ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Cell Line
  • Chemistry
  • ENERGY PRODUCTION AND CONVERSION
  • Inorganic Chemistry
  • METEOROLOGY AND CLIMATOLOGY
  • Physics
  • Polymer and Materials Science
  • Nature Publishing Group (NPG)  (11)
  • 2015-2019  (11)
  • 1980-1984
  • 1925-1929
  • 2016  (11)
Sammlung
Schlagwörter
Erscheinungszeitraum
  • 2015-2019  (11)
  • 1980-1984
  • 1925-1929
Jahr
  • 1
    Publikationsdatum: 2016-01-28
    Beschreibung: Adeno-associated virus (AAV) vectors are currently the leading candidates for virus-based gene therapies because of their broad tissue tropism, non-pathogenic nature and low immunogenicity. They have been successfully used in clinical trials to treat hereditary diseases such as haemophilia B (ref. 2), and have been approved for treatment of lipoprotein lipase deficiency in Europe. Considerable efforts have been made to engineer AAV variants with novel and biomedically valuable cell tropisms to allow efficacious systemic administration, yet basic aspects of AAV cellular entry are still poorly understood. In particular, the protein receptor(s) required for AAV entry after cell attachment remains unknown. Here we use an unbiased genetic screen to identify proteins essential for AAV serotype 2 (AAV2) infection in a haploid human cell line. The most significantly enriched gene of the screen encodes a previously uncharacterized type I transmembrane protein, KIAA0319L (denoted hereafter as AAV receptor (AAVR)). We characterize AAVR as a protein capable of rapid endocytosis from the plasma membrane and trafficking to the trans-Golgi network. We show that AAVR directly binds to AAV2 particles, and that anti-AAVR antibodies efficiently block AAV2 infection. Moreover, genetic ablation of AAVR renders a wide range of mammalian cell types highly resistant to AAV2 infection. Notably, AAVR serves as a critical host factor for all tested AAV serotypes. The importance of AAVR for in vivo gene delivery is further highlighted by the robust resistance of Aavr(-/-) (also known as Au040320(-/-) and Kiaa0319l(-/-)) mice to AAV infection. Collectively, our data indicate that AAVR is a universal receptor involved in AAV infection.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pillay, S -- Meyer, N L -- Puschnik, A S -- Davulcu, O -- Diep, J -- Ishikawa, Y -- Jae, L T -- Wosen, J E -- Nagamine, C M -- Chapman, M S -- Carette, J E -- DP2 AI104557/AI/NIAID NIH HHS/ -- R01 GM066875/GM/NIGMS NIH HHS/ -- U19 AI109662/AI/NIAID NIH HHS/ -- England -- Nature. 2016 Feb 4;530(7588):108-12. doi: 10.1038/nature16465. Epub 2016 Jan 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Microbiology and Immunology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA. ; Department of Biochemistry and Molecular Biology, School of Medicine, Oregon Health &Science University, 3181 Sam Jackson Park Road, Portland, Oregon 97239-3098, USA. ; Shriners Hospital for Children, 3101 Sam Jackson Park Road, Portland, Oregon 97239, USA. ; Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, Netherlands. ; Department of Comparative Medicine, Stanford University School of Medicine, 287 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26814968" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Antibodies/immunology/pharmacology ; Cell Line ; Dependovirus/classification/drug effects/*physiology ; Endocytosis/drug effects ; Female ; Gene Deletion ; Genetic Therapy/methods ; Host Specificity ; Humans ; Male ; Mice ; Parvoviridae Infections/*metabolism/*virology ; Receptors, Cell Surface/antagonists & inhibitors/deficiency/genetics/*metabolism ; Receptors, Virus/antagonists & inhibitors/deficiency/genetics/*metabolism ; *Viral Tropism/drug effects ; Virus Internalization/drug effects ; trans-Golgi Network/drug effects
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2016-03-05
