over a range of ground and flight operation environments.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2017-219134 , E-19259 , GRC-E-DAA-TN33041
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: A centrifugal compressor research effort conducted by United Technologies Research Center under NASA Research Announcement NNC08CB03C is documented. The objectives were to identify key technical barriers to advancing the aerodynamic performance of high-efficiency, high work factor, compact centrifugal compressor aft-stages for turboshaft engines; to acquire measurements needed to overcome the technical barriers and inform future designs; to design, fabricate, and test a new research compressor in which to acquire the requisite flow field data. A new High-Efficiency Centrifugal Compressor stage -- splittered impeller, splittered diffuser, 90 degree bend, and exit guide vanes -- with aerodynamically aggressive performance and configuration (compactness) goals were designed, fabricated, and subquently tested at the NASA Glenn Research Center.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2014-218114/REV1/SUPPL , E-18856-1 , GRC-E-DAA-TN31660
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The report "High Efficiency Centrifugal Compressor for Rotorcraft Applications" documents the work conducted at UTRC under the NRA Contract NNC08CB03C, with cost share 2/3 NASA, and 1/3 UTRC, that has been extended to 4.5 years. The purpose of this effort was to identify key technical barriers to advancing the state-of-the-art of small centrifugal compressor stages; to delineate the measurements required to provide insight into the flow physics of the technical barriers; to design, fabricate, install, and test a state-of-the-art research compressor that is representative of the rear stage of an axial-centrifugal aero-engine; and to acquire detailed aerodynamic performance and research quality data to clarify flow physics and to establish detailed data sets for future application. The design activity centered on meeting the goal set outlined in the NASA solicitation-the design target was to increase efficiency at higher work factor, while also reducing the maximum diameter of the stage. To fit within the existing Small Engine Components Test Facility at NASA Glenn Research Center (GRC) and to facilitate component re-use, certain key design parameters were fixed by UTRC, including impeller tip diameter, impeller rotational speed, and impeller inlet hub and shroud radii. This report describes the design effort of the High Efficiency Centrifugal Compressor stage (HECC) and delineation of measurements, fabrication of the compressor, and the initial tests that were performed. A new High-Efficiency Centrifugal Compressor stage with a very challenging reduction in radius ratio was successfully designed, fabricated and installed at GRC. The testing was successful, with no mechanical problems and the running clearances were achieved without impeller rubs. Overall, measured pressure ratio of 4.68, work factor of 0.81, and at design exit corrected flow rate of 3 lbm/s met the target requirements. Polytropic efficiency of 85.5 percent and stall margin of 7.5 percent were measured at design flow rate and speed. The measured efficiency and stall margin were lower than pre-test CFD predictions by 2.4 percentage points (pt) and 4.5 pt, respectively. Initial impressions from the experimental data indicated that the loss in the efficiency and stall margin can be attributed to a design shortfall in the impeller. However, detailed investigation of experimental data and post-test CFD simulations of higher fidelity than pre-test CFD, and in particular the unsteady CFD simulations and the assessment with a wider range of turbulence models, have indicated that the loss in efficiency is most likely due to the impact of unfavorable unsteady impeller/diffuser interactions induced by diffuser vanes, an impeller/diffuser corrected flow-rate mismatch (and associated incidence levels), and, potentially, flow separation in the radial-to-axial bend. An experimental program with a vaneless diffuser is recommended to evaluate this observation. A subsequent redesign of the diffuser (and the radial-to-axial bend) is also recommended. The diffuser needs to be redesigned to eliminate the mismatching of the impeller and the diffuser, targeting a slightly higher flow capacity. Furthermore, diffuser vanes need to be adjusted to align the incidence angles, to optimize the splitter vane location (both radially and circumferentially), and to minimize the unsteady interactions with the impeller. The radial-to-axial bend needs to be redesigned to eliminate, or at least minimize, the flow separation at the inner wall, and its impact on the flow in the diffuser upstream. Lessons were also learned in terms of CFD methodology and the importance of unsteady CFD simulations for centrifugal compressors was highlighted. Inconsistencies in the implementation of a widely used two-equation turbulence model were identified and corrections are recommended. It was also observed that unsteady simulations for centrifugal compressors require significantly longer integration times than what is current practice in industry.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2014-218114/REV1 , E-18856-1 , GRC-E-DAA-TN31660
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: One embodiment of the present invention is a unique gas turbine engine system. Another embodiment is a unique exhaust nozzle system for a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine systems and exhaust nozzle systems for gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: This presentation discusses the NASA Aeronautics Advanced Air Transport Technology Projects perspective on electric, hybrid-electric, and related distributed propulsion technologies for future generations of large transport aircraft. Recent system studies commissioned by NASA and other organizations have identified these technologies as promising approaches to dramatically reduce aircraft fuel consumption, noise, and emissions. These technologies are part of the Projects overall research portfolio aimed toward developing ultra-efficient commercial aircraft in conjunction with alternative low carbon propulsion and energy systems to enable safe and sustainable future growth in global aviation. It is anticipated that both room temperature and cryogenic electrical technologies will be needed in the future. Room temperature electrical systems are likely to impact aviation in the near term by making their way onto smaller aircraft and by augmenting traditional propulsion systems on larger aircraft, while cryogenic technologies will likely be needed in the far term to deliver the several tens of megawatts of propulsive power needed for large transport aircraft. The presentation outlines the opportunities and challenges for electric propulsion technologies for commercial aviation, and describes some of the related concepts and enabling technologies that are currently being developed.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN44463 , IEEE Energy Conversion Congress and Expo 2017; Oct 01, 2017 - Oct 05, 2017; Cincinnatti, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-23
