ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (10,007)
  • 2015-2019  (10,007)
  • 1985-1989
  • 1975-1979
  • 1950-1954
  • 2016  (10,007)
Collection
Language
Years
  • 2015-2019  (10,007)
  • 1985-1989
  • 1975-1979
  • 1950-1954
Year
  • 1
    Publication Date: 2016-11-16
    Description: No abstract available
    Keywords: Space Transportation and Safety
    Type: M17-5606 , Tri-Lateral Operational Safety Technical Interchange Meeting (TIM) ; 12-14 Oct. 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-16
    Description: Payloads are assessed for nominal operations. Payload Developers have the option of performing a maintenance hazard assessment (MHA) for potential maintenance activities. When POIC (Payload Operations and Integration Center) Safety reviews an OCR calling for a maintenance procedure, we cannot approve it without a MHA. If no MHA exists, we contact MER (Mission Evaluation Room) Safety. Depending on the nature of the problem, MER Safety has the option to: Analyze and grant approval themselves; Direct the payload back to the ISRP (Integrated Safety Review Panel); Direct the payload to the IMMT (Increment Mission Management Team).
    Keywords: Space Transportation and Safety
    Type: M17-5610 , Tri-Lateral Operational Safety Technical Interchange Meeting (TIM); 12-14 Oct. 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-09-09
    Description: Whether life exists on worlds other than Earth is one of the most compelling questions facing space science today. Given that, on Earth, life exists wherever water is found, worlds harboring large amounts of water are prime targets in the search for an answer to this question. Jovian moons Europa, Callisto, and Ganymede; Saturnian moons Enceladus and Titan; and possibly Neptune's Triton are all worlds in the outer solar system on which large quantities of water can be found in solid and liquid form. So compelling are these worlds as targets for scientific study that the United States Congress recently initiated a directive to NASA to create an "Ocean Worlds Exploration Program, comprised of frequent small, medium and large missions that poses the potential to revolutionize our understanding of the solar system and life within it, perhaps more profoundly event than the modern-day search for past or extant life on Mars. Any life detected at the remote "ocean worlds" in the outer solar system would likely have formed and evolved along an independent path from life on Earth itself, giving us a deeper understanding of the potential for broad variety amongst life in the universe. In NASA's robotic study of Mars, a key to the success of the "search for water" was the ability to conduct iterative exploration via a series of missions launched on a regular cadence based on 26-month cycles of prime planetary-alignment windows of reduced transit time. Through this cadence, NASA was able to send to Mars a series of orbiters and landers, using the knowledge gained from each mission to inform and refine the goals of the next. The ability to conduct iterative exploration in this manner could have a substantial impact on exploration of the "ocean worlds," allowing scientists to narrow their targets of interest in the search for life based on data sent back by successive missions. This ability is currently limited by the transit periods available from contemporary evolved expendable launch vehicles. In the case of Europa, one of the nearer of these ocean worlds, current transit times are seven to nine years; iterative exploration of Europa would require decades. In the coming decade, NASA's new Space Launch System (SLS) could revolutionize exploration of the outer solar system by dramatically reducing transit times. Designed to enable human exploration of deep space, SLS will be the world's most powerful launch vehicle, offering unparalleled payload mass and volume and departure energy. In the case of Europa, SLS will reduce transit time to two to three years, enabling an iterative exploration cadence closer to what is currently experienced for Mars. SLS competed its critical design review during summer 2015 and is making rapid progress toward initial launch readiness. This paper will provide background on the importance of these ocean worlds and an overview and status of SLS, and will discuss the potential for the use of SLS in a robust iterative search for life in our solar system.
    Keywords: Life Sciences (General); Space Sciences (General); Lunar and Planetary Science and Exploration
    Type: M15-4863 , COSPAR 2016 Meeting; 30 Jul. - 7 Aug. 2016; Istanbul; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-09-09
    Description: No abstract available
    Keywords: Aerospace Medicine
    Type: M16-5476 , Payload Operations and Integration Working Group Meeting; 26-28 Jul. 2016; Huntsville, AL ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-11-16
    Description: No abstract available
    Keywords: Space Transportation and Safety
    Type: M17-5609 , Tri-Lateral Operational Safety Technical Interchange Meeting; 12-14 Oct. 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-11-16
    Description: No abstract available
    Keywords: Quality Assurance and Reliability; Space Transportation and Safety
    Type: M17-5608 , Tri-Lateral Operational Safety Technical Interchange (TIM) Meeting; 12-14 Oct. 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-09-13
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37460 , EVA Technology Collaboration Workshop; 13-16 Sep. 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-05-23
    Description: Symbiotic star surveys have traditionally relied almost exclusively on low resolution optical spectroscopy. However, we can obtain a more reliable estimate of their total Galactic population by using all available signatures of the symbiotic phenomenon. Here we report the discovery of a hard X-ray source, 4PBC J0642.9+5528, in the Swift hard X-ray all-sky survey, and identify it with a poorly studied red giant, SU Lyn, using pointed Swift observations and ground-based optical spectroscopy. The X-ray spectrum, the optical to UV spectrum, and the rapid UV variability of SU Lyn are all consistent with our interpretation that it is a symbiotic star containing an accreting white dwarf. The symbiotic nature of SU Lyn went unnoticed until now, because it does not exhibit emission lines strong enough to be obvious in low resolution spectra. We argue that symbiotic stars without shell-burning have weak emission lines, and that the current lists of symbiotic stars are biased in favor of shell-burning systems. We conclude that the true population of symbiotic stars has been underestimated, potentially by a large factor.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41432 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711; e-ISSN 1365-8711); Volume 461; No. 1; L1-L5
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-15
    Description: Coronal mass ejections (CMEs) are major transient phenomena in the solar corona that are observed with ground-based and spacecraft-based coronagraphs in white light or with in situ measurements by spacecraft. CMEs transport mass and momentum and often drive shocks. In order to derive the CME and shock trajectories with high precision, we apply the graduated cylindrical shell (GCS) model to fit a flux rope to the CME directed toward STEREO A after about 19:00 UT on 29 November 2013 and check the quality of the heliocentric distance-time evaluations by carrying out a three-dimensional magnetohydrodynamic (MHD) simulation of the same CME with the Block Adaptive Tree Solar-Wind Roe Upwind Scheme (BATS-R-US) code. Heliocentric distances of the CME and shock leading edges are determined from the simulated white light images and magnetic field strength data. We find very good agreement between the predicted and observed heliocentric distances, showing that the GCS model and the BATS-R-US simulation approach work very well and are consistent. In order to assess the validity of CME and shock identification criteria in coronagraph images, we also compute synthetic white light images of the CME and shock. We find that the outer edge of a cloud-like illuminated area in the observed and predicted images in fact coincides with the leading edge of the CME flux rope and that the outer edge of a faint illuminated band in front of the CME leading edge coincides with the CME-driven shock front.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN40667 , Journal of Geophysical Research: Space Physics (e-ISSN 2169-9402); Volume 121; Issue 3; 1886-1906
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-07-01
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-37381-3 , 2016 Tri-Lateral Safety and Mission Assurance Conference; 13-15 Sep. 2016; Sagamihara; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2018-01-27
    Description: Flexibility where possible, and structure where necessary. Consider the needs of national security, safe airspace operations, economic opportunities, and emerging technologies. Risk-based approach based on population density, assets on the ground, density of operations, etc. Digital, virtual, dynamic, and as needed UTM services to manage operations.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN30358 , On-Demand Mobility and Follow Up Workshop; 8-9 Mar. 2016; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-03-20
    Description: No abstract available
    Keywords: Environment Pollution
    Type: Public Health Reports (ISSN 0033-3549; e-ISSN 1468-2877 ); Volume 132; No. 1; 14-17
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2017-10-02
    Description: We will present information about the Restore-L Servicing Mission, a technology demonstration of servicing technologies via the robotic on-orbit refueling of a functional Government-owned satellite in polar low Earth orbit. This demonstration would establish U.S. leadership in robotic on-orbit satellite servicing, accelerate the maturation of technologies critical to NASAs Journey to Mars, and jumpstart a new domestic commercial servicing industry. We will present an overview of the Restore-L servicing mission, which was recently approved to progress to flight. We will also describe the technologies that NASA is advancing to achieve this mission, and provide the current status of the Restore-L effort.
    Keywords: Aeronautics (General); Cybernetics, Artificial Intelligence and Robotics
    Type: GSFC-E-DAA-TN31128/SUPP , Embedded Systems Conference; 13-14 Apr. 2016; Boston, MA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2016-05-27
    Description: In collaboration with the external community and other government agencies, NASA will develop enabling technologies, standards, and design guidelines to support cost-effective applications of automation and limited autonomy for individual components of aviation systems. NASA will also provide foundational knowledge and methods to support the next epoch. Research will address issues of verification and validation, operational evaluation, national policy, and societal cost-benefit. Two research and development approaches to aviation autonomy will advance in parallel. The Increasing Autonomy (IA) approach will seek to advance knowledge and technology through incremental increases in machine-based support of existing human-centered tasks, leading to long-term reallocation of functions between humans and machines. The Autonomy as a New Technology (ANT) approach seeks advances by developing technology to achieve goals that are not currently possible using human-centered concepts of operation. IA applications are mission-enhancing, and their selection will be based on benefits achievable relative to existing operations. ANT applications are mission-enabling, and their value will be assessed based on societal benefit resulting from a new capability. The expected demand for small autonomous unmanned aircraft systems (UAS) provides an opportunity for development of ANT applications. Supervisory autonomy may be implemented as an expansion of the number of functions or systems that may be controlled by an individual human operator. Convergent technology approaches, such as the use of electronic flight bags and existing network servers, will be leveraged to the maximum extent possible.
    Keywords: Air Transportation and Safety; Cybernetics, Artificial Intelligence and Robotics
    Type: ARC-E-DAA-TN30439 , Aerospace Control and Guidance Systems Committee Meeting; 15-18 Mar. 2016; Napa, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2017-05-03
    Description: Electron pitch angle (D(sub (alpha alpha))) and momentum (D(sub pp)) diffusion coefficients have been calculated due to resonant interactions with electrostatic electron cyclotron harmonic (ECH) and whistler mode chorus waves. Calculations have been performed at two spatial locations L=4.6 and 6.8 for electron energies less than or equal to 10 keV. Landau (n=0) resonance and cyclotron harmonic resonances n= +/- 1, +/-2, ... +/-5 have been included in the calculations. It is found that diffusion coefficient versus pitch angle (alpha) profiles show large dips and oscillations or banded structures. The structures are more pronounced for ECH and lower band chorus (LBC) and particularly at location 4.6. Calculations of diffusion coefficients have also been performed for individual resonances. It is noticed that the main contribution of ECH waves in pitch angle diffusion coefficient is due to resonances n=+1 and n=+2. A major contribution to momentum diffusion coefficients appears from n=+2. However, the banded structures in D(sub alpha alpha) and D(sub pp) coefficients appear only in the profile of diffusion coefficients for n=+2. The contribution of other resonances to diffusion coefficients is found to be, in general, quite small or even negligible. For LBC and upper band chorus waves, the banded structures appear only in Landau resonance. The D(sub pp) diffusion coefficient for ECH waves is one to two orders smaller than D(sub alpha alpha) coefficients. For chorus waves, D(sub pp) coefficients are about an order of magnitude smaller than D(sub alpha alpha) coefficients for the case n does not equal 0. In case of Landau resonance, the values of D(sub pp) coefficient are generally larger than the values of D(sub alpha alpha) coefficients particularly at lower energies. As an aid to the interpretation of results, we have also determined the resonant frequencies. For ECH waves, resonant frequencies have been estimated for wave normal angle 89 deg and harmonic resonances n= +1, +2, and +3, whereas for whistler mode waves, the frequencies have been calculated for angle 10 deg and Landau resonance. Further, in ECH waves, the banded structures appear for electron energies 1 greater than or equal to keV, and for whistler mode chorus waves, structures appear for energies greater than 2 keV at L=4.6 and above 200 eV for L=6.8. The results obtained in the present work will be helpful in the study of diffusion curves and will have important consequences for diffuse aurora and pancake distributions.