    Beschreibung: HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 A resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4860016/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kirchdoerfer, Robert N -- Cottrell, Christopher A -- Wang, Nianshuang -- Pallesen, Jesper -- Yassine, Hadi M -- Turner, Hannah L -- Corbett, Kizzmekia S -- Graham, Barney S -- McLellan, Jason S -- Ward, Andrew B -- R56 AI118016/AI/NIAID NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):118-21. doi: 10.1038/nature17200.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Integrative Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA. ; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, USA. ; Viral Pathogenesis Laboratory, National Institute of Allergy and Infectious Diseases, Building 40, Room 2502, 40 Convent Drive, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26935699" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Cell Line ; Coronavirus/*chemistry/*ultrastructure ; Cryoelectron Microscopy ; Humans ; Membrane Fusion ; Models, Molecular ; Protein Binding ; Protein Multimerization ; Protein Structure, Quaternary ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; Proteolysis ; Receptors, Virus/metabolism ; Spike Glycoprotein, Coronavirus/*chemistry/metabolism/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2016-02-09
    Beschreibung: The tremendous pandemic potential of coronaviruses was demonstrated twice in the past few decades by two global outbreaks of deadly pneumonia. Entry of coronaviruses into cells is mediated by the transmembrane spike glycoprotein S, which forms a trimer carrying receptor-binding and membrane fusion functions. S also contains the principal antigenic determinants and is the target of neutralizing antibodies. Here we present the structure of a mouse coronavirus S trimer ectodomain determined at 4.0 A resolution by single particle cryo-electron microscopy. It reveals the metastable pre-fusion architecture of S and highlights key interactions stabilizing it. The structure shares a common core with paramyxovirus F proteins, implicating mechanistic similarities and an evolutionary connection between these viral fusion proteins. The accessibility of the highly conserved fusion peptide at the periphery of the trimer indicates potential vaccinology strategies to elicit broadly neutralizing antibodies against coronaviruses. Finally, comparison with crystal structures of human coronavirus S domains allows rationalization of the molecular basis for species specificity based on the use of spatially contiguous but distinct domains.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walls, Alexandra C -- Tortorici, M Alejandra -- Bosch, Berend-Jan -- Frenz, Brandon -- Rottier, Peter J M -- DiMaio, Frank -- Rey, Felix A -- Veesler, David -- GM103310/GM/NIGMS NIH HHS/ -- T32GM008268/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):114-7. doi: 10.1038/nature16988. Epub 2016 Feb 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA. ; Institut Pasteur, Unite de Virologie Structurale, 75015 Paris, France. ; CNRS UMR 3569 Virologie, 75015 Paris, France. ; Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26855426" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Sequence ; Animals ; Antibodies, Neutralizing/immunology ; Cell Line ; Coronavirus Infections/immunology/virology ; *Cryoelectron Microscopy ; Drosophila melanogaster ; Mice ; Models, Molecular ; Molecular Sequence Data ; Murine hepatitis virus/*chemistry/immunology/*ultrastructure ; Protein Multimerization ; Protein Structure, Tertiary ; Spike Glycoprotein, Coronavirus/*chemistry/immunology/*ultrastructure ; Viral Vaccines/chemistry/immunology ; Virus Internalization
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2016-03-24
    Beschreibung: (beta-)Arrestins are important regulators of G-protein-coupled receptors (GPCRs). They bind to active, phosphorylated GPCRs and thereby shut off 'classical' signalling to G proteins, trigger internalization of GPCRs via interaction with the clathrin machinery and mediate signalling via 'non-classical' pathways. In addition to two visual arrestins that bind to rod and cone photoreceptors (termed arrestin1 and arrestin4), there are only two (non-visual) beta-arrestin proteins (beta-arrestin1 and beta-arrestin2, also termed arrestin2 and arrestin3), which regulate hundreds of different (non-visual) GPCRs. Binding of these proteins to GPCRs usually requires the active form of the receptors plus their phosphorylation by G-protein-coupled receptor kinases (GRKs). The binding of receptors or their carboxy terminus as well as certain truncations induce active conformations of (beta-)arrestins that have recently been solved by X-ray crystallography. Here we investigate both