    Description: Aviation aerosol emissions have a disproportionately large climatic impact because they are emitted high in the relatively pristine upper troposphere where they can form linear contrails and influence cirrus clouds. Research aircraft from NASA, DLR, and NRC Canada made airborne measurements of gaseous and aerosol composition and contrail microphysical properties behind the NASA DC-8 aircraft at cruise altitudes. The DC-8 CFM-56-2C engines burned traditional medium-sulfur Jet A fuel as well as a low-sulfur Jet A fuel and a 50:50 biofuel blend. Substantial, two-to-three-fold emissions reductions are found for both particle number and mass emissions across the range of cruise thrust operating conditions. These observations provide direct and compelling evidence for the beneficial impacts of biojet fuel blending under real-world conditions.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-25029 , Nature (ISSN 0028-0836) (e-ISSN 1476-4687); 543; 411-415
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-20
    Description: Structural configuration analysis of two advanced aircraft concepts with distributed hybrid-electric propulsion is presented. These concepts are characterized by multiple wing-mounted electric propulsors, which are powered by turbo-generators. Based on lessons learned from previous structural analysis of unconventional concepts, high-fidelity finite element models of the aircraft wing with embedded electric propulsors are developed. Although a hybrid-electric propulsion system has noise and emission benefits, it also adds electrical power system weights. Hence, efficient structural integration of the wing and propulsors is investigated for design improvement, structural analysis, and weight reduction. Wing structural weights of the two designs are compared with a baseline conventional transport aircraft wing for benefit assessment. In one design, the wing structural weight reduction partially compensates for the additional weight associated with the distributed electric propulsion system.
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-27438 , AIAA SciTech Forum 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the engines operating point to a region of lower risk through the modulation of available control actuators while maintaining the desired engine thrust output. Follow-on work will assess the feasibility and effectiveness of such control-based mitigation strategies.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43977 , Turbo Expo: Turbomachinery Technical Conference & Exposition; Jun 26, 2017 - Jun 30, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The development of ultra-efficient commercial vehicles and the transition to low-carbon emission propulsion are seen as strategic thrust paths within NASA Aeronautics. A critical enabler to these paths comes in the form of hybrid electric propulsion systems. For megawatt-class systems, the best power system topology for these hybrid electric propulsion systems is debatable. Current proposals within NASA and the Aero community suggest using a combination of alternating current (AC) and direct current (DC) for power generation, transmission, and distribution. This paper proposes an alternative to the current thought model through the use of a primarily high voltage AC power system, supported by the Convergent Aeronautics Solutions (CAS) Project. This system relies heavily on the use of doubly-fed induction machines (DFIMs), which provide high power densities, minimal power conversion, and variable speed operation. The paper presents background on the activity along with the system architecture, development status, and preliminary results.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN46211 , Incorporating Strathclyde Fault Management Technology; Aug 22, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.
    Keywords: Aircraft Propulsion and Power
    Type: Paper No. 22537 , GRC-E-DAA-TN45949 , International Society of Air Breathing Engines (ISABE 2017); Sep 03, 2017 - Sep 08, 2017; Manchester, England; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2019-07-13
    Description: Rotorcraft gearbox efficiencies are reduced at increased surface speeds due to viscous and impingement drag on the gear teeth. This windage power loss can affect overall mission range, payload, and frequency of transmission maintenance. Experimental and analytical studies on shrouding for single gears have shown it to be potentially effective in mitigating windage power loss. Efficiency studies on unshrouded meshed gears have shown the effect of speed, oil viscosity, temperature, load, lubrication scheme, etc. on gear windage power loss. The open literature does not contain experimental test data on shrouded meshed spur gears. Gear windage power loss test results are presented on shrouded meshed spur gears at elevated oil inlet temperatures and constant oil pressure both with and without shrouding. Shroud effectiveness is compared at four oil inlet temperatures. The results are compared to the available literature and follow-up work is outlined.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN45010 , ASME 2017 IDETC/CIE; Aug 06, 2017 - Aug 09, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2019-07-13
    Description: The efficiency of aircraft gas turbine engines is sensitive to the distance between the tips of its turbine blades and its shroud, which serves as its containment structure. Maintaining tighter clearance between these components has been shown to increase turbine efficiency, increase fuel efficiency, and reduce the turbine inlet temperature, and this correlates to a longer time-on-wing for the engine. Therefore, there is a desire to maintain a tight clearance in the turbine, which requires fast response active clearance control. Fast response active tip clearance control will require an actuator to modify the physical or effective tip clearance in the turbine. This paper evaluates the requirements of a generic active turbine tip clearance actuator for a modern commercial aircraft engine using the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software that has previously been integrated with a dynamic tip clearance model. A parametric study was performed in an attempt to evaluate requirements for control actuators in terms of bandwidth, rate limits, saturation limits, and deadband. Constraints on the weight of the actuation system and some considerations as to the force which the actuator must be capable of exerting and maintaining are also investigated. From the results, the relevant range of the evaluated actuator parameters can be extracted. Some additional discussion is provided on the challenges posed by the tip clearance control problem and the implications for future small core aircraft engines.