    Keywords: Plasma Physics
    Type: GSFC-E-DAA-TN41231 , 3D Bioprinting: Physical and Chemical Processes; 2-3 May 2017; Winston Salem, NC; United States|Physics of Plasmas (ISSN 1070-664X; e-ISSN 1089-7674); Volume 23; Issue 4; 042101
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2017-04-29
    Description: The performance of the Time Projection Chamber (TPC) polarimeter for the Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) Small Explorer was evaluated using polarized and unpolarized X-ray sources. The PRAXyS mission will enable exploration of the universe through X-ray polarimetry in the 2-10 keV energy band. We carried out performance tests of the polarimeter at the Brookhaven National Laboratory, National Synchrotron Light Source (BNL-NSLS) and at NASA's Goddard Space Flight Center. The polarimeter was tested with linearly polarized, monochromatic X-rays at 11 different energies between 2.5 and 8.0 keV. At maximum sensitivity, the measured modulation factors at 2.7, 4.5 and 8.0 keV are 27%, 43% and 59%, respectively and the measured angle of polarization is consistent with the expected value at all energies. Measurements with a broadband, unpolarized X-ray source placed a limit of less than 1% on false polarization in the PRAXyS polarimeter.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41158 , Nuclear Instruments and Methods in Physics Research A (ISSN 0168-9002); Volume 838; 89-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2017-02-14
    Description: This plan defines the Space Geodesy Project (SGP) policies, procedures, and requirements for Information and Configuration Management (CM). This procedure describes a process that is intended to ensure that all proposed and approved technical and programmatic baselines and changes to the SGP hardware, software, support systems, and equipment are documented.
    Keywords: Documentation and Information Science
    Type: SGP-MGMT-PROC-0002 , GSFC-E-DAA-TN39067
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2017-05-04
    Description: We report Magnetospheric Multiscale observations of high-frequency electrostatic waves in the vicinity of the reconnection ion diffusion region on the dayside magnetopause. The ion diffusion region is identified during two magnetopause crossings by the Hall electromagnetic fields, the slippage of ions with respect to the magnetic field, and magnetic energy dissipation. In addition to electron beam modes that have been previously detected at the separatrix on the magnetospheric side of the magnetopause, we report, for the first time, the existence of electron cyclotron harmonic waves at the magnetosheath separatrix. Broadband waves between the electron cyclotron and electron plasma frequencies, which were probably generated by electron beams, were found within the magnetopause current sheet. Contributions by these high-frequency waves to the magnetic energy dissipation were negligible in the diffusion regions as compared to those of lower-frequency waves.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN41309 , Geophysical Research Letters (ISSN 0094-8276; e-ISSN 1944-8007); Volume 43; Issue 10; 4808–4815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-06-11
    Description: In the GEOS-Chem Adjoint (GCA) system, the total (wet) surface pressure of the GEOS meteorology is employed as dry surface pressure, ignoring the presence of water vapor. The Jet Propulsion Laboratory (JPL) Carbon Monitoring System (CMS) research team has been evaluating the impact of the above discrepancy on the CO2 model forecast and the CO2 flux inversion. The JPL CMS research utilizes a multi-mission assimilation framework developed by the Multi-Mission Observation Operator (M2O2) research team at JPL extending the GCA system. The GCA-M2O2 framework facilitates mission-generic 3D and 4D-variational assimilations streamlining the interfaces to the satellite data products and prior emission inventories. The GCA-M2O2 framework currently integrates the GCA system version 35h and provides a dry surface pressure setup to allow the CO2 model forecast to be performed with the GEOS-5 surface pressure directly or after converting it to dry surface pressure.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: No abstract available
    Keywords: Launch Vehicles and Launch Operations; Spacecraft Design, Testing and Performance
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2019-06-06
    Description: This paper compares fuel consumption of descent trajectories from cruise altitude to meter fix when the required time of arrival is later than the nominal time of arrival at the meter fix. The required delay, which is the difference between the nominal and the required times of arrival, is achieved by either slowing down the aircraft in the cruise and descent phases or flying a longer route at a constant altitude. Performance models of ten different Boeing and Airbus aircraft, obtained from the Base of Aircraft Data, are employed for generating the results. It is demonstrated that the most fuel-efficient speed control strategy for absorbing delay is first reducing descent speed as much as possible and then reducing cruise speed. This is a common finding for all ten aircraft considered. For some aircraft, flying at a fixed flight path angle and constant Mach-calibrated-airspeed results in lower fuel consumption compared to standard descent at idle-thrust and constant Mach-calibrated- airspeed. Finally, for the cases examined, it is shown that executing a path stretch maneuver at cruise altitude and descent at a reduced speed is more fuel efficient than inserting an intermediate-altitude cruise segment.
    Keywords: Air Transportation and Safety; Propellants and Fuels
    Type: ARC-E-DAA-TN17124 , Journal of Aircraft (ISSN 0021-8669) (e-ISSN 1533-3868); 53; 6
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2019-06-06
    Description: This paper presents a design approach and basic algorithms for a future system that can perform aircraft conflict resolution, arrival scheduling and convective weather avoidance with a high level of autonomy in terminal area airspace. Such a system, located on the ground, is intended to solve autonomously the major problems currently handled manually by human controllers. It has the potential to accommodate higher traffic levels and a mix of conventional and unmanned aerial vehicles with reduced dependency on controllers. The main objective of this paper is to describe the fundamental trajectory and scheduling algorithms that provide the foundation for an autonomous system of the future. These algorithms generate trajectories that are free of conflicts with other traffic, avoid convective weather if present, and provide scheduled times for landing with specified in-trail spacings. The maneuvers the algorithms generate to resolve separation and spacing conflicts include speed, horizontal path, and altitude changes. Furthermore, a method for reassigning arrival aircraft to alternate runways in order to reduce delays is also included. The algorithms generate conflict free trajectories for terminal area traffic, comprised primarily of arrivals and departures to and from multiple airports. Examples of problems solved and performance statistics from a fast-time simulation using simulated traffic of arrivals and departures at the Dallas/Fort Worth International Airport and Dallas Love Field are described.
    Keywords: Aircraft Communications and Navigation
    Type: ARC-E-DAA-TN22021 , Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (ISSN 0954-4100) (e-ISSN 2041-3025); 230; 9; 1762-1779
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2018-06-06
    Description: Implicit large-eddy simulation (ILES) of a shock wave boundary-layer interaction (SBLI) was performed. Quantities present in the exact equation of the turbulent kinetic energy (TKE) transport were accumulated. These quantities will be used to calculate the components of TKE-like production, dissipation, transport, and dilatation. Correlations of these terms will be presented to study the growth and interaction between various terms. A comparison with its RANS (Reynolds-Averaged Navier-Stokes) counterpart will also be presented.
    Keywords: Aerodynamics; Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN32970 , AIAA Aviation 2016; 13-17 Jun. 2016; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2019-05-21
    Description: Leaf Area Index (LAI) is a key variable that bridges remote sensing observations to the quantification of agroecosystem processes. In this study, we assessed the universality of the relationships between crop LAI and remotely sensed Vegetation Indices (VIs). We first compiled a global dataset of 1459 in situ quality-controlled crop LAI measurements and collected Landsat satellite images to derive five different VIs including Simple Ratio (SR), Normalized Difference Vegetation Index (NDVI), two versions of the Enhanced Vegetation Index (EVI and EVI2), and Green Chlorophyll Index (CI(sub Green)). Based on this dataset, we developed global LAI-VI relationships for each crop type and VI using symbolic regression and Theil-Sen (TS) robust estimator. Results suggest that the global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. These relationships explain more than half of the total variance in ground LAI observations (R2 greater than 0.5), and provide LAI estimates with RMSE below 1.2 m2/m2. Among the five VIs, EVI/EVI2 are the most effective, and the crop-specific LAI-EVI and LAI-EVI2 relationships constructed by TS, are robust when tested by three independent validation datasets of varied spatial scales. While the heterogeneity of agricultural landscapes leads to a diverse set of local LAI-VI relationships, the relationships provided here represent global universality on an average basis, allowing the generation of large-scale spatial-explicit LAI maps. This study contributes to the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN40736 , Remote Sensing (e-ISSN 2072-4292); 8; 7; 597
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2019-05-21
    Description: Pre-launch characterization and calibration of the thermal emissive spectral bands on the Joint Polar Satellite System (JPSS-1) Visible Infrared Imaging Radiometer Suite (VIIRS) is critical to ensure high quality data products for environmental and climate data records post-launch. A comprehensive test program was conducted at the Raytheon El Segundo facility in 2013-2014, including extensive environmental testing. This work is focused on the thermal band radiometric performance and stability, including evaluation of a number of sensor performance metrics and estimation of uncertainties. Analysis has shown that JPSS-1 VIIRS thermal bands perform very well in relation to their design specifications, and comparisons to the Suomi National Polar-orbiting Partnership (SNPP) VIIRS instrument have shown their performance to be comparable.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN29811 , Remote Sensing (ISSN 2072-4292); 8; 1; 47
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2016-07-14
    Description: This is a 20 minute presentation discussing the DELIVER vision. DELIVER is part of the ARMD Transformative Aeronautics Concepts Program, particularly the Convergent Aeronautics Solutions Project. The presentation covers the DELIVER vision, transforming markets, conceptual design process, challenges addressed, technical content, and FY2016 key activities.
    Keywords: Aeronautics (General)
    Type: ARC-E-DAA-TN30303 , On-Demand Mobility and Follow Up Workshop; 8-9 Mar. 2016; Arlington, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-25
    Description: Providing Spacecraft Status for the Earth Observing System which includes Terra, Aqua and Aura missions to the Direct Broadcast community.