the interaction of beta-arrestin with GPCRs, and the beta-arrestin conformational changes in real time and in living human cells, using a series of fluorescence resonance energy transfer (FRET)-based beta-arrestin2 biosensors. We observe receptor-specific patterns of conformational changes in beta-arrestin2 that occur rapidly after the receptor-beta-arrestin2 interaction. After agonist removal, these changes persist for longer than the direct receptor interaction. Our data indicate a rapid, receptor-type-specific, two-step binding and activation process between GPCRs and beta-arrestins. They further indicate that beta-arrestins remain active after dissociation from receptors, allowing them to remain at the cell surface and presumably signal independently. Thus, GPCRs trigger a rapid, receptor-specific activation/deactivation cycle of beta-arrestins, which permits their active signalling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nuber, Susanne -- Zabel, Ulrike -- Lorenz, Kristina -- Nuber, Andreas -- Milligan, Graeme -- Tobin, Andrew B -- Lohse, Martin J -- Hoffmann, Carsten -- 1 R01 DA038882/DA/NIDA NIH HHS/ -- BB/K019864/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- England -- Nature. 2016 Mar 31;531(7596):661-4. doi: 10.1038/nature17198. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Pharmacology and Toxicology, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Rudolf Virchow Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Comprehensive Heart Failure Center, University of Wurzburg, Versbacher Str. 9, 97078 Wurzburg, Germany. ; Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. ; MRC Toxicology Unit, University of Leicester, Hodgkin Building, Lancaster Road, Leicester LE1 9HN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007855" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Arrestins/chemistry/*metabolism ; Biosensing Techniques ; Cattle ; Cell Line ; Cell Membrane/metabolism ; Cell Survival ; Crystallography, X-Ray ; Fluorescence Resonance Energy Transfer ; Humans ; Kinetics ; Models, Molecular ; Protein Binding ; Protein Conformation ; Receptors, G-Protein-Coupled/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity ; Time Factors
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2016-03-31
    Beschreibung: Colonic epithelial cells are covered by thick inner and outer mucus layers. The inner mucus layer is free of commensal microbiota, which contributes to the maintenance of gut homeostasis. In the small intestine, molecules critical for prevention of bacterial invasion into epithelia such as Paneth-cell-derived anti-microbial peptides and regenerating islet-derived 3 (RegIII) family proteins have been identified. Although there are mucus layers providing physical barriers against the large number of microbiota present in the large intestine, the mechanisms that separate bacteria and colonic epithelia are not fully elucidated. Here we show that Ly6/PLAUR domain containing 8 (Lypd8) protein prevents flagellated microbiota invading the colonic epithelia in mice. Lypd8, selectively expressed in epithelial cells at the uppermost layer of the large intestinal gland, was secreted into the lumen and bound flagellated bacteria including Proteus mirabilis. In the absence of Lypd8, bacteria were present in the inner mucus layer and many flagellated bacteria invaded epithelia. Lypd8(-/-) mice were highly sensitive to intestinal inflammation induced by dextran sulfate sodium (DSS). Antibiotic elimination of Gram-negative flagellated bacteria restored the bacterial-free state of the inner mucus layer and ameliorated DSS-induced intestinal inflammation in Lypd8(-/-) mice. Lypd8 bound to flagella and suppressed motility of flagellated bacteria. Thus, Lypd8 mediates segregation of intestinal bacteria and epithelial cells in the colon to preserve intestinal homeostasis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Okumura, Ryu -- Kurakawa, Takashi -- Nakano, Takashi -- Kayama, Hisako -- Kinoshita, Makoto -- Motooka, Daisuke -- Gotoh, Kazuyoshi -- Kimura, Taishi -- Kamiyama, Naganori -- Kusu, Takashi -- Ueda, Yoshiyasu -- Wu, Hong -- Iijima, Hideki -- Barman, Soumik -- Osawa, Hideki -- Matsuno, Hiroshi -- Nishimura, Junichi -- Ohba, Yusuke -- Nakamura, Shota -- Iida, Tetsuya -- Yamamoto, Masahiro -- Umemoto, Eiji -- Sano, Koichi -- Takeda, Kiyoshi -- England -- Nature. 