    Keywords: Aircraft Propulsion and Power
    Type: GT2017-63472 , GRC-E-DAA-TN39865 , ASME 2017 Turbo Expo; Jun 26, 2017 - Jun 30, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2019-07-13
    Description: The dual-mode free-jet combustor concept, pictured in figure 1, is described. It was introduced in 2010 as a wide- operating-range propulsion device using a novel supersonic free-jet combustion process. The unique feature of the free-jet combustor pictured in figure 1a, is supersonic combustion in an unconfined free-jet that traverses a larger subsonic combustion chamber to a variable nozzle. During this mode of operation, the propulsive stream is not in contact with the combustor walls, and equilibrates to the combustion chamber pressure. To a first order, thermodynamic efficiency is similar to that of a traditional scramjet under the assumption of constant-pressure combustion. Qualitatively, a number of possible benefits to this approach are obvious.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN44286 , International Symposium on Air Breathing Engines (ISABE); Sep 03, 2017 - Sep 08, 2017; Manchester; United Kingdom
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2019-07-13
    Description: Aggressive design goals have been set for future aero-propulsion systems with regards to fuel economy, noise, and emissions. To meet these challenging goals, advanced propulsion concepts are being explored and current operating margins are being re-evaluated to find additional concessions that can be made. One advanced propulsion concept being evaluated is a geared turbofan with a variable area fan nozzle (VAFN), developed by NASA. This engine features a small core, a fan driven by the low pressure turbine through a reduction gearbox, and a shape memory alloy (SMA)-actuated VAFN. The VAFN is designed to allow both a small exit area for efficient operation at cruise, while being able to open wider at high power conditions to reduce backpressure on the fan and ensure a safe level of stall margin is maintained. The VAFN is actuated via a SMA-based system instead of a conventional system to decrease overall weight of the system, however, SMA-based actuators respond relatively slowly, which introduces dynamic issues that are investigated in this work. This paper describes both a control system designed specifically for issues associated with SMAs, and dynamic analysis of the geared turbofan VAFN with the SMA actuators. Also, some future recommendations are provided for this type of propulsion system.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43438 , 2017 AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: A nonlinear dynamic model and propulsion controller are developed for a small-scale turbofan engine. The small-scale turbofan engine is based on the Price Induction company's DGEN 380, one of the few turbofan engines targeted for the personal light jet category. Comparisons of the nonlinear dynamic turbofan engine model to actual DGEN 380 engine test data and a Price Induction simulation are provided. During engine transients, the nonlinear model typically agrees within 10 percent error, even though the nonlinear model was developed from limited available engine data. A gain scheduled proportional integral low speed shaft controller with limiter safety logic is created to replicate the baseline DGEN 380 controller. The new controller provides desired gain and phase margins and is verified to meet Federal Aviation Administration transient propulsion system requirements. In understanding benefits, there is a need to move beyond simulation for the demonstration of advanced control architectures and technologies by using real-time systems and hardware. The small-scale DGEN 380 provides a cost effective means to accomplish advanced controls testing on a relevant turbofan engine platform.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43623 , AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: It is essential to design a propulsion powertrain real-time simulator using the hardware-in-the-loop (HIL) system that emulates an electrified aircraft propulsion (EAP) systems power grid. This simulator would enable us to facilitate in-depth understanding of the system principles, to validate system model analysis and performance prediction, and to demonstrate the proof-of-concept of the EAP electrical system. This paper describes how subscale electrical machines with their controllers can mimic the power components in an EAP powertrain. In particular, three powertrain emulations are presented to mimic 1) a gas turbo-=shaft engine driving a generator, consisting of two permanent magnet (PM) motors with brushless motor drives, coupled by a shaft, 2) a motor driving a propulsive fan, and 3) a turbo-shaft engine driven fan (turbofan engine) operation. As a first step towards the demonstration, experimental dynamic characterization of the two motor drive systems, coupled by a mechanical shaft, were performed. The previously developed analytical motor models1 were then replaced with the experimental motor models to perform the real-time demonstration in the predefined flight path profiles. This technique can convert the plain motor system into a unique EAP power grid emulator that enables rapid analysis and real-time simulation performance using hardware-in-the-loop (HIL).