    Keywords: Communications and Radar; Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN33119 , NASA Direct Readout Conference (NDRC-9): EOS/S-NPP Direct Readout Conference; 21-24 Jun. 2016; Valladolid; Spain
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2017-05-11
    Description: An eruption of Italian volcano Mount Etna on 3 December 2015 produced fast-moving sulfur dioxide (SO2) and sulfate aerosol clouds that traveled across Asia and the Pacific Ocean, reaching North America in just 5days. The Ozone Profiler and Mapping Suite's Nadir Mapping UV spectrometer aboard the U.S. National Polar-orbiting Partnership satellite observed the horizontal transport of the SO2 cloud. Vertical profiles of the colocated volcanic sulfate aerosols were observed between 11.5 and 13.5 km by the new Cloud Aerosol Transport System (CATS) space-based lidar aboard the International Space Station. Backward trajectory analysis estimates the SO2 cloud altitude at 7-12 km. Eulerian model simulations of the SO2 cloud constrained by CATS measurements produced more accurate dispersion patterns compared to those initialized with the back trajectory height estimate. The near-real-time data processing capabilities of CATS are unique, and this work demonstrates the use of these observations to monitor and model volcanic clouds.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN41915 , Geophysical Research Letters (ISSN 0094-8276); Volume 43; No. 20; 11,089–11,097
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-06-08
    Description: No abstract available
    Keywords: Aeronautics (General); Cybernetics, Artificial Intelligence and Robotics
    Type: GSFC-E-DAA-TN31128 , Embedded Systems Conference; 13-14 Apr. 2016; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2017-03-22
    Description: We present a spherical harmonic solution of the static gravity field of Mars to degree and order 120, GMM-3, that has been calculated using the Deep Space Network tracking data of the NASA Mars missions, Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). We have also jointly determined spherical harmonic solutions for the static and time-variable gravity field of Mars, and the Mars k 2 Love numbers, exclusive of the gravity contribution of the atmosphere. Consequently, the retrieved time-varying gravity coefficients and the Love number k 2 solely yield seasonal variations in the mass of the polar caps and the solid tides of Mars, respectively. We obtain a Mars Love number k 2 of 0.1697 +/-0.0027 (3- sigma). The inclusion of MRO tracking data results in improved seasonal gravity field coefficients C 30 and, for the first time, C 50 . Refinements of the atmospheric model in our orbit determination program have allowed us to monitor the odd zonal harmonic C 30 for approx.1.5 solar cycles (16 years). This gravity model shows improved correlations with MOLA topography up to 15% larger at higher harmonics ( l = 6080) than previous solutions.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN40220 , ICARUS (ISSN 0019-1035 ; e-ISSN 1090-2643); Volume 272; 228–245
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2017-07-01
    Description: No abstract available
    Keywords: Spacecraft Design, Testing and Performance
    Type: JSC-CN-37381-2 , 2016 Tri-Lateral Safety and Mission Assurance Conference; 13-15 Sep. 2016; Sagamihara; Japan
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-05-24
    Description: Starting a business in any endeavor is considered to be a laborious task fraught with failure, late nights, and a spartan lifestyle. I have been honored to say that this is all true to a certain extent. It is also an extremely rewarding experience despite the difficulties encountered in such a venture. This report seeks to convey to the reader my experience of one such startup through the International Space University's Masters program and my internship at NASA Ames Space Portal. The report is divided into two primary sections which chronicle my time. Part I is comprised of The Basics of the project which provides background and context of the proposed business to the uninitiated. The basics needed to be redefined upon arrival at space portal and this refinement is covered in this section. Part II details A New Direction where we transition from the basics to a new plan for the project and the work accomplished. This section covers the second half of the internship.
    Keywords: Administration and Management; General
    Type: ARC-E-DAA-TN34187
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2018-06-06
    Description: The Hubble Space Telescope (HST) applies large-diameter optics (2.5-m primary mirror) for diffraction-limited resolution spanning an extended wavelength range (approx. 100-2500 nm). Its Pointing Control System (PCS) Reaction Wheel Assemblies (RWAs), in the Support Systems Module (SSM), acquired an unprecedented set of high-sensitivity Induced Vibration (IV) data for 5 flight-certified RWAs: dwelling at set rotation rates. Focused on 4 key ratios, force and moment harmonic values (in 3 local principal directions) are extracted in the RWA operating range (0-3000 RPM). The IV test data, obtained under ambient lab conditions, are investigated in detail, evaluated, compiled, and curve-fitted; variational trends, core causes, and unforeseen anomalies are addressed. In aggregate, these values constitute a statistically-valid basis to quantify ground test-to-test variations and facilitate extrapolations to on-orbit conditions. Accumulated knowledge of bearing-rotor vibrational sources, corresponding harmonic contributions, and salient elements of IV key variability factors are discussed. An evolved methodology is presented for absolute assessments and relative comparisons of macro-level IV signal magnitude due to micro-level construction-assembly geometric details/imperfections stemming from both electrical drive and primary bearing design parameters. Based upon studies of same-size/similar-design momentum wheels' IV changes, upper estimates due to transitions from ground tests to orbital conditions are derived. Recommended HST RWA choices are discussed relative to system optimization/tradeoffs of Line-Of-Sight (LOS) vector-pointing focal-plane error driven by higher IV transmissibilities through low-damped structural dynamics that stimulate optical elements. Unique analytical disturbance results for orbital HST accelerations are described applicable to microgravity efforts. Conclusions, lessons learned, historical context/insights, and perspectives on future applications are given; these previously unpublished data and findings represents a valuable resource for fine-pointing spacecraft or space-based platforms using RWAs, Control Moment Gyros (CMGs), Momentum Wheels, or other ball-bearing-based rotational units.
    Keywords: Spacecraft Instrumentation and Astrionics; Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 373-400; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2018-06-06
    Description: A DC motor's performance is usually characterized by a series of tests, which are conducted by pass/fail criteria. In most cases, these tests are adequate to address the performance characteristics under environmental and loading effects with some uncertainties and decent power/torque margins. However, if the motor performance requirement is very stringent, a better understanding of the motor characteristics is required. The purpose of this paper is to establish a standard way to extract the torque components of the brushless motor and gear box characteristics of a high gear ratio geared motor from the composite geared motor testing and motor parameter measurement. These torque components include motor magnetic detent torque, Coulomb torque, viscous torque, windage torque, and gear tooth sliding torque. The Aerospace Corp bearing torque model and MPB torque models are used to predict the Coulomb torque of the motor rotor bearings and to model the viscous components. Gear tooth sliding friction torque is derived from the dynamo geared motor test data. With these torque data, the geared motor mechanical efficiency can be estimated and provide the overall performance of the geared motor versus several motor operating parameters such as speed, temperature, applied current, and transmitted power.
    Keywords: Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 279-292; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2018-06-06
    Description: Magnetic microsystems in the form of magneto-resistive (MR) sensors are firmly established in automobiles and industrial applications. They are used to measure travel, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In some science missions, the technology is already applied, however, the designs are proprietary and case specific, for instance in case of the angular sensors used for JPL/NASA's Mars rover Curiosity [1]. Since 2013 HTS GmbH and Sensitec GmbH have teamed up to develop and qualify a standardized yet flexible to use MR angular sensor for space mechanisms. Starting with a first assessment study and market survey performed under ESA contract, a very strong industry interest in novel, contactless position measurement means was found. Currently a detailed and comprehensive development program is being performed by HTS and Sensitec. The objective of this program is to advance the sensor design up to Engineering Qualification Model level and to perform qualification testing for a representative space application. The paper briefly reviews the basics of magneto-resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The key applications and specification are presented and the preliminary baseline mechanical and electrical design will be discussed. An outlook on the upcoming development and test stages as well as the qualification program will be provided.
    Keywords: Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 177-183; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2018-06-06
    Description: Launch lock and release mechanisms constitute a common space business, however, some science missions due to very challenging functional and performance requirements need the development and testing of dedicated systems. In the LISA Pathfinder mission, a gold-coated 2-kg test mass must be injected into a nearly pure geodesic trajectory with a minimal residual velocity with respect to the spacecraft. This task is performed by the Grabbing Positioning and Release Mechanism, which has been tested on-ground to provide the required qualification. In this paper, we describe the test method that analyzes the main contributions to the mechanism performance and focuses on the critical parameters affecting the residual test mass velocity at the injection into the geodesic trajectory. The test results are also presented and discussed.
    Keywords: Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 15-28; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2018-06-06
    Description: This paper describes a high-precision optical metrology system - a unique ground test equipment which was designed and implemented for simultaneous precise contactless measurements of 6 degrees-of-freedom (3 translational + 3 rotational) of a space mechanism end-effector [1] in a thermally controlled ISO 5 clean environment. The developed contactless method reconstructs both position and attitude of the specimen from three cross-sections measured by 2D distance sensors [2]. The cleanliness is preserved by the hermetic test chamber filled with high purity nitrogen. The specimen's temperature is controlled by the thermostat [7]. The developed method excludes errors caused by the thermal deformations and manufacturing inaccuracies of the test jig. Tests and simulations show that the measurement accuracy of an object absolute position is of 20 micron in in-plane measurement (XY) and about 50 micron out of plane (Z). The typical absolute attitude is determined with an accuracy better than 3 arcmin in rotation around X and Y and better than 10 arcmin in Z. The metrology system is able to determine relative position and movement with an accuracy one order of magnitude lower than the absolute accuracy. Typical relative displacement measurement accuracies are better than 1 micron in X and Y and about 2 micron in Z. Finally, the relative rotation can be measured with accuracy better than 20 arcsec in any direction.
    Keywords: Mechanical Engineering; Ground Support Systems and Facilities (Space)
    Type: 43rd Aerospace Mechanisms Symposium; 439-452; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2018-06-06
    Description: The 6U (approx.10 cm x 20 cm x 30 cm) cubesat Near Earth Asteroid (NEA) Scout1, projected for launch in September 2018 aboard the maiden voyage of the Space Launch System, will utilize a solar sail as its main method of propulsion throughout its approx.3-year mission to a Near Earth Asteroid. Due to the extreme volume constraints levied onto the mission, an acutely compact solar sail deployment mechanism has been designed to meet the volume and mass constraints, as well as provide enough propulsive solar sail area and quality in order to achieve mission success. The design of such a compact system required the development of approximately half a dozen prototypes in order to identify unforeseen problems, advance solutions, and build confidence in the final design product. This paper focuses on the obstacles of developing a solar sail deployment mechanism for such an application and the lessons learned from a thorough development process. The lessons presented will have significant applications beyond the NEA Scout mission, such as the development of other deployable boom mechanisms and uses for gossamer-thin films in space.
    Keywords: Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 315-328; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2018-06-06
    Description: This paper describes the design of a unique suite of mechanisms that make up the Deployment and Pointing System (DAPS) for the Neutron Star Interior Composition Explorer (NICER/SEXTANT) instrument, an X-Ray telescope, which will be mounted on the International Space Station (ISS). The DAPS system uses four stepper motor actuators to deploy the telescope box, latch it in the deployed position, and allow it to track sky targets. The DAPS gimbal architecture provides full-hemisphere coverage, and is fully re-stowable. The compact design of the mechanism allowed the majority of total instrument volume to be used for science. Override features allow DAPS to be stowed by ISS robotics.
    Keywords: Mechanical Engineering; Spacecraft Design, Testing and Performance
    Type: 43rd Aerospace Mechanisms Symposium; 261-268; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2018-06-06
    Description: NEAScout, a 6U cubesat and secondary payload on NASA's EM-1, will use an 85 sq m solar sail to travel to a near-earth asteroid at about 1 Astronomical Unit (about 1.5 x 10(exp 8) km) for observation and reconnaissance1. A combination of reaction wheels, reaction control system, and a slow rotisserie roll about the solar sail's normal axis were expected to handle attitude control and adjust for imperfections in the deployed sail during the 2.5-year mission. As the design for NEAScout matured, one of the critical design parameters, the offset in the center of mass and center of pressure (CP/CM offset), proved to be sub-optimal. After significant mission and control analysis, the CP/CM offset was accommodated by the addition of a new subsystem to NEAScout. This system, called the Active Mass Translator (AMT), would reside near the geometric center of NEAScout and adjust the CM by moving one portion of the flight system relative to the other. The AMT was given limited design space - 17 mm of the vehicle's assembly height-and was required to generate +/-8 cm by +/-2 cm translation to sub-millimeter accuracy. Furthermore, the design must accommodate a large wire bundle of small gage, single strand wire and coax cables fed through the center of the mechanism. The bend radius, bend resistance, and the exposure to deep space environment complicates the AMT design and operation and necessitated a unique design to mitigate risks of wire bundle damage, binding, and cold-welding during operation. This paper will outline the design constraints for the AMT, discuss the methods and reasoning for design, and identify the lessons learned through the designing, breadboarding and testing for the low-profile translation stages with wire feedthrough capability.