2016 Apr 7;532(7597):117-21. doi: 10.1038/nature17406. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan. ; Core Research for Evolutional Science and Technology, Japan Agency for Medical Research and Development, Tokyo 100-0004, Japan. ; Department of Microbiology and Infection Control, Osaka Medical College, Takatsuki, Osaka 569-8686, Japan. ; Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan. ; Department of Bacteriology, Okayama University Graduate School of Medicine, Okayama 700-8558, Japan. ; Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan. ; Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan. ; Department of Cell Physiology, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan. ; Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan. ; Laboratory of Immunoparasitology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027293" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Bacterial Adhesion ; Caco-2 Cells ; Cell Line ; Colitis/chemically induced/drug therapy/genetics ; Colon/*microbiology ; Dextran Sulfate ; Epithelium/*microbiology ; Female ; *Flagella ; GPI-Linked Proteins/deficiency/genetics/*metabolism/secretion ; Gram-Negative Bacteria/drug effects/metabolism/pathogenicity/*physiology ; Homeostasis ; Humans ; Inflammation/chemically induced/drug therapy/genetics ; Intestinal Mucosa/cytology/metabolism/*microbiology/secretion ; Male ; Mice ; Proteus mirabilis/drug effects/metabolism/pathogenicity ; Symbiosis
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2016-02-11
    Beschreibung: The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the 'second brain' given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrb(s-l/s-l)), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4846424/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Fattahi, Faranak -- Steinbeck, Julius A -- Kriks, Sonja -- Tchieu, Jason -- Zimmer, Bastian -- Kishinevsky, Sarah -- Zeltner, Nadja -- Mica, Yvonne -- El-Nachef, Wael -- Zhao, Huiyong -- de Stanchina, Elisa -- Gershon, Michael D -- Grikscheit, Tracy C -- Chen, Shuibing -- Studer, Lorenz -- DP2 DK098093-01/DK/NIDDK NIH HHS/ -- NS15547/NS/NINDS NIH HHS/ -- P30 CA008748/CA/NCI NIH HHS/ -- R01 NS015547/NS/NINDS NIH HHS/ -- England -- Nature. 2016 Mar 3;531(7592):105-9. doi: 10.1038/nature16951. Epub 2016 Feb 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Center for Stem Cell Biology, New York, New York 10065, USA. ; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, New York 10065, USA. ; Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA. ; Molecular Pharmacology Program, New York, New York 10065, USA. ; Department of Pathology and Cell Biology, Columbia University, College of Physicians and Surgeons, New York, New York 10032, USA. ; Children's Hospital Los Angeles, Pediatric Surgery, Los Angeles, California 90027, USA. ; Department of Surgery, Weill Medical College of Cornell University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863197" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Aging ; Animals ; Cell Differentiation ; Cell Line ; *Cell Lineage ; Cell Movement ; Cell Separation ; *Cell- and Tissue-Based Therapy/methods ; Chick Embryo ; Colon/drug effects/pathology ; Disease Models, Animal ; Drug Discovery/*methods ; Enteric Nervous System/*pathology ; Female ; Gastrointestinal Tract/drug effects/pathology ; Hirschsprung Disease/*drug therapy/*pathology/therapy ; Humans ; Male ; Mice ; Neurons/drug effects/*pathology ; Pepstatins/metabolism ; Pluripotent Stem Cells/pathology ; Receptor, Endothelin B/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2016-04-14