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43712 , 2017 AIAA/SAE/AIAA Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2019-07-13
    Description: This paper builds on previous work that compares numerical simulations of mixed-phase icing clouds with experimental data. The model couples the thermal interaction between ice particles and water droplets of the icing cloud with the flowing air of an icing wind tunnel for simulation of NASA Glenn Research Centers (GRC) Propulsion Systems Laboratory (PSL). Measurements were taken during the Fundamentals of Ice Crystal Icing Physics Tests at the PSL tunnel in March 2016. The tests simulated ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. Experimentally measured air temperature, humidity, total water content, liquid and ice water content, as well as cloud particle size, are compared with model predictions. The model showed good trend agreement with experimentally measured values, but often over-predicted aero-thermodynamic changes. This discrepancy is likely attributed to radial variations that this one-dimensional model does not address. One of the key findings of this work is that greater aero-thermodynamic changes occur when humidity conditions are low. In addition a range of mixed-phase clouds can be achieved by varying only the tunnel humidity conditions, but the range of humidities to generate a mixed-phase cloud becomes smaller when clouds are composed of smaller particles. In general, the model predicted melt fraction well, in particular with clouds composed of larger particle sizes.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN42595 , AIAA Aviation 2017 Conference; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2019-07-13
    Description: For several years, NASA Glenn Research Center and the U.S. Army Research Laboratory have been investigating hybrid (composite/steel) gear technology for use in vertical lift drive systems. The hybrid gear concept replaces the structural portion of a gear between the shaft and the gear rim with a lightweight carbon fiber composite, in an effort to reduce the overall weight of a gear and increase the drive system power density. Past research includes both small-scale and large-scale hybrid gear concepts, all of which have a constant composite thickness throughout. The design described in this paper is of a variable thickness, such that the composite is thickest at the inner diameter and this thickness is gradually reduced toward the outer diameter. The resulting "stair stepped" design stems from dropping plies of the braided carbon fiber prepreg composite fabric gradually with increased radius. Additionally, the interlock pattern at the inner metallic adapter was adjusted slightly from previous designs to obtain a better stress distribution on the inner metallic adapter. The manufactured variable thickness web was tested both in static torsion tests and operationally in a relevant gearbox environment. The results of these experiments will be presented and compared to a baseline steel configuration.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN54603 , Annual Forum of the American Helicopter Society; May 14, 2018 - May 17, 2018; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2019-07-13
    Description: Gradual progression of electric and hybrid electric aircraft from small planes to large planes will require technology advances in multiple areas, which include energy storage, electrical machines, power transmission, power electronics, control systems, materials, thermal management, and multi-scale modeling tools. Advances in both fundamental research and applied interdisciplinary research will be required to realize the goals for future electric and hybrid electric aircraft. The presentation will provide an overview of long-range research and technology needs for the next thirty years and how evolution of several early stage technologies will influence the development of electrified aircraft in the future.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN49131 , Electric & Hybrid Aerospace Technology Symposium; Nov 16, 2017 - Nov 17, 2017; Cologne; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2019-07-13
    Description: In order to meet aggressive aircraft performance goals set by NASA's Aeronautics Research Mission Directorate, the Glenn Research Center (GRC) is leading research and development of electrified aircraft propulsion systems with electricity being generated from a gas turbine engine or combination of gas turbine engine and an alternate energy source. The presentation will provide an overview of technical challenges and barriers affecting the development and implementation of turboelectric and hybrid electric systems. Advances will be required in multiple areas, which include energy storage, electrical machines, power transmission, power electronics, control systems, materials, thermal management, and multi-scale modeling tools. The presentation will summarize current GRC activities in these areas. Challenges associated with integration and demonstration of multiple technologies at the system level will be presented.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN48472 , ENERGYTECH 2017; Oct 31, 2017 - Nov 02, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-07-13
    Description: This paper describes an intelligent propulsion control architecture that coordinates with the flight control to reduce the amount of pilot intervention required to operate the vehicle. Objectives of the architecture include the ability to: automatically recognize the aircraft operating state and flight phase; configure engine control to optimize performance with knowledge of engine condition and capability; enhance aircraft performance by coordinating propulsion control with flight control; and recognize off-nominal propulsion situations and to respond to them autonomously. The hierarchical intelligent propulsion system control can be decomposed into a propulsion system level and an individual engine level. The architecture is designed to be flexible to accommodate evolving requirements, adapt to technology improvements, and maintain safety.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN50405 , SciTech 2018; Jan 08, 2018 - Jan 12, 2018; Kissimmee, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN42581 , Energy Optimized Aircraft (EOA) Meeting; May 16, 2017 - May 17, 2017; Dayton, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-07-13
    Description: NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL (Technology Readiness Level) level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT - NASAs Electric Aircraft Testbed) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST - Hybrid-Electric Integrated Systems Testbed) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN49025 , Meeting with NRC (National Research Council) Canada; Nov 09, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-07-13
    Description: This presentation is a high level overview of ongoing electric propulsion research programs currently at AFRC.
    Keywords: Aircraft Propulsion and Power
    Type: AFRC-E-DAA-TN46675 , EýFlight Symposium; Oct 05, 2017 - Oct 06, 2017; Stuttgart; Germany
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-07-13
    Description: This presentation discusses the High Voltage Hybrid Electric Propulsion (HVHEP) Activity.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN46212 , Incorporating Strathclyde Fault Management Technology; Aug 22, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2019-07-13
    Description: We present an implementation of a propulsor model based on body force method into the OVERFLOW computational fluid dynamics code to model turbofan engines and propulsors of similar type. The model estimates the forces imparted on the fluid by the blade camber surfaces as a body force source terms in the momentum and energy equations over grids that represent the rotor and stator of a fan stage. We tested the implementation on three cases: 1) Source Diagnostics Test (SDT) fan with R4 rotors, which has extensive test data on aerodynamic performance and rotor wake surveys, 2) A stand-alone Aeronaut TF8000 propulsor which is an off-the-shelf propulsor used on model aircraft and 3) The D8 aircraft model with TF8000 propulsors placed in a wind tunnel. Despite missing some of the features in the velocity profiles near the endwalls (i.e. hub and casing surfaces), the OVERFLOW simulations with body force model predicted area-averaged flow speed and total pressure rise through the SDT propulsor within a few percent of the LDV (Laser Doppler Velocimetry) measurements. In the case of TF8000 propulsor on the D8 airframe, the model under-predicted mechanical power coefficient by several percent of the wind tunnel test results when the horizontal force balance condition over the airframe is targeted by tuning rotor speed. By investigating the upstream influence of the rotor swirl, it was found out that the induced swirl velocity effects upstream were relatively small and they rapidly vanished before reaching one fan diameter upstream of the fan face. The body force model provided insights on aerothermodynamics and aeromechanics of boundary layer ingesting propulsor; these insights could not be obtained by using the uniform pressure jump model.