    Keywords: Spacecraft Design, Testing and Performance; Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 155-162; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2018-06-06
    Description: The 16th anniversary of the launch of NASA's Terra Spacecraft was marked on December 18, 2015, with the Measurements of Pollution in the Troposphere (MOPITT) instrument being a successful contributor to the NASA EOS flagship. MOPITT has been enabled by a large suite of mechanisms, allowing the instrument to perform long-duration monitoring of atmospheric carbon monoxide, providing global measurements of this important greenhouse gas for 16 years. Mechanisms have been successfully employed for scanning, cooling of detectors, and to optically modulate the gas path length within the instrument by means of pressure and gas cell length variation. The instrument utilizes these devices to perform correlation spectroscopy, enabling measurements with vertical resolution from the nadir view, and has thereby furthered understanding of source and global transport effects of carbon monoxide. Given the design requirement for a 5.25-year lifetime, the stability and performance of the majority of mechanisms have far surpassed design goals. With 16 continuously operating mechanisms in service on MOPITT, including 12 rotating mechanisms and 4 with linear drive elements, the instrument was an ambitious undertaking. The long life requirements combined with demands for cleanliness and optical stability made for difficult design choices including that of the selection of new lubrication processes. Observations and lessons learned with regards to many aspects of the mechanisms and associated monitoring devices are discussed here. Mechanism behaviors are described, including anomalies, long-term drive current/power, fill pressure, vibration and cold-tip temperature trends. The effectiveness of particular lubrication formulations and the screening method implemented is discussed in relation to continuous rotating mechanisms and stepper motors, which have exceeded 15 billon rotations and 2.5 billion steps respectively. Aspects of gas cell hermeticity, optical cleanliness, heater problems and SEU effects on accelerometers are also discussed.
    Keywords: Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 329-343; NASA/CP-2016-219090
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2018-06-06
    Description: For an Intersatellite Link (ISL) of a future constellation program, a study phase was initiated by ESA to design a mechanism for Radio Frequency communication. Airbus DS Friedrichshafen (ADSF) proposed a design based on the Antenna Pointing Mechanism (APM) family with modifications that met the stated needs of the constellation. A qualification program was started beginning in September 2015 to verify the launch and thermal loads and the equipment performance (Radio Frequency, Pointing, Microvibration and Magnetic Moment). Technical challenges identified with the Engineering Model will be discussed within this paper.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking; Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 247-260; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2018-06-06
    Description: CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.
    Keywords: Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 185-191; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2018-06-06
    Description: This paper presents results from tests to assess the use of anaerobic adhesive for providing a prevailing torque locking feature in threaded fasteners. Test procedures are developed and tests are performed on three fastener materials, four anaerobic adhesives, and both unseated assembly conditions. Five to ten samples are tested for each combination. Tests for initial use, reuse without additional adhesive, and reuse with additional adhesive are performed for all samples. A 48-hour cure time was used for all initial use and reuse tests. Test data are presented as removal torque versus removal angle with the specification required prevailing torque range added for performance assessment. Percent specification pass rates for the all combinations of fastener material, adhesive, and assembly condition are tabulated and reveal use of anaerobic adhesive as a prevailing torque locking feature is viable. Although not every possible fastener material and anaerobic adhesive combination provides prevailing torque values within specification, any combination can be assessed using the test procedures presented. Reuse without additional anaerobic adhesive generally provides some prevailing torque, and in some cases within specification. Reuse with additional adhesive often provides comparable removal torque data as in initial use.
    Keywords: Structural Mechanics; Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 193-198; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2019-05-21
    Description: Africa's vast landmass harbors a variety of physical processes that affect the environment and the water cycle. This focus issue on the "African Environmental Processes and Water-Cycle Dynamics" contains eight articles that address these phenomena from different but complementary perspectives. Fires used for agricultural and related purposes play a major role in land-cover change, surface albedo modifications, and smoke emission; all of which affect the environment and the water cycle in different ways. However, emissions of aerosols and trace gases are not restricted to fires, but also emanate from other natural and human activities. The African water cycle undergoes significant perturbations that are attributable to several factors, including the aforesaid environmental processes. These changes in the water cycle have produced severe drought and flooding events in recent decades that affect societal wellbeing across sub-Saharan Africa. The combined effects of the environmental processes and water-cycle dynamics affect and are affected by climate variability and can be propagated beyond the continent. Future studies should utilize the wealth of observations and modeling tools that are constantly improving to clearly elucidate the interrelationships between all of these phenomena for the benefit of society.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN39701 , Environmental Research Letters (e-ISSN 1748-9326); 11; 12; 120206
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2019-07-06
    Description: No abstract available
    Keywords: Computer Programming and Software
    Type: JPL-CL-16-0625 , AAS/AIAA Space Flight Mechanics Meeting; Napa, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-06
    Description: Video describing UTM
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN33180
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-06
    Description: Animation video explaining ATD-2
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN33179
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2019-07-03
    Description: A key aspect of adopting model-based systems engineering as a practice in an organization is the design and development, and adoption of corresponding processes and tools that support the model-based paradigm. In an effort to enable the unified implementation of such processes and tools, this paper introduces a reference architecture model that serves as a specification for a model-based engineering environment. Current systems engineering practices, products, processes and technologies are used as input for continuously refining the architecture model. In the paper, we introduce and report on the current status of this reference architecture model, and present the methodology applied in developing the reference architecture. We conclude that while there are a very large number of domain- or application-specific processes requiring specialized behavior, these can be reduced through abstraction to a small set of core functions that need to be supported by a realization of a model-based engineering environment. Only very few organization-domain- or application-specific aspects require specialized consideration.
    Keywords: Computer Systems
    Type: JPL-CL-16-3827
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2019-07-04
    Description: No abstract available
    Keywords: Geosciences (General)
    Type: JPL-CL-16-0363
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2018-06-06
    Description: In this work, budgets of the turbulent kinetic energy are presented for a two-dimensional shock wave boundary-layer interaction (SBLI). The work should be of interest to the SBLI research and turbulence modeling community.
    Keywords: Numerical Analysis; Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN32541 , Annual Shock Wave Boundary Layer Interaction (SWBLI) Technical Interchange Meeting (TIM); 24-25 May 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2018-06-06
    Description: This paper describes the design of a passive isolation system using D-struts (Registered TradeMark) to isolate an optical payload from aircraft-borne jitter with challenging stroke per volume requirements. It discusses the use of viscoelastic-coated D-struts that meet the customer performance and outgassing specification, NASA-1124. The result was a relatively soft isolation system, (where the first mode was 13 Hz), with each individual strut capable of withstanding loads on the order of magnitude of 623 N (140 lbf), weighing less than 910 g (2 lbm), fitting in a volume 5.1 cm (2 inches) in diameter and 12-cm (4.7-inches) long and capable of performing up to 1000 Hz without nonlinearities.
    Keywords: Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 149-154; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2018-06-06
    Description: The Advanced Technology Microwave Sounder (ATMS) instrument scan system on the Suomi National Polar-orbiting Partnership (SNPP) spacecraft has experienced several randomly occurring increased torque 'events' since its on-orbit activation in November 2011. Based on a review of on-orbit telemetry data and data gathered from scan mechanism bearing life testing on the ground, the conclusion was drawn that some degradation of Teflon toroid ball retainers was occurring in the instrument Scan Drive Mechanism. A life extension program was developed and executed on-orbit with very good results to date. The life extension program consisted of reversing the mechanism for a limited number of consecutive scans every day.
    Keywords: Mechanical Engineering; Spacecraft Instrumentation and Astrionics; Spacecraft Design, Testing and Performance
    Type: 43rd Aerospace Mechanisms Symposium; 77-89; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2018-06-06
    Description: This paper describes the design, testing, and lessons learned during the development of the Advanced Topographic Laser Altimeter System (ATLAS) Beam Steering Mechanism (BSM). The BSM is a 2 degree-of-freedom tip-tilt mechanism for the purpose of pointing a flat mirror to tightly control the co-alignment of the transmitted laser and the receiver telescope of the ATLAS instrument. The high resolution needs of the mission resulted in sub-arcsecond pointing and knowledge requirements, which have been met. Development of the methodology to verify performance required significant effort. The BSM will fly as part of the Ice, Cloud, and Elevation Satellite II Mission (ICESat II), which is scheduled to be launched in 2017. The ICESat II primary mission is to map the Earth's surface topography for the determination of seasonal changes of ice sheet thickness and vegetation canopy thickness to establish long-term trends.
    Keywords: Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 1-14; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2018-06-06
    Description: Ball bearings used inside the ISS Distillation Assembly centrifuge require superior corrosion and shock resistance to withstand acidic wastewater exposure and heavy spacecraft launch related loads. These requirements challenge conventional steel bearings and provide an ideal pathfinder application for 50-mm bore, deep-groove ball bearings made from the corrosion immune and highly elastic intermetallic material 60NiTi. During early ground testing in 2014 one 60NiTi bearing unexpectedly and catastrophically failed after operating for only 200 hr. A second bearing running on the same shaft was completely unaffected. An investigation into the root cause of the failure determined that an excessively tight press fit of the bearing outer race coupled with NiTi's relatively low elastic modulus were key contributing factors. The proposed failure mode was successfully replicated by experiment. To further corroborate the root cause theory, a successful bearing life test using improved installation practices (selective fitting) was conducted. The results show that NiTi bearings are suitable for space applications provided that care is taken to accommodate their unique material characteristics.
    Keywords: Mechanical Engineering
    Type: 43rd Aerospace Mechanisms Symposium; 91-106; NASA/CP-2016-219090
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2019-05-17
    Description: The effects of micro-additions of boron and zirconium on grain-boundary (GB) structure and strength inpolycrystalline (f.c.c.) plus (L12) strengthened Co-9.5Al-7.5W-X at. % alloys (X=0-Ternary, 0.05B, 0.01B,0.05Zr, and 0.005B-0.05Zr at. %) are studied. Creep tests performed at 850 C demonstrate that GB strength and cohesion limit the creep resistance and ductility of the ternary B- and Zr-free alloy due to intergranular fracture. Alloys with 0.05B and 0.005B-0.05Zr both exhibit improved creep strength due to enhanced GB cohesion,compared to the baseline ternary Co-9.5Al-7.5W alloy, but alloys containing 0.01B or 0.05Zr additions displayed no benefit. Atom-probe tomography (APT) is utilized to measure GB segregation, where B and Zr are demonstrated to segregate at GBs. A Gibbsian interfacial excess of 5.57 1.04 atoms nm(exp) -2 was found for B at aGB in the 0.01B alloy and 2.88 0.81 and 2.40 0.84 atoms nm2 for B and Zr, respectively, for the 0.005B-0.05Zr alloy. The GBs in the highest B-containing (0.05B) alloy exhibit micrometer-sized boride precipitates with adjacent precipitate denuded-zones (PDZs), whereas secondary precipitation at the GBs is absent in theother four alloys. The 0.05B alloy has the smallest room temperature yield strength, by 6%, which is attributedto the PDZs, but it exhibits the largest increase in creep strength (with an ~2.5 order of magnitude decrease inthe minimum strain rate for a given stress at 850 C) over the baseline Co-9.5Al-7.5W alloy.