    Beschreibung: Circadian clocks are fundamental to the biology of most eukaryotes, coordinating behaviour and physiology to resonate with the environmental cycle of day and night through complex networks of clock-controlled genes. A fundamental knowledge gap exists, however, between circadian gene expression cycles and the biochemical mechanisms that ultimately facilitate circadian regulation of cell biology. Here we report circadian rhythms in the intracellular concentration of magnesium ions, [Mg(2+)]i, which act as a cell-autonomous timekeeping component to determine key clock properties both in a human cell line and in a unicellular alga that diverged from each other more than 1 billion years ago. Given the essential role of Mg(2+) as a cofactor for ATP, a functional consequence of [Mg(2+)]i oscillations is dynamic regulation of cellular energy expenditure over the daily cycle. Mechanistically, we find that these rhythms provide bilateral feedback linking rhythmic metabolism to clock-controlled gene expression. The global regulation of nucleotide triphosphate turnover by intracellular Mg(2+) availability has potential to impact upon many of the cell's more than 600 MgATP-dependent enzymes and every cellular system where MgNTP hydrolysis becomes rate limiting. Indeed, we find that circadian control of translation by mTOR is regulated through [Mg(2+)]i oscillations. It will now be important to identify which additional biological processes are subject to this form of regulation in tissues of multicellular organisms such as plants and humans, in the context of health and disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Feeney, Kevin A -- Hansen, Louise L -- Putker, Marrit -- Olivares-Yanez, Consuelo -- Day, Jason -- Eades, Lorna J -- Larrondo, Luis F -- Hoyle, Nathaniel P -- O'Neill, John S -- van Ooijen, Gerben -- 093734/Z/10/Z/Wellcome Trust/United Kingdom -- MC_UP_1201/4/Medical Research Council/United Kingdom -- England -- Nature. 2016 Apr 21;532(7599):375-9. doi: 10.1038/nature17407. Epub 2016 Apr 13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK. ; School of Biological Sciences, University of Edinburgh, Max Born Crescent, Edinburgh EH9 3BF, UK. ; Millennium Nucleus for Fungal Integrative and Synthetic Biology, Departamento de Genetica Molecular y Microbiologia, Facultad de Ciencias Biologicas, Pontificia Universidad Catolica de Chile, Casilla 114-D, Santiago, Chile. ; Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK. ; School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27074515" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Adenosine Triphosphate/metabolism ; Animals ; Cell Line ; Chlorophyta/cytology/metabolism ; Circadian Clocks/genetics/*physiology ; Circadian Rhythm/genetics/*physiology ; *Energy Metabolism ; Feedback, Physiological ; Gene Expression Regulation ; Humans ; Intracellular Space/metabolism ; Magnesium/*metabolism ; Male ; Mice ; TOR Serine-Threonine Kinases/metabolism ; Time Factors
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2016-01-08
    Beschreibung: Influenza pandemics occur unpredictably when zoonotic influenza viruses with novel antigenicity acquire the ability to transmit amongst humans. Host range breaches are limited by incompatibilities between avian virus components and the human host. Barriers include receptor preference, virion stability and poor activity of the avian virus RNA-dependent RNA polymerase in human cells. Mutants of the heterotrimeric viral polymerase components, particularly PB2 protein, are selected during mammalian adaptation, but their mode of action is unknown. We show that a species-specific difference in host protein ANP32A accounts for the suboptimal function of avian virus polymerase in mammalian cells. Avian ANP32A possesses an additional 33 amino acids between the leucine-rich repeats and carboxy-terminal low-complexity acidic region domains. In mammalian cells, avian ANP32A rescued the suboptimal function of avian virus polymerase to levels similar to mammalian-adapted polymerase. Deletion of the avian-specific sequence from chicken ANP32A abrogated this activity, whereas its insertion into human ANP32A, or closely related ANP32B, supported avian virus polymerase function. Substitutions, such as PB2(E627K), were rapidly selected upon infection of humans with avian H5N1 or H7N9 influenza viruses, adapting the viral polymerase for the shorter mammalian ANP32A. Thus ANP32A represents an essential host partner co-opted to support influenza virus replication and is a candidate host target for novel antivirals.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710677/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4710677/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Long, Jason S -- Giotis, Efstathios S -- Moncorge, Olivier -- Frise, Rebecca -- Mistry, Bhakti -- James, Joe -- Morisson, Mireille -- Iqbal, Munir -- Vignal, Alain -- Skinner, Michael A -- Barclay, Wendy S -- 087039/Z/08/Z/Wellcome Trust/United Kingdom -- BB/K002465/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- BBS/E/I/00001708/Biotechnology and Biological Sciences Research Council/United Kingdom -- G0600006/Medical Research Council/United Kingdom -- England -- Nature. 