    Keywords: Aircraft Propulsion and Power
    Type: AIAA-2017-3572 , ARC-E-DAA-TN43237 , AIAA Applied Aerodynamics Conference 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States|AIAA Aviation Forum 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2019-07-13
    Description: Civil aircraft combustor designs will move from rich-burn to lean-burn due to the latter's advantage in low NOx and nvPM emissions. However, the operating range of lean-burn is narrower, requiring premium mixing performance from the fuel injectors. As the OPR increases, the corresponding combustor inlet temperature increase can benefit greatly with fuel composition improvements. Hydro-treatment can improve coking resistance, allowing finer fuel injection orifices to speed up mixing. Selective cetane number control across the fuel carbon-number distribution may allow delayed ignition at high power while maintaining low-power ignition characteristics.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43989 , ASME Turbo Expo 2017; Jun 26, 2017 - Jun 30, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2019-07-27
    Description: Windage power loss in high-speed gearboxes results in efficiency losses and increased heating due to drag on the gear teeth. Test results for meshed spur gear windage power loss are presented at ambient oil inlet temperatures, both with and without shrouding. The rate of windage power loss is observed to increase above a gear surface speed of 10,000 feet per minute (51 meters per second), similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 feet per minute (76 meters per second), decreasing power loss by 10 percent at 25,000 feet per minute (127 meters per second). The need for gearbox oil drain slots limits the effectiveness of shrouding in reducing windage power loss. Windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for unshrouded meshed spur gears are 7 times greater than losses determined from unshrouded single spur gear tests. A 6- to 12-times increase in windage power loss is observed in the shrouded meshed spur gear data compared with shrouded single spur gear data. Based on this preliminary study, additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss for meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus windage power loss for the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed to optimize gearbox shrouds for minimum windage power loss.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TM-2017-219536 , E-19395 , GRC-E-DAA-TN44777 , American Helicopter Society (AHS) Annual Forum and Technology Display (Forum 73); 9ý11 May 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2019-08-24
    Description: One embodiment of the present invention is a unique aircraft propulsion gas turbine engine. Another embodiment is a unique gas turbine engine. Another embodiment is a unique gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engines with heat exchange systems. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-13
    Description: This presentation prepared for the upcoming NASA-Pratt/UTRC meeting describes background and developments on Active Combustion Control.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN49332 , NASA-Pratt/UTRC Aircraft Engine Controls Meeting; Nov 15, 2017; Hartford, CT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2019-08-13
    Description: High voltage hybrid electric propulsion systems are now pushing new technology development efforts for air transportation. A key challenge in hybrid electric aircraft is safe high voltage distribution and transmission of megawatts of power (〉20 MW). For the past two years, a multidisciplinary materials research team at NASA Glenn Research Center has investigated the feasibility of distributing high voltage power on future hybrid electric aircraft. This presentation describes the team's approach to addressing this challenge, significant technical findings, and next steps in GRC's materials research effort for MW power distribution on aircraft.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN48425 , EnergyTech 2017; Oct 31, 2017 - Nov 02, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2019-08-13
    Description: The accurate modeling and analysis of electrified aircraft propulsion concepts require intricate subsystem system component coupling. The major challenge in electrified aircraft propulsion concept modeling lies in understanding how the subsystems "talk" to each other and the dependencies they have on one another.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN48292 , EnergyTech 2017; Oct 31, 2017 - Nov 02, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: NF1676L-26767 , One Boeing NASA Electric Aircraft Workshop; Mar 22, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2019-08-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN40309 , Boeing/NASA Electric Aircraft Workshop; Mar 22, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2019-09-04
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: ARC-E-DAA-TN43279 , Applied Aerodynamic Conference, AIAA Aviation Forum; Jun 05, 2017 - Sep 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2019-08-27
    Description: A conditionally active limit regulator may be used to regulate the performance of engines or other limit regulated systems. A computing system may determine whether a variable to be limited is within a predetermined range of a limit value as a first condition. The computing system may also determine whether a current rate of increase or decrease of the variable to be limited is great enough that the variable will reach the limit within a predetermined period of time with no other changes as a second condition. When both conditions are true, the computing system may activate a simulated or physical limit regulator.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: AFRC-E-DAA-TN38325 , AIAA SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2019-07-13
    Description: The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43717 , AIAA Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2019-07-13
    Description: The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application.The Convergent Aeronautics Solutions (CAS) High Voltage-Hybrid Electric Propulsion (HVHEP) task was formulated to support the move into future hybrid-electric aircraft. The goal of this project is to develop a new AC power architecture to support the needs of higher efficiency and lower emissions. This proposed architecture will adopt the use of the doubly-fed induction machine (DFIM) for propulsor drive motor application. DFIMs are attractive for several reasons, including but not limited to the ability to self-start, ability to operate sub- and super-synchronously, and requiring only fractionally rated power converters on a per-unit basis depending on the required range of operation. The focus of this paper is based specifically on the presentation and analysis of a novel strategy which allows for independent operation of each of the aforementioned doubly-fed induction motors. This strategy includes synchronization, soft-start, and closed loop speed control of each motor as a means of controlling output thrust; be it concurrently or differentially. The demonstration of this strategy has recently been proven out on a low power test bed using fractional horsepower machines. Simulation and hardware test results are presented in the paper.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN43482 , AIAA/SAE/ASEE Joint Propulsion Conference; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2019-07-13
    Description: This paper presents a comparison primarily of the 2-D velocity profiles in the non-burning system; and for the luminescent flame structure for a 7-point Lean Direct Injector (LDI). This circular LDI array consists of a center element surrounded by six outer elements spaced 60 degrees apart; the spacing between all adjacent elements is the same. Each element consists of simplex atomizer that injects at the throat of a converging-diverging venturi, and an axial swirler upstream of the venturi throat to generate swirl. The two configurations were: 1) one which consists of all 60 co-swirling axial air swirlers, and; 2) one configuration which uses a 60 swirler in the center, surrounded by counter-swirling 45 swirlers. Testing was done at 5 atm and an inlet temperature of 800F. Two air reference velocities were considered in the cold flow measurements and one common air flow condition for the burning case.The 2D velocity profiles were determined using particle image velocimetry and the flame structure was determined using high speed photography.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN42068 , U.S. National Combustion Meeting; Apr 23, 2017 - Apr 26, 2017; College Park, MD; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2019-07-13
    Description: NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.