    Keywords: Metals and Metallic Materials
    Type: GRC-E-DAA-TN50496 , Materials Science & Engineering: A (ISSN 0921-5093); 682; 260-269
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2019-06-27
    Description: Unexpected turbulence especially in the upper troposphere and lower stratosphere where cabin crews and passengers in cruising aircraft are likely to unbuckle causes in-flight injuries, structural damage, and flight delay. Therefore, turbulence information can be used to improve safety while pursuing efficiency in Air-Traffic Management (ATM). In this chapter, simple modeling of aircraft trajectories combined with wind and turbulence predictions can suggest the optimal solution of flight plans that minimizes both total flight time (e.g., fuel consumption) and potential encounters of turbulence from departure to arrival airports. Also, probabilistic ensemble turbulence forecasts are applied to suggest an optimal strategic and tactical ATM route planning in a given weather and turbulence condition in the United States which are evaluated against in situ Eddy Dissipation Rate observations from commercial aircraft. Finally, variations of long-haul trans-Oceanic flight routes and their turbulence potentials are investigated using a global reanalysis data to understand how the upper-level large-scale flow patterns can affect the long-term ATM planning through the changes of winds and turbulence conditions.
    Keywords: Aerodynamics; Aircraft Communications and Navigation
    Type: ARC-E-DAA-TN22131 , Aviation Turbulence: Processes, Detection, Prediction ; 481-500
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2018-06-11
    Description: HSFAM is a data model based on the DoDAF 2.02 data model with some for purpose extensions. These extensions are designed to permit quantitative analyses regarding stakeholder concerns about technical feasibility, configuration and interface issues, and budgetary and/or economic viability.
    Keywords: Documentation and Information Science
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2019-08-05
    Description: The Mars Reconnaissance Orbiter (MRO) entered Mars orbit on March 10, 2006. After five months of aerobraking, a series of propulsive maneuvers were used to establish the desired low-altitude science orbit. The spacecraft has been on station in its 255 x 320 km, sun-synchronous (~3 am-pm), primary science orbit since September 2006 performing both scientific and Mars programmatic support functions. This paper will provide a summary of the major achievements of the mission to date and the major flight activities planned for the remainder of its third Extended Mission (EM3). Some of the major flight challenges the flight team has faced are also discussed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL-CL-16-0909 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-05
    Description: No abstract available
    Keywords: Lunar and Planetary Science and Exploration
    Type: JPL-CL-16-0864 , MEPAG Meeting; Mar 02, 2016 - Mar 03, 2016; Silver Spring, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2019-08-03
    Description: No abstract available
    Keywords: Physics (General)
    Type: JPL-CL-16-0856
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2019-08-03
    Description: No abstract available
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JPL-CL-16-0850 , IEEE Aerospace Conference ; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-26
    Description: The NASA Ames Research Center (ARC) Office of the Chief Scientist (OCS) is part of the Center Management. The OCS adds value to the organization by encouraging and facilitating innovation and value to the Agency, Nation, and the scientific community through its well-developed, diverse, and strategically formed charter. The OCS provides the Center with the oversight and advice by facilitating and evaluating the Scientific Innovation Fund (SIF) and promoting science-based research partnerships. Additionally, the Office contributes to to the Agency by organizing annual Summer Series Colloquia, Workshops, and support to the Early Career Network, which allows for international and inter-agency collaborations. Working at the OCS allowed me to further learn about the working of the Office and how the Office engages and provides guidance with rest of the Center and the Agency. As part of my internship, I am working on developing the initial infrastructure required for the organization of the Standardized Distributed Workshop and further developing the layout for the Hibernation Workshop. The Standardized Distributed System workshop will investigate the scope of developing and using standardized distributed systems for a wide range of applications including satellite systems, aerospace-oriented systems, water-based systems, automobiles, and various other robotics applications. The goal of this workshop is to determine the feasibility of developing a standardized distributed system that can be customized for different technological applications, which will enable resource sharing, openness, robustness, and fault tolerance. This workshop will bring together experts from different fields, including satellite operations, unmanned aerial vehicles, aircraft operation and management, and artificial intelligence to provide a global evaluation of the aspects associated with the development and adoption of distributed systems. The workshop will also guide the participants through state of the art distributed systems, discuss some of the challenges in designing control systems with a distributed structure, and consider the future of distributed system based technologies for future applications. Additionally, I am also working on finalizing the details and documentation for the proposed Hibernation Workshop. This workshop will address the phenomenon of hibernation through three major aspects: hibernation on Earth, hibernation in space, and knowledge gaps in the approaches to future deep space exploration. The primary objective of the workshop is to explore the current state of science in the area of hibernation, and as a scientific community, explore the gaps and challenges preventing this scientific field from advancing to the next level. This workshop will consist of presentations, panel discussions, and breakout sessions focused on addressing this scientific field, and bringing experts from educational and commercial sectors together. As a part of my internship report, I will be document the process of planning these workshops and further provide a brief summary of my experience with the 2016 NASA Ames Summer Series and various professional visits.
    Keywords: Systems Analysis and Operations Research; Life Sciences (General)
    Type: ARC-E-DAA-TN34277
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2019-06-20
    Description: We report the discovery of a planet OGLE-2014-BLG-0676Lb via gravitational microlensing. Observations for the lensing event were made by the following groups: Microlensing Observations in Astrophysics; Optical Gravitational Lensing Experiment; Wise Observatory; RoboNETLas Cumbres Observatory Global Telescope; Microlensing Network for the Detection of Small Terrestrial Exoplanets; and -FUN. All analyses of the light-curve data favoura lens system comprising a planetary mass orbiting a host star. The most-favoured binary lens model has a mass ratio between the two lens masses of (4.78 +/- 0.13) 10(exp -3). Subject to some important assumptions, a Bayesian probability density analysis suggests the lens system comprises a 3.09(+1.02/-1.12) MJ planet orbiting a 0.62(+0.20/-0.22) solar mass host star at a deprojected orbital separation of 4.40(+2.16/-1.46) au. The distance to the lens system is 2.22(+0.96/-0.83) kpc. Planet OGLE-2014-BLG-0676Lb provides additional data to the growing number of cool planets discover redusing gravitational microlensing against which planetary formation theories may be tested. Most of the light in the baseline of this event is expected to come from the lens and thus high-resolution imaging observations could confirm our planetary model interpretation.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64724 , GSFC-E-DAA-TN42195 , Monthly Notices of the Royal Astronomical Society (ISSN 0035-8711 ) (e-ISSN 1365-2966); 466; 3; 2710-2717
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2019-06-07
    Description: In this paper, we report a MEMS preconcentrator (PC) - gas chromatograph (GC) that is a crucial part of the Spacecraft Atmosphere Monitor (S.A.M.). The S.A.M. is a highly miniature gas chromatograph - mass spectrometer (GC-MS) for monitoring the atmosphere of crewed spacecraft for both trace organic compounds and the major constituents of the cabin air. The S.A.M. instrument is the next generation of GC-MS, based on JPLs Vehicle Cabin Air Monitor (VCAM), which was launched to the International Space Station (ISS) in April 2010 and successfully operated for two years [1, 2]. The S.A.M. employs a unique MEMS PC-GC technology that replaces the macro PC-GC unit in the VCAM. We report herein the current progress of the MEMS PC-GC for the S.A.M. instrument.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: JPL-CL-16-1835
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2019-08-01
    Description: We use aircraft observations combined with the reanalysis data to investigate the radiative effects of ice supersaturation (ISS). Our results show that although the excess water vapor over ice saturation itself has relatively small radiative effects, mistaking it as ice crystals in climate models would lead to considerable impacts: on average, +2.49 W/m(exp 2) change in the top of the atmosphere (TOA) radiation, -2.7 W/m(exp 2) change in surface radiation, and 1.47 K/d change in heating rates. The radiative effects of ISS generally increase with the magnitudes of supersaturation. However, there is a strong dependence on the preexisting ice water path, which can even change the sign of the TOA radiative effect. It is therefore important to consider coexistence between ISS and ice clouds and to validate their relationship in the parameterizations of ISS in climate models.
    Keywords: Meteorology and Climatology
    Type: NF1676L-24430 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 43; 20; 11,039-11,047
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-08-03
    Description: No abstract available
    Keywords: Communications and Radar
    Type: JPL-CL-16-0853
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2019-07-26
    Description: Future long duration missions outside the protection of the Earth's magnetosphere, or unshielded exposures to solar particle events, achieves total doses capable of causing cancellous bone loss. Cancellous bone loss caused by ionizing radiation occurs quite rapidly in rodents: Initially, radiation increases the number and activity of bone-resorbing osteoclasts, followed by decrease in bone forming osteoblast cells. Here we report that Dried Plum (DP) diet completely prevented cancellous bone loss caused by ionizing radiation (Figure 1). DP attenuated marrow expression of genes related to bone resorption (Figure 2), and protected the bone marrow-derived pre-osteoblasts ex vivo from total body irradiation (Figure 3). DP is known to inhibit resorption in models of aging and ovariectomy-induced osteopenia; this is the first report that dietary DP is radioprotective.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN28133 , NASA Human Research Program Investigators’ Workshop (HRP IWS 2016) ; Feb 08, 2016 - Feb 11, 2016; Galveston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2019-07-20
    Description: No abstract available
    Keywords: Aeronautics (General); Astronautics (General)
    Type: ARC-E-DAA-TN36228 , Supercomputing 2016 (SC16); Nov 13, 2016 - Nov 18, 2016; Salt Lake City, UT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2019-07-20
    Description: In air traffic control, task demand and workload have important implications for the safety and efficiency of air traffic, and remain dominant considerations. Within air traffic control, task demand is dynamic. However, research on demand transitions and subsequent controller perception and performance is limited. This research uses an air traffic control simulation to investigate the effect of task demand transitions, and the direction of those transitions, on workload and fatigue and one efficiency performance measure. Results indicate that a change in task demand appears to affect both workload and fatigue ratings, although not necessarily performance. In addition, participants workload and fatigue ratings in equivalent task demand periods appear to change depending on the demand period preceding the time of the current ratings. Further research is needed to enhance understanding of demand transition and workload history effects on operator experience and performance, in both air traffic control and other safety-critical domains.