2016 Jan 7;529(7584):101-4. doi: 10.1038/nature16474.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Section of Virology, Department of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK. ; Centre d'etudes d'agents Pathogenes et Biotechnologies pour la Sante (CPBS), FRE 3689, CNRS-UM, 34293 Montpellier, France. ; Avian Viral Diseases Programme, The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK. ; UMR INRA/Genetique Physiologie et Systemes d'Elevage, INRA, 31326 Castanet-Tolosan, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26738596" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Amino Acid Sequence ; Animals ; Avian Proteins/*chemistry/deficiency/*metabolism ; Cell Line ; Chickens/virology ; Cricetinae ; Cricetulus ; Dogs ; Evolution, Molecular ; Gene Expression Regulation, Viral ; Gene Knockdown Techniques ; *Host Specificity ; Humans ; Influenza A Virus, H5N1 Subtype/enzymology/genetics/physiology ; Influenza A Virus, H7N9 Subtype/enzymology/genetics/physiology ; Influenza A virus/*enzymology/genetics/physiology ; Intracellular Signaling Peptides and Proteins/*chemistry/deficiency/*metabolism ; RNA Replicase/genetics/*metabolism ; Species Specificity ; Transcription, Genetic ; Viral Proteins/genetics/*metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2016-01-26
    Beschreibung: Intracellular aggregation of the human amyloid protein alpha-synuclein is causally linked to Parkinson's disease. While the isolated protein is intrinsically disordered, its native structure in mammalian cells is not known. Here we use nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy to derive atomic-resolution insights into the structure and dynamics of alpha-synuclein in different mammalian cell types. We show that the disordered nature of monomeric alpha-synuclein is stably preserved in non-neuronal and neuronal cells. Under physiological cell conditions, alpha-synuclein is amino-terminally acetylated and adopts conformations that are more compact than when in buffer, with residues of the aggregation-prone non-amyloid-beta component (NAC) region shielded from exposure to the cytoplasm, which presumably counteracts spontaneous aggregation. These results establish that different types of crowded intracellular environments do not inherently promote alpha-synuclein oligomerization and, more generally, that intrinsic structural disorder is sustainable in mammalian cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Theillet, Francois-Xavier -- Binolfi, Andres -- Bekei, Beata -- Martorana, Andrea -- Rose, Honor May -- Stuiver, Marchel -- Verzini, Silvia -- Lorenz, Dorothea -- van Rossum, Marleen -- Goldfarb, Daniella -- Selenko, Philipp -- England -- Nature. 2016 Feb 4;530(7588):45-50. doi: 10.1038/nature16531. Epub 2016 Jan 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉In-Cell NMR Laboratory, Department of NMR-supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rossle Strasse 10, 13125 Berlin, Germany. ; Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel. ; Department of Molecular Physiology and Cell Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rossle Strasse 10, 13125 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26808899" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Acetylation ; Cell Line ; Cytoplasm/chemistry/metabolism ; Electron Spin Resonance Spectroscopy ; HeLa Cells ; Humans ; Intracellular Space/*chemistry/*metabolism ; Neurons/cytology/metabolism ; Nuclear Magnetic Resonance, Biomolecular ; Protein Conformation ; alpha-Synuclein/*chemistry/*metabolism
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2016-03-24