    Keywords: Aircraft Propulsion and Power
    Type: E-19374 , GRC-E-DAA-TN42710 , AIAA Propulsion and Energy 2017 Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2019-07-13
    Description: Rotorcraft gearbox efficiencies are reduced at increased surface speeds due to viscous and impingement drag on the gear teeth. This windage power loss can affect overall mission range, payload, and frequency of transmission maintenance. Experimental and analytical studies on shrouding for single gears have shown it be potentially effective in mitigating windage power loss. Efficiency studies on unshrouded meshed gears have shown the effect of speed, oil viscosity, temperature, load, lubrication scheme, etc. on gear windage power loss. The open literature does not cite data on shrouded meshed spur gears. Gear windage power loss test results are presented on shrouded meshed spur gears at elevated oil inlet temperatures and constant oil pressure both with and without shrouding. Shroud effectiveness is compared at four oil inlet temperatures. The results are compared to the available literature and follow-up work is outlined.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN39397 , 2017 ASME Power Transmission and Gearing (PTG) Conference; Aug 06, 2017 - Aug 09, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2019-07-13
    Description: This presentation provides an overview of the work performed at NASA Glenn Research Center in distributed engine control technology. This is control system hardware technology that overcomes engine system constraints by modularizing control hardware and integrating the components over communication networks.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN40577 , ACGSC (Aerospace Control and Guidance Systems Committee) Meeting; Mar 29, 2017 - Mar 31, 2017; Fairborn, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2019-07-13
    Description: A particular type of pressure gain combustion (PGC) device is described, which is under investigation at GRC. The Resonant Pulse Combustor (RPC) has been largely overlooked due to its theoretically low performance. However, its practical performance is quite competitive with other PGC systems, and its physical simplicity is unmatched.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN39894 , International Constant Volume Detonation Combustion Workshop; Jun 13, 2017 - Jun 16, 2017; Poitiers/France; France
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: MSFC-E-DAA-TN39209 , AAS Guidance and Control Conference (GN&C); Feb 03, 2017 - Feb 08, 2017; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-13
    Description: Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the engines operating point to a region of lower risk through the modulation of available control actuators while maintaining the desired engine thrust output. Follow-on work will assess the feasibility and effectiveness of such control-based mitigation strategies.
    Keywords: Aircraft Propulsion and Power
    Type: GT2017-65128 , GRC-E-DAA-TN39681 , Turbo Expo: Turbomachinery Technical Conference & Exposition; Jun 26, 2017 - Jun 30, 2017; Charlotte, NC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2019-07-13
    Description: Update on the current state of electric propulsion research at NASA.
    Keywords: Aircraft Propulsion and Power
    Type: AFRC-E-DAA-TN43366 , Aviation 2017; Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-13
    Description: This presentation is a brief summary of the data collected under a NASAFAA partnership test campaign completed in October 2016 in the NASA CE-5 test facility. The results discussed in this presentation are gaseous (NASA) and Particle (FAA).
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN38659 , WebEx PMTG MEASURE ahg Call; Jan 11, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-13
    Description: Distributed engine control (DEC) systems alter aircraft engine design constraints be- cause of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN37930 , SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-12
    Description: In accordance with NASAs technology goals for future subsonic vehicles, this contract identified and developed new combustor concepts toward meeting N+2 generation (2020) LTO (landing and take-off) NOx emissions reduction goal of 75 from the standard adopted at Committee on Aviation Environmental Protection 6 (CAEP6). Based on flame tube emissions, operability, and autoignition testing, one concept was down selected for sector testing at NASA. The N+2 combustor sector successfully demonstrated 75 reduction for LTO NOx (vs. CAEP6) and cruise NOx (vs. 2005 B777-200 reference) while maintaining 99.9 cruise efficiency and no increase in CO and HC emissions.The program also developed enabling technologies for the combustion system including ceramic matrix composites (CMC) liner materials, active combustion control concepts, and laser ignition for improved altitude relight.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/CR-2017-219410 , E-19298 , GRC-E-DAA-TN35615
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-12
    Description: A multipoint fuel injection system includes a plurality of fuel manifolds. Each manifold is in fluid communication with a plurality of injectors arranged circumferentially about a longitudinal axis for multipoint fuel injection. The injectors of separate respective manifolds are spaced radially apart from one another for separate radial staging of fuel flow to each respective manifold.