    Keywords: Air Transportation and Safety
    Type: ARC-E-DAA-TN34265 , Applied Human Factors and Ergonomics Conference; Jul 27, 2016 - Jul 31, 2016; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2019-07-19
    Description: The Life Science Glovebox (LSG) is a rack facility currently under development with a projected availability for International Space Station (ISS) utilization in the FY2018 timeframe. Development of the LSG is being managed by the Marshal Space Flight Center (MSFC) with support from Ames Research Center (ARC) and Johnson Space Center (JSC). The MSFC will continue management of LSG operations, payload integration, and sustaining following delivery to the ISS. The LSG will accommodate life science and technology investigations in a "workbench" type environment. The facility has a.Ii enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for handling Biohazard Level II and lower biological materials. This containment approach protects the crew from possible hazardous operations that take place inside the LSG work volume. Research investigations operating inside the LSG are provided approximately 15 cubic feet of enclosed work space, 350 watts of28Vdc and l IOVac power (combined), video and data recording, and real time downlink. These capabilities will make the LSG a highly utilized facility on ISS. The LSG will be used for biological studies including rodent research and cell biology. The LSG facility is operated by the Payloads Operations Integration Center at MSFC. Payloads may also operate remotely from different telescience centers located in the United States and different countries. The Investigative Payload Integration Manager (IPIM) is the focal to assist organizations that have payloads operating in the LSG facility. NASA provides an LSG qualification unit for payload developers to verify that their hardware is operating properly before actual operation on the ISS. This poster will provide an overview of the LSG facility and a synopsis of the research that will be accomplished in the LSG. The authors would like to acknowledge Ames Research Center, Johnson Space Center, Teledyne Brown Engineering, MOOG-Bradford Engineering and the entire LSG Team for their inputs into this abstract.
    Keywords: Space Sciences (General)
    Type: M16-5394 , American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2019-07-19
    Description: Eight "Expedite the Processing of Experiments to Space Station" (EXPRESS) Rack facilities are located within the International Space Station (ISS) laboratories to provide standard resources and interfaces for the simultaneous and independent operation of multiple experiments within each rack. Each EXPRESS Rack provides eight Middeck Locker Equivalent locations and two drawer locations for powered experiment equipment, also referred to as sub-rack payloads. Payload developers may provide their own structure to occupy the equivalent volume of one, two, or four lockers as a single unit. Resources provided for each location include power (28 Vdc, 0-500 W), command and data handling (Ethernet, RS-422, 5 Vdc discrete, +/- 5 Vdc analog), video (NTSC/RS 170A), and air cooling (0-200 W). Each rack also provides water cooling for two locations (500W ea.), one vacuum exhaust interface, and one gaseous nitrogen interface. Standard interfacing cables and hoses are provided on-orbit. One laptop computer is provided with each rack to control the rack and to accommodate payload application software. Four of the racks are equipped with the Active Rack Isolation System to reduce vibration between the ISS and the rack. EXPRESS Racks are operated by the Payload Operations Integration Center at Marshall Space Flight Center and the sub-rack experiments are operated remotely by the investigating organization. Payload Integration Managers serve as a focal to assist organizations developing payloads for an EXPRESS Rack. NASA provides EXPRESS Rack simulator software for payload developers to checkout payload command and data handling at the development site before integrating the payload with the EXPRESS Functional Checkout Unit for an end-to-end test before flight. EXPRESS Racks began supporting investigations onboard ISS on April 24, 2001 and will continue through the life of the ISS.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M16-5396 , American Society for Gravitational and Space Research (ASGSR); Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2019-07-19
    Description: The NASA Space Launch System (SLS) vehicle is composed of four RS-25 liquid oxygen- hydrogen rocket engines in the core-stage and two 5-segment solid rocket boosters and as a result six hot supersonic plumes interact within the aft section of the vehicle during ight. Due to the complex nature of rocket plume-induced ows within the launch vehicle base during ascent and a new vehicle con guration, sub-scale wind tunnel testing is required to reduce SLS base convective environment uncertainty and design risk levels. This hot- re test program was conducted at the CUBRC Large Energy National Shock (LENS) II short-duration test facility to simulate ight from altitudes of 50 kft to 210 kft. The test program is a challenging and innovative e ort that has not been attempted in 40+ years for a NASA vehicle. This presentation discusses the various trends of base convective heat ux and pressure as a function of altitude at various locations within the core-stage and booster base regions of the two-percent SLS wind tunnel model. In-depth understanding of the base ow physics is presented using the test data, infrared high-speed imaging and theory. The normalized test design environments are compared to various NASA semi- empirical numerical models to determine exceedance and conservatism of the ight scaled test-derived base design environments. Brief discussion of thermal impact to the launch vehicle base components is also presented.
    Keywords: Spacecraft Design, Testing and Performance
    Type: M16-5594 , AIAA Young Professionals Symposium; Oct 20, 2016 - Oct 21, 2016; Huntsville, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2019-07-19
    Description: Sedimentary rock samples heated to 860 degrees Centigrade in the SAM (Sample at Mars) instrument evolved CO2 and CO indicating the presence of organic-carbon(C) in Gale Crater materials. Martian or exogenous (meteoritic, interplanetary dust) CO2 and CO could be derived from combustion of simple organics (less than 300 degrees Centigrade), complex refractory organics/amorphous carbon (300-600 degrees Centigrade), and/or magmatic carbon (greater than 600 degrees Centigrade) as result of thermal decomposition of Gale Crater perchlorates, and sulfates present that produce O2. Oxidized organic compounds could also evolve CO2 and CO over broad temperature range (150 to 800 degrees Centigrade) and such organics are expected on Mars via exogenous sources. Alternatively, organic-C could also have been oxidized to carboxylic acids [e.g, mellitic acid (RCOOH), acetate (CH3CO2-), and oxalates (C2O42-)] by oxidative radiolytic weathering, or other oxidation processes. The presence of oxidized organics is consistent with the limited detection of reduced organic-C phases by the SAM-gas chromatography. Organic-C content as determined by CO2 and CO contents could range between 800 and 2400 parts per million C indicating that substantial organic-C component is present in Gale Crater. There are contributions from SAM background however, even in worst-case scenarios, this would only account for as much as half of the detected CO2 and CO. Nevertheless, if organic-C levels were assumed to have existed in a reduced form on ancient Mars and this was bioavailable C, then less than 1 percent of C in Gale Crater sediments could have supported an exclusively heterotrophic microbial population of 1 by 10 (sup 5) cells per gram sediment (assumes 9 by 10 (sup -7) microgram per cell and 0.5 micrograms C per microgram cell). While other essential nutrients (e.g., S and P) could be limiting, organic-C contents, may have been sufficient to support limited heterotrophic microbial populations on ancient Mars.
    Keywords: Exobiology; Lunar and Planetary Science and Exploration
    Type: JSC-CN-37709 , AGU Fall Meeting 2016; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2019-07-19
    Description: The metamorphosis of Drosophila is evolutionarily adapted to Earth's gravity, and is a tightly regulated process. Deviation from 1g to microgravity or hypergravity can influence metamorphosis, and alter associated gene expression. Understanding the relationship between an altered gravity environment and developmental processes is important for NASA's space travel goals. In the present study, 20 female and 20 male synchronized (Canton S, 2 to 3day old) flies were allowed to lay eggs while being maintained in a hypergravity environment (3g). Centrifugation was briefly stopped to discard the parent flies after 24hrs of egg laying, and then immediately continued until the eggs developed into P6-staged pupae (25 - 43 hours after pupation initiation). Post hypergravity exposure, P6-staged pupae were collected, total RNA was extracted using Qiagen RNeasy mini kits. We used RNA-Seq and qRT-PCR techniques to profile global transcriptomic changes in early pupae exposed to chronic hypergravity. During the pupal stage, Drosophila relies upon gravitational cues for proper development. Assessing gene expression changes in the pupa under altered gravity conditions helps highlight gravity dependent genetic pathways. A robust transcriptional response was observed in hypergravity-exposed pupae compared to controls, with 1,513 genes showing a significant (q 〈 0.05) difference in gene expression. Five major biological processes were affected: ion transport, redox homeostasis, immune response, proteolysis, and cuticle development. This outlines the underlying molecular changes occurring in Drosophila pupae in response to hypergravity.
    Keywords: Aerospace Medicine; Life Sciences (General)
    Type: ARC-E-DAA-TN33673 , Annual Meeting of the American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2019-07-19
    Description: Rodent Research (RR)-1 was conducted to validate flight hardware, operations, and science capabilities that were developed to support long duration missions on the International Space Station. After 37 days in microgravity twenty mice were euthanized and frozen on orbit. Upon return to Earth the carcasses were dissected and yielded 32 different types of tissues from each mouse and over 3200 tissue aliquots. Many tissues were distributed to the Space Life and Physical Sciences (SLPS) Biospecimen Sharing Program (BSP) Principal Investigators (PIs) through the Ames Life Science Data Archive (ALSDA). A second round of dissections was performed to collect additional tissues from the remaining carcasses thawed for a second time for additional BSP PIs. Tissues retrieved included vaginal walls, aorta, pelvis, brown adipose tissue, tail, spine and forearms. Although the analyses are still in progress, some of the PIs have reported that the quality of the tissues was acceptable for their study. In a separate experiment we tested the RNA quality of the tissues that were dissected from frozen carcasses that were subjected to euthanasia, freezing, first and second thaw dissections. Timelines simulated the on-orbit RR-1 procedures to assess the quality of the tissues retrieved from the second thaw dissections. We analyzed the RIN values of select tissues including kidney, brain, white adipose tissue (WAT) and brown adipose tissue (BAT). Overall the RIN values from the second thaw were lower compared to those from the first by about a half unit; however, the tissues yielded RNA that are acceptable quality for some quantitative gene expression assays. Interestingly, RIN values of brain tissues were 8.4+/-0.6 and 7.9+/-0.7 from first and second round dissections, respectively (n=5). Kidney and WAT yielded RIN values less than 8 but they can still be used for qPCR. BAT yielded higher quality RNA (8.2+/-0.5) than WAT (5.22+/-0.9), possibly due to the high fat content. Together, these data show that select tissues can be utilized for gene expression studies even if they are retrieved from carcasses that were subjected to at least two freezing and thawing processes; this further expands science return from valuable and infrequent rodent experiments in space.