    Beschreibung: Endoplasmic reticulum (ER) stress is a major contributor to inflammatory diseases, such as Crohn disease and type 2 diabetes. ER stress induces the unfolded protein response, which involves activation of three transmembrane receptors, ATF6, PERK and IRE1alpha. Once activated, IRE1alpha recruits TRAF2 to the ER membrane to initiate inflammatory responses via the NF-kappaB pathway. Inflammation is commonly triggered when pattern recognition receptors (PRRs), such as Toll-like receptors or nucleotide-binding oligomerization domain (NOD)-like receptors, detect tissue damage or microbial infection. However, it is not clear which PRRs have a major role in inducing inflammation during ER stress. Here we show that NOD1 and NOD2, two members of the NOD-like receptor family of PRRs, are important mediators of ER-stress-induced inflammation in mouse and human cells. The ER stress inducers thapsigargin and dithiothreitol trigger production of the pro-inflammatory cytokine IL-6 in a NOD1/2-dependent fashion. Inflammation and IL-6 production triggered by infection with Brucella abortus, which induces ER stress by injecting the type IV secretion system effector protein VceC into host cells, is TRAF2, NOD1/2 and RIP2-dependent and can be reduced by treatment with the ER stress inhibitor tauroursodeoxycholate or an IRE1alpha kinase inhibitor. The association of NOD1 and NOD2 with pro-inflammatory responses induced by the IRE1alpha/TRAF2 signalling pathway provides a novel link between innate immunity and ER-stress-induced inflammation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869892/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4869892/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keestra-Gounder, A Marijke -- Byndloss, Mariana X -- Seyffert, Nubia -- Young, Briana M -- Chavez-Arroyo, Alfredo -- Tsai, April Y -- Cevallos, Stephanie A -- Winter, Maria G -- Pham, Oanh H -- Tiffany, Connor R -- de Jong, Maarten F -- Kerrinnes, Tobias -- Ravindran, Resmi -- Luciw, Paul A -- McSorley, Stephen J -- Baumler, Andreas J -- Tsolis, Renee M -- AI044170/AI/NIAID NIH HHS/ -- AI076246/AI/NIAID NIH HHS/ -- AI076278/AI/NIAID NIH HHS/ -- AI096528/AI/NIAID NIH HHS/ -- AI109799/AI/NIAID NIH HHS/ -- AI112258/AI/NIAID NIH HHS/ -- AI117303/AI/NIAID NIH HHS/ -- GM056765/GM/NIGMS NIH HHS/ -- R01 AI044170/AI/NIAID NIH HHS/ -- R01 AI076246/AI/NIAID NIH HHS/ -- R01 AI076278/AI/NIAID NIH HHS/ -- R01 AI096528/AI/NIAID NIH HHS/ -- R01 AI109799/AI/NIAID NIH HHS/ -- R21 AI112258/AI/NIAID NIH HHS/ -- R21 AI117303/AI/NIAID NIH HHS/ -- R25 GM056765/GM/NIGMS NIH HHS/ -- England -- Nature. 2016 Apr 21;532(7599):394-7. doi: 10.1038/nature17631. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medical Microbiology and Immunology, School of Medicine, University of California at Davis, One Shields Ave, Davis, California 95616, USA. ; Center for Comparative Medicine, Schools of Medicine and Veterinary Medicine, University of California at Davis, One Shields Ave, Davis, California 95616, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007849" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Animals ; Bacterial Outer Membrane Proteins/metabolism ; Brucella abortus/immunology/pathogenicity ; Cell Line ; Dithiothreitol/pharmacology ; Endoplasmic Reticulum/drug effects/pathology ; *Endoplasmic Reticulum Stress/drug effects ; Endoribonucleases/antagonists & inhibitors ; Female ; Humans ; Immunity, Innate ; Inflammation/chemically induced/*metabolism ; Interleukin-6/biosynthesis ; Male ; Mice ; Mice, Inbred C57BL ; NF-kappa B/metabolism ; Nod1 Signaling Adaptor Protein/immunology/*metabolism ; Nod2 Signaling Adaptor Protein/immunology/*metabolism ; Protein-Serine-Threonine Kinases/antagonists & inhibitors ; Receptors, Pattern Recognition/metabolism ; *Signal Transduction/drug effects ; TNF Receptor-Associated Factor 2/metabolism ; Taurochenodeoxycholic Acid/pharmacology ; Thapsigargin/pharmacology ; Unfolded Protein Response/drug effects
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 11
    facet.materialart.
    Unbekannt
    Nature Publishing Group (NPG)
    Publikationsdatum: 2016-02-13
    Beschreibung: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Powell, Kendall -- England -- Nature. 2016 Feb 11;530(7589):148-51. doi: 10.1038/530148a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26863966" target="_blank"〉PubMed〈/a〉
    Schlagwort(e): Biological Science Disciplines ; Internet/utilization ; Journal Impact Factor ; Open Access Publishing ; Peer Review, Research/*trends ; *Periodicals as Topic ; Physics ; Publishing/*trends ; Time Factors
    Print ISSN: 0028-0836
    Digitale ISSN: 1476-4687
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...