    Keywords: Aircraft Propulsion and Power
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2019-07-12
    Description: NASA Glenn Research Center has developed a Simulink(Trademark) controller logic for driving a room temperature, 36-teeth stator, four-pole rotor reluctance motor. The Simulink logic was extracted from an existing C++ motor controller that was previously employed to achieve a rotor speed of 3000 rpm. The Simulink controller has additional logic refinements that were not available in past C++ controller, such as the per rev logic component and its frequency filter. The filter provides a more accurate reading of the rotor input signals. The controller is versatile, and with slight modifications, can be used to drive other reluctance motor types incorporating dissimilar stator rotor pole combinations. The original C++ controller was designed with the goal (after appropriate modification) of controlling a future superconducting motor. This superconducting motor will be employed as a test bed for developing other superconducting aviation propulsion motors envisioned for future turbo-electric aircrafts. The Simulink results presented in this paper were generated from simulated rotor inputs. However, in an actual application, these simulated inputs are to be replaced by actual proximity probe signals emanating from D-Space hardware inputs.
    Keywords: Aircraft Propulsion and Power
    Type: NASA/TP-2017-219451 , E-19332 , GRC-E-DAA-TN37757
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2019-07-13
    Description: The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. For example, using NTP for human Mars missions can provide faster transit and/or round trip times for crew; larger mission payloads; off nominal mission opportunities (including wider injection windows); and crew mission abort options not available from other architectures. The use of NTP can also reduce required earth-to-orbit launches, reducing cost and improving ground logistics. In addition to enabling robust human Mars mission architectures, NTP can be used on exploration missions throughout the solar system. A first generation NTP system could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. Progress made under the NTP project could also help enable high performance fission power systems and Nuclear Electric Propulsion (NEP). Guidance, navigation, and control of NTP may have some unique but manageable characteristics.
    Keywords: Aircraft Propulsion and Power
    Type: AAS Paper 17-144 , MSFC-E-DAA-TN38873 , Annual AAS Guidance, Navigation and Control (GN&C) Conference; Feb 02, 2017 - Feb 07, 2017; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2019-07-13
    Description: Distributed engine control (DEC) systems alter aircraft engine design constraints because of fundamental differences in the input and output communication between DEC and centralized control architectures. The change in the way communication is implemented may create new optimum engine-aircraft configurations. This paper continues the exploration of digital network communication by demonstrating a Network-In-the-Loop simulation at the NASA Glenn Research Center. This simulation incorporates a real-time network protocol, the Engine Area Distributed Interconnect Network Lite (EADIN Lite), with the Commercial Modular Aero-Propulsion System Simulation 40k (C-MAPSS40k) software. The objective of this study is to assess digital control network impact to the control system. Performance is evaluated relative to a truth model for large transient maneuvers and a typical flight profile for commercial aircraft. Results show that a decrease in network bandwidth from 250 Kbps (sampling all sensors every time step) to 40 Kbps, resulted in very small differences in control system performance.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN38343 , SciTech 2017; Jan 09, 2017 - Jan 13, 2017; Grapevine, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: AFRC-E-DAA-TN40554 , Society of Experimental Test Pilots West Coast Symposium; Mar 31, 2017; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-07-13
    Description: We present a computational model based on the hypothesis that the higher-than-expected electron mobility across magnetic field lines observed in Hall thrusters is due to the growth and eventual saturation of the electron cyclotron drift instability. The key improvement of this model with respect to previous work is that it decouples the saturation of the instability from the correlation that exists between mobility and magnitude of the wave perturbations in linear theory, thereby enabling first-principles simulations. The model has been incorporated in the 2-D (r-z) multi-fluids code Hall2De and simulations of the H6 thruster at 300 V, 20 A are numerically stable and achieve a steady-state solution at a computational cost that is not significantly higher than previous Hall2De simulations. The computed location of the acceleration region is found to be within 10% of the length of the acceleration channel compared to that inferred by experiments. The simulations also capture well the plasma gradients along the channel centerline of this thruster. To further establish the validity of this model, we plan to conduct simulations of other thrusters and/or operating conditions.