    Keywords: Life Sciences (General); Aerospace Medicine
    Type: ARC-E-DAA-TN33056 , Annual Meeting of the American Society for Gravitational and Space Research; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2019-07-19
    Description: Ozone (O3) is a greenhouse gas and toxic pollutant which plays a major role in air quality and atmospheric chemistry. The understanding and ability to model the horizontal and vertical structure of O3 mixing ratios is difficult due to the complex formation/destruction processes and transport pathways that cause large variability of O3. The Environmental Protection Agency has National Ambient Air Quality Standards for O3 set at 75 ppb with future standards proposed to be as low as 65 ppb. These lower values emphasize the need to better understand/simulate the transport processes, emission sources, and chemical processes controlling precursor species (e.g., NOx, VOCs, and CO) which influence O3 mixing ratios. The uncertainty of these controlling variables is particularly large in the southeast United States (US) which is a region impacted by multiple different emission sources of precursor species (anthropogenic and biogenic) and transport processes resulting in complex spatio-temporal O3 patterns. During this work we will evaluate O3 and precursor species in the southeast US applying models, ground-based and airborne in situ data, and lidar observations. In the summer of 2013, the UAH O3 Differential Absorption Lidar (DIAL) (part of the Tropospheric Ozone Lidar Network (TOLNet)) measured vertical O3 profiles from the surface up to approximately 12 km. During this period, the lidar observed numerous periods of dynamic temporal and vertical O3 structures. In order to determine the sources/processes impacting these O3 mixing ratios we will apply the CTM GEOS-Chem (v9-02) at a 0.25 deg x 0.3125 deg resolution. Using in situ ground-based (e.g., SEARCH Network, CASTNET), airborne (e.g., NOAA WP-3D - SENEX 2013, DC-8 - SEAC4RS), and TOLNet lidar data we will first evaluate the model to determine the capability of GEOS-Chem to simulate the spatio-temporal variability of O3 in the southeast US. Secondly, we will perform model sensitivity studies in order to quantify which emission sources (e.g., anthropogenic, biogenic, lighting, wildfire) and transport processes (e.g., stratospheric, long-range, local scale) are contributing to these TOLNet-observed dynamic O3 patterns. Results from the evaluation of the model and the study of sources/processes impacting observed O3 mixing ratios will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN29725 , Earth Science Division Poster Session 2016; Feb 10, 2016; Moffett Field, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2019-07-19
    Description: We obtained HST-STIS spectra of Saturn's main rings in May 2011, using the G230L (and G430L) gratings, with final averaged radial resolution of 160 (and 330) km/pixel. The dataset filled a previous 200-330nm "spectral gap" between Cassini and ground-based spectra. The data provide radial profiles as a function of wavelength, but our most basic product at this point is a set of very low-noise spectra, radially averaged over broad regions of the rings (A, B, C, and Cassini Division). The raw spectra required special processing to remove artifacts due to extended-source grating scatter. We have modeled the spectra using a new particle surface model, which corrects for on-surface shadowing due to the likely very rough ring particle surfaces, and avoids overestimation of intra-mixed "neutral absorber". We correct for non-classical layer effects and finite ring optical depth, and relate our observed reflectivities to the spherical albedos of individual smooth particles. We model these smooth particle albedos using standard Hapke theory for regolith grain mixtures that are either homogeneous and "intramixed" (nonicy absorbers dispersed in water ice regolith grains) or heterogeneous "intimate" mixtures. As candidates for the nonicy contaminants we have considered amorphous carbon, aromatic-rich and aliphatic-rich organic tholins, silicates, hematite and iron metal. For the A and B rings, we find that iron metal (including a new theoretical estimate of the refractive indices of nanometer-sized grains of iron) is not spectrally steep enough in the 200-300nm range, and that aliphatic-rich tholins are either too steep at short wavelengths or too flat at long wavelengths. However, less than 1% by mass of aromatic-rich tholins provides a very good fit across the entire spectral range with no gratuitous "neutral absorber" needed, and a minimum of additional free parameters. The best fits require forward-scattering regolith grains. For the C Ring and Cassini Division, additional absorbers are needed (updated results will be given).
    Keywords: Astronomy
    Type: ARC-E-DAA-TN35711 , Division of Planetary Science Meeting (DPS); Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2019-07-19
    Description: The Alpha Jet Atmospheric eXperiment (AJAX) is a research project based at Moffett Field, CA, which collects airborne measurements of ozone, carbon dioxide, methane, water vapor, and formaldehyde, as well as 3-D winds, temperature, pressure, and location. Since its first science flight in 2011, AJAX has developed a wide a variety of mission types, combining vertical profiles (from approx. 8 km to near surface),boundary layer legs, and plume sampling as needed. With an ongoing five-year data set, the team has sampled over 160 vertical profiles, a dozen wildfires, and numerous stratospheric ozone intrusions. This talk will present an overview of our flights flown to date, with particular focus on methane observations in the San Francisco Bay Area, Sacramento, and the delta region.
    Keywords: Environment Pollution; Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN36115 , U.S. Geological Survey Seminar; Nov 03, 2016; Menlo Park, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2019-07-19
    Description: We use a 1D model to address photochemistry and possible haze formation in the irradiated atmosphere of 51 Eri b (2016arXiv160407388Z). The intended focus was to have been on carbon and organic hazes, but sulfur photochemistry turns out to be interesting and possibly more important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form abundantly, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically significant clouds of solid sulfur particles, whilst in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we discuss is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.
    Keywords: Astronomy
    Type: ARC-E-DAA-TN35716 , Division of Planetary Science Meeting; Oct 16, 2016 - Oct 21, 2016; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2019-07-19
    Description: Exposure to high doses of ionizing radiation produces both acute and late effects on the collagenized tissues and have profound effects on wound healing. Because of the crucial practical importance for new radioprotective agents, our study has been focused on evaluation of the efficacy of non-toxic naturally occurring compounds to protect tissue integrity against high-dose gamma radiation. Here, we demonstrate that molecular integrity of collagen may serve as a sensitive biological marker for quantitative evaluation of molecular damage to collagenized tissue and efficacy of radioprotective agents. Increasing doses of gamma radiation (0-50kGy) result in progressive destruction of the native collagen fibrils, which provide a structural framework, strength, and proper milieu for the regenerating tissue. The strategy used in this study involved the thermodynamic specification of all structural changes in collagenized matrix of skin, aortic heart valve, and bone tissue induced by different doses and conditions of g-irradiation. This study describes a simple biophysical approach utilizing the Differential Scanning Calorimetry (DSC) to characterize the structural resistance of the aortic valve matrix exposed to different doses of g-irradiation. It allows us to identify the specific response of each constituent as well as to determine the influence of the different treatments on the characteristic parameters of protein structure. We found that pyruvate, a substance that naturally occurs in the body, provide significant protection (up to 80%) from biochemical and biomechanical damage to the collagenized tissue through the effective targeting of reactive oxygen species. The recently discovered role of pyruvate in the cell antioxidant defense to O2 oxidation, and its essential constituency in the daily human diet, indicate that the administration of pyruvate-based radioprotective formulations may provide safe and effective protection from deleterious effects of ionizing radiation.
    Keywords: Life Sciences (General)
    Type: ARC-E-DAA-TN27437 , Biophysical Society Annual Meeting; Feb 27, 2016 - Mar 02, 2016; Los Angeles, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2019-07-19
    Description: Large sample volume 5000 ton multi-anvil presses have contributed to the exploration of deep Earth and planetary interiors, synthesis of ultra-hard and other novel materials, and serve as a sample complement to pressure and temperature regimes already attainable by diamond anvil cell experiments. However, no such facility exists on the North American continent. We propose the establishment of an open user facility for COMPRES members and the entire research community, with the unique capability of a 5000 ton (or more) press, supported by a host of extant co-located experimental and analytical laboratories and research staff. We offer wide range of complementary and/or preparatory experimental options. Any required synthesis of materials or follow up experiments can be carried out controlled atmosphere furnaces, piston cylinders, multi-anvil, or experimental impact apparatus. Additionally, our division houses two machine shops that would facilitate any modification or custom work necessary for development of CETUS, one for general fabrication and one located specifically within our experimental facilities. We also have a general sample preparation laboratory, specifically for experimental samples, that allows users to quickly and easily prepare samples for ebeam analyses and more. A service we can offer to COMPRES community members in general, and CETUS visiting users specifically, is a multitude of analytical instrumentation literally steps away from the experimental laboratories. This year we will be pursuing site funding of our laboratories through NASA's Planetary Science Directorate, which should result in substantial cost savings to all visiting users, and supports our mission of interagency cooperation for the enhancement of science for all (see companion PSAMS abstract). The PI is in a unique position as an employee of Jacobs Technology to draw funding from multiple sources, including those from industry and commerce. We submitted a Planetary Major Equipment proposal to the NASA Emerging Worlds solicitation for the full cost of a press, with competitive bids submitted from Sumitomo, Rockland Research, and Voggenreiter. Additional funding is currently being sought from industry sources through the Strategic Partnerships Office at NASA JSC, External Pursuits Program Office on the JETS contract, and Jacobs corporate in the United States. Internal funding is available for JETS contract personnel to travel to large press locations worldwide to study set-up and operations. We also anticipate a fortuitous cost savings in installation of the large press because plans are already underway for major renovations to the entire experimental petrology suite within the next 2 years in order to accommodate our growing user base. Our focus as contract staff is on serving the scientific needs of our users and collaborators. We are seeking community expert input on multiple aspects of this proposed facility, such as the press type and design, access management, immediate projects, and future innovation initiatives.
    Keywords: Ground Support Systems and Facilities (Space)
    Type: JSC-CN-36535 , 2016 Consortium for Materials Properties Research in Earth Sciences (COMPRES) Annual Meeting; Jun 19, 2016 - Jun 23, 2016; Santa Ana Pueblo, NM; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2019-07-19
    Description: The Lunar Reconnaissance Orbiter (LRO) launched in 2009 to collect the dataset required for future surface missions and to answer key questions about the lunar surface environment. In the first seven years of operations, the Lunar Reconnaissance Orbiter Camera (LROC) acquired over a million images of the lunar surface and collected key stereo observations for the production of meter-scale digital terrain models. Due to the configuration of the LRO orbit, LROC and the other onboard instruments have the opportunity to acquire observations at or near the poles every two hours. The lunar south polar region is an area of interest for future surface missions due to the benign thermal environment and areas of near-continuous illumination. These persistently illuminated regions are also adjacent to permanently shadowed areas (e.g. floors of craters and local depressions) that are of interest to both scientists and engineers prospecting for cold-trapped volatiles on or near the surface for future in situ resource utilization. Using a terramechanics model based on surface properties derived during the Apollo and Luna missions, we evaluated the accessibility of different science targets and the optimal traverse paths for a given set of waypoints. Assuming a rover that relies primarily on solar power, we identified a traverse that would keep the rover illuminated for 94.43% of the year between 1 January 2021 and 31 December 2021. Throughout this year-long period, the longest eclipse endured by the rover would last only 101 hours and the rover would move a total of 22.11 km with an average speed of 2.5 m/hr (max speed=30 m/hr). During this time the rover would be able to explore a variety of targets along the connecting ridge between Shackleton and de Gerlache craters. In addition to the southern polar regions, we are also examining traverses around other key exploration sites such as Marius Hills, Ina-D, Rima Parry, and the Mairan Domes in efforts to aid future mission planners and assess the requirements for future roving prospectors (e.g., maximum speed, maximum slope, etc.).
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-37534 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2019-07-19
    Description: Controlled Environment Agriculture (CEA) systems can be used to produce high-quality, desirable food year round, and the fresh produce can positively contribute to the health and well being of residents in communities with difficult supply logistics. While CEA has many positive outcomes for a remote community, the associated high electric demands have prohibited widespread implementation in what is typically already a fully subscribed power generation and distribution system. Recent advances in CEA technologies as well as renewable power generation, storage, and micro-grid management are increasing system efficiency and expanding the possibilities for enhancing community supporting infrastructure without increasing demands for outside supplied fuels. We will present examples of how new lighting, nutrient delivery, and energy management and control systems can enable significant increases in food production efficiency while maintaining high yields in CEA. Examples from Alaskan communities where initial incorporation of renewable power generation, energy storage and grid management techniques have already reduced diesel fuel consumption for electric generation by more than 40% and expanded grid capacity will be presented. We will discuss how renewable power generation, efficient grid management to extract maximum community service per kW, and novel energy storage approaches can expand the food production, water supply, waste treatment, sanitation and other community support services without traditional increases of consumable fuels supplied from outside the community. These capabilities offer communities with a range of choices to enhance their communities. The examples represent a synergy of technology advancement efforts to develop sustainable community support systems for future space-based human habitats and practical implementation of infrastructure components to increase efficiency and enhance health and well being in remote communities today and tomorrow.