    Keywords: Aircraft Propulsion and Power
    Type: JPL-CL-CL#17-4656 , International Electric Propulsion Conference; Oct 08, 2017 - Oct 12, 2017; Atlanta, GA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-07-13
    Description: NASA is pursuing the development of electrified propulsion (EP) technologies to improve air transportation in terms of efficiency, affordability, and sustainability. The power requirements are expected to reach 20 megawatts for large EP commercial airliners. A key challenge is transmission and distribution of the high voltage (20 kilovolts) needed for some EP systems. This is a challenge because the risk of electrical failure in aircraft at high altitude (low pressure) due to corona discharge and other forms of partial discharge increases significantly when voltages exceed 327 V. Corona discharge is a form of partial discharge in which gaseous molecules are ionized by strong electric fields. Corona discharge leads to aging in power transmission lines. Aging is a leading cause of electrical failure in electrical insulation materials. In particular, aging from electrical, vibrational, and thermal stresses decrease the performance life of insulation materials. There are currently no test standards or equipment that can effectively age materials under high altitude, voltage and frequency conditions. This poster proposes a design for a test system including an environmental chamber that can simulate the environment of future EP systems for material and component aging tests.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN45100 , Annual Northeast Ohio Undergraduate Research Symposium; Aug 03, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2019-07-13
    Description: Overview: Solid state energy harvesting using waste heat available in gas turbine engine offers potential for power generation to meet growing power needs of aircraft; Thermoelectric material advances offer new opportunities; Weight-optimized integrated turbine engine structure incorporating energy conversion devices.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN50291 , Department of Defense Technology Presentation; Dec 06, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-07-13
    Description: NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN44409 , 2017 AIAA Propulsion and Energy Forum; Jul 10, 2017 - Jul 12, 2017; Atlanta, GA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2019-07-13
    Description: NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN48465 , EnergyTech 2017; Oct 31, 2017 - Nov 02, 2017; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-07-13
    Description: Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max. radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data analyses.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN47628 , AGMA Fall Technical Meeting (FTM); Oct 22, 2017 - Oct 24, 2017; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Aircraft Propulsion and Power
    Type: MSFC-E-DAA-TN48401 , ANS Winter Meeting & Expo; Oct 29, 2017 - Nov 02, 2017; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2019-07-13
    Description: Windage power loss in high-speed gearboxes result in efficiency losses and increased heating due to drag on the gear teeth. Meshed spur gear windage power loss test results are presented at ambient oil inlet temperatures both with and without shrouding. The rate of windage power loss is observed to increase above 10,000 ft.min., gear surface speed, similar to results presented in the literature. Shrouding is observed to become more effective above 15,000 ft.min., decreasing power loss by 10 at 25,000 ft.min. The need for gearbox oil drain slots limits the effectiveness of shrouding on reducing windage power loss. Also, windage power loss is observed to decrease with increasing gearbox temperatures and to increase with oil flow. Windage power losses for the unshrouded meshed spur gears are 7x more than losses determined from unshrouded single spur gear tests. A 6x to 12x increase in windage power is observed comparing shrouded single spur gear data with shrouded meshed spur gear data. Based on this preliminary study additional research is suggested to determine the effect of oil drain slot configurations, axial and radial shroud clearances, and higher gear surface speeds on windage power loss. Additional work is also suggested to determine the sensitivity of windage power loss to oil temperature and oil flow. Windage power loss of meshed spur gears tested in both the shrouded and unshrouded configurations is shown to be more than double versus the same spur gears run individually in the same shroud configurations. Further study of the physical processes behind these results is needed for optimizing gearbox shrouds for minimum windage power loss.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN42435 , American Helicopter Society (AHS) International Annual Forum and Technology Display; May 09, 2017 - May 11, 2017; Fort Worth, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-07-13
    Description: Gearbox efficiency is reduced at high rotational speeds due to windage drag and viscous effects on rotating, meshed gear components. A goal of NASA aeronautics rotorcraft research is aimed at propulsion technologies that improve efficiency while minimizing vehicle weight. Specifically, reducing power losses to rotorcraft gearboxes would allow gains in areas such as vehicle payload, range, mission type, and fuel consumption. To that end, a gear windage rig has been commissioned at NASA Glenn Research Center to measure windage drag on gears and to test methodologies to mitigate windage power losses. One method used in rotorcraft gearbox design attempts to reduce gear windage power loss by utilizing close clearance walls to enclose the gears in both the axial and radial directions. The close clearance shrouds result in reduced drag on the gear teeth, and reduced power loss. For meshed spur gears, the shrouding takes the form of metal side plates and circumferential metal sectors. Variably positioned axial and radial shrouds are incorporated in the NASA rig to study the effect of shroud clearance on gearbox power loss. A number of researchers have given experimental and analytical results for single spur gears, with and without shrouding. Shrouded meshed spur gear test results are sparse in the literature. Windage tests were run at NASA Glenn using meshed spur gears at four shroud configurations: unshrouded, shrouded (max. axial, max radial), and two intermediate shrouding conditions. Results are compared to available meshed spur gear power loss data analyses as well as single spur gear data/analyses. Recommendations are made for future work.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN42244 , 2017 Fall Technical Meeting (FTM); Oct 22, 2017 - Oct 24, 2017; Columbus, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-07-13
    Description: More than ever, there is flexibility and freedom in acoustic liner design. Subject to practical considerations, liner design variables may be manipulated to achieve a target attenuation spectrum. But characteristics of the ideal attenuation spectrum can be difficult to know. Many multidisciplinary system effects govern how engine noise sources contribute to community noise. Given a hardwall fan noise source to be suppressed, and using an analytical certification noise model to compute a community noise measure of merit, the optimal attenuation spectrum can be derived using multidisciplinary systems analysis methods. In a previous paper on this subject, a method deriving the ideal target attenuation spectrum that minimizes noise perceived by observers on the ground was described. A simple code-wrapping approach was used to evaluate a community noise objective function for an external optimizer. Gradients were evaluated using a finite difference formula. The subject of this paper is an application of analytic derivatives that supply precise gradients to an optimization process. Analytic derivatives improve the efficiency and accuracy of gradient-based optimization methods and allow consideration of more design variables. In addition, the benefit of variable impedance liners is explored using a multi-objective optimization.
    Keywords: Aircraft Propulsion and Power
    Type: GRC-E-DAA-TN42151 , AIAA/CEAS Aeroacoustics Conference (Aviation Forum 2017); Jun 05, 2017 - Jun 09, 2017; Denver, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...