    Keywords: Energy Production and Conversion
    Type: ARC-E-DAA-TN32103 , Circumpolar Agriculture Conference 2016; Oct 06, 2016 - Oct 08, 2016; Reykjavik; Iceland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2019-07-19
    Description: Heretofore, discussions of space fuel depots assumed the depots would be supplied from Earth. However, the confirmation of deposits of water ice at the lunar poles in 2009 suggests the possibility of supplying a space depot with liquid hydrogen/liquid oxygen produced from lunar ice. This architecture study sought to determine the optimum architecture for a fuel depot supplied from lunar resources. Four factors - the location of propellant processing (on the Moon or on the depot), the location of the depot (on the Moon, or at L1, GEO, or LEO), the location of propellant transfer (L1, GEO, or LEO), and the method of propellant transfer (bulk fuel or canister exchange) were combined to identify 18 potential architectures. Two design reference missions (DRMs) - a satellite servicing mission and a cargo mission to Mars - were used to create demand for propellants, while a third DRM - a propellant delivery mission - was used to examine supply issues. The architectures were depicted graphically in a network diagram with individual segments representing the movement of propellant from the Moon to the depot, and from the depot to the customer.
    Keywords: Space Transportation and Safety
    Type: M16-5128 , AIAA Space and Astronautics Forum and Exposition (Space 2016); Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2019-07-19
    Description: One fundamental requirement shared by humans with all higher terrestrial life forms, including insect wings, higher land plants and other vertebrates, is a complex, fractally branching vascular system. NASA's VESsel GENeration Analysis (VESGEN) software maps and quantifies vascular trees, networks, and tree-network composites according to weighted physiological rules such as vessel connectivity, tapering and bifurcational branching. According to fluid dynamics, successful vascular transport requires a complex distributed system of highly regulated laminar flow. Microvascular branching rules within vertebrates, dicot leaves and the other organisms therefore display many similarities. One unifying perspective is that vascular patterning offers a useful readout that necessarily integrates complex molecular signaling pathways. VESGEN has elucidated changes in vascular pattern resulting from inflammatory, stress response, developmental and other signaling within numerous tissues and major model organisms studied for Space Biology. For a new VESGEN systems approach, we analyzed differential gene expression in leaves of Arabidopsis thaliana reported by GeneLab (GLDS-7) for spaceflight. Vascular-related changes in leaf gene expression were identified that can potentially be phenocopied by mutants in ground-based experiments. To link transcriptional, protein and other molecular change with phenotype, alterations in the Euclidean and dynamic dimensions (x,y,t) of vascular patterns for Arabidopsis leaves and other model species are being co-localized with signaling patterns of single molecular expression analyzed as information dimensions (i,j,k,...). Previously, Drosophila microarray data returned from space suggested significant changes in genes related to wing venation development that include EGF, Notch, Hedghog, Wingless and Dpp signaling. Phenotypes of increasingly abnormal ectopic wing venation in the (non-spaceflight) Drosophila wing generated by overexpression of a Notch antagonist were analyzed by VESGEN. Other VESGEN research applications include the mouse retina, GI and coronary vessels, avian placental analogs and translational studies in the astronaut retina related to health challenges for long-duration missions.
    Keywords: Life Sciences (General); Exobiology
    Type: ARC-E-DAA-TN33235 , American Society for Gravity and Space Research (ASGSR) Conference; Oct 26, 2016 - Oct 29, 2016; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2019-07-19
    Description: A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.
    Keywords: Launch Vehicles and Launch Operations
    Type: M16-5115 , International Astronautical Congress: Session D2.8 Going To and Beyond the Earth-Moon System: Human Missions to Mars, Libration Points and NEO''s; Sep 26, 2016 - Sep 30, 2016; Guadalajara; Mexico
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2019-07-19
    Description: NASA's Space Launch System (SLS) continued to make significant progress in 2015, completing hardware and testing that brings NASA closer to a new era of deep space exploration. The most significant program milestone of the year was completion of Critical Design Review (CDR). A team of independent reviewers concluded that the vehicle design is technically and programmatically ready to move to Design Certification Review (DCR) and launch readiness in 2018. Just four years after program start, every major element has amassed development and flight hardware and completed key tests that will set the stage for a growing schedule of manufacturing and testing in 2016. Key to SLS' rapid progress has been the use of existing technologies adapted to the new launch vehicle. The space shuttle-heritage RS-25 engine is undergoing adaptation tests to prove it can meet SLS requirements and environments with minimal change. The four-segment shuttle-era booster has been modified and updated with an additional propellant segment, new insulation, and new avionics. The Interim Cryogenic Upper Stage is a modified version of an existing upper stage. The first Block I SLS configuration will launch a minimum of 70 metric tons of payload to low Earth orbit (LEO). The vehicle architecture has a clear evolutionary path to more than 100 metric tons and, ultimately, to 130 metric tons. Among the program's major accomplishments in 2015 were the first booster qualification hotfire test, a series of seven RS-25 adaptation hotfire tests, manufacturing of most of the major components for both core stage test articles and first flight tank, delivery of the Pegasus core stage barge, and the upper stage simulator. Renovations to the B-2 test stand for stage green run testing was completed at NASA Stennis Space Center. This year will see the second booster qualification motor hotfire, flight and additional development RS-25 engine tests, and completion of core stage test articles and test stands and several flight article sections. This paper will discuss these and other technical and programmatic successes and challenges over the past year and provide a preview of work ahead before the first flight of this new capability.
    Keywords: Spacecraft Design, Testing and Performance; Launch Vehicles and Launch Operations
    Type: M16-5190
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2019-07-19
    Description: NASA is currently working on the Evolvabe Mars Campaign (EMC) study to outline transportation and mission options for human exploration of Mars. One of the key aspects of the EMC is leveraging current and planned near-term technology investments to build an affordable and evolvable approach to Mars exploration. This leveraging of investments includes the use of high-power Solar Electric Propulsion (SEP) systems, evolved from those currently under development in support of the Asteroid Redirect Mission (ARM), to deliver payloads to Mars. The EMC is considering several transportation options that combine solar electric and chemical propulsion technologies to deliver crew and cargo to Mars. In one primary architecture option, the SEP propulsion system is used to pre-deploy mission elements to Mars while a high-thrust chemical propulsion system is used to send crew on faster ballistic transfers between Earth and Mars. This high-thrust chemical system uses liquid oxygen - liquid methane main propulsion and reaction control systems integrated into the Methane Cryogenic Propulsion Stage (MCPS). Over the past year, there have been several studies completed to provide critical design and development information related to the MCPS. This paper is intended to provide a summary of these efforts. A summary of the current point of departure design for the MCPS is provided as well as an overview of the mission architecture and concept of operations that the MCPS is intended to support. To leverage the capabilities of solar electric propulsion to the greatest extent possible, the EMC architecture pre-deploys to Mars orbit the stages required for returning crew from Mars. While this changes the risk posture of the architecture, it can provide some mass savings by using higher-efficiency systems for interplanetary transfer. However, this does introduce significantly longer flight times to Mars which, in turn, increases the overall lifetime of the stages to as long as 2500 days. This unique aspect to the concept of operations introduces several challenges, specifically related to propellant storage and engine reliability. These challenges and some potential solutions are discussed. Specific focus is provided on two key technology areas; propulsion and cryogenic fluid management. In the area of propulsion development, the development of an integrated methane propulsion system that combines both main propulsion and reaction control is discussed. This includes an overview of potential development paths, areas where development for Mars applications are complementary to development efforts underway in other parts of the aerospace industry, and commonality between the MCPS methane propulsion applications and other Mars elements, including the Mars lander systems. This commonality is a key affordability aspect of the Evolvable Mars Campaign. A similar discussion is provided for cryogenic fluid management technologies including a discussion of how using cryo propulsion in the Mars transportation application not only provides performance benefits but also leverages decades of technology development investments made by NASA and its aerospace contractor community.
    Keywords: Lunar and Planetary Science and Exploration; Spacecraft Propulsion and Power
    Type: M16-5126 , AIAA Space and Astronautics Forum and Exposition (SPACE 2016); Sep 13, 2016 - Sep 16, 2016; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2019-07-19
    Description: Ecosystems worldwide are impacted by altered environment conditions resulting from climate, drought, and land use changes. Gaps in the science knowledge base regarding plant community response to these novel and rapid changes limit both science understanding and management of ecosystems. We describe how CE Technologies have enabled the rapid supply of gap-filling science, development of ecosystem simulation models, and remote sensing assessment tools to provide science-informed, adaptive management methods in the impacted aquatic ecosystem of the California Sacramento-San Joaquin River Delta. The Delta is the hub for California's water, supplying Southern California agriculture and urban communities as well as the San Francisco Bay area. The changes in environmental conditions including temperature, light, and water quality and associated expansion of invasive aquatic plants negatively impact water distribution and ecology of the San Francisco Bay/Delta complex. CE technologies define changes in resource use efficiencies, photosynthetic productivity, evapotranspiration, phenology, reproductive strategies, and spectral reflectance modifications in native and invasive species in response to altered conditions. We will discuss how the CE technologies play an enabling role in filling knowledge gaps regarding plant response to altered environments, parameterization and validation of ecosystem models, development of satellite-based, remote sensing tools, and operational management strategies.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN32001 , International Controlled Environment Conference ((CEC/AusPheno 2016); Sep 18, 2016 - Sep 23, 2016; Canberra; Australia
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: As an intern project for NASA Johnson Space Center (JSC), my job was to familiarize myself and operate a Robotics Operating System (ROS). The project outcome converted existing software assets into ROS using nodes, enabling a robotic Hexapod to communicate to be functional and controlled by an existing PlayStation 3 (PS3) controller. Existing control algorithms and current libraries have no ROS capabilities within the Hexapod C++ source code when the internship started, but that has changed throughout my internship. Conversion of C++ codes to ROS enabled existing code to be compatible with ROS, and is now controlled using an existing PS3 controller. Furthermore, my job description was to design ROS messages and script programs that enabled assets to participate in the ROS ecosystem by subscribing and publishing messages. Software programming source code is written in directories using C++. Testing of software assets included compiling code within the Linux environment using a terminal. The terminal ran the code from a directory. Several problems occurred while compiling code and the code would not compile. So modifying code to where C++ can read the source code were made. Once the code was compiled and ran, the code was uploaded to Hexapod and then controlled by a PS3 controller. The project outcome has the Hexapod fully functional and compatible with ROS and operates using the PlayStation 3 controller. In addition, an open source software (IDE) Arduino board will be integrated into the ecosystem with designing circuitry on a breadboard to add additional behavior with push buttons, potentiometers and other simple elements in the electrical circuitry. Other projects with the Arduino will be a GPS module, digital clock that will run off 22 satellites to show accurate real time using a GPS signal and an internal patch antenna to communicate with satellites. In addition, this internship experience has led me to pursue myself to learn coding more efficiently and effectively to write, subscribe and publish my own source code in different programming languages. With some familiarity with software programming, it will enhance my skills in the electrical engineering field. In contrast, my experience here at JSC with the Simulation and Graphics Branch (ER7) has led me to take my coding skill to be more proficient to increase my knowledge in software programming, and also enhancing my skills in ROS. This knowledge will be taken back to my university to implement coding in a school project that will use source coding and ROS to work on the PR2 robot which is controlled by ROS software. My skills learned here will be used to integrate messages to subscribe and publish ROS messages to a PR2 robot. The PR2 robot will be controlled by an existing PS3 controller by changing C++ coding to subscribe and publish messages to ROS. Overall the skills that were obtained here will not be lost, but increased.
    Keywords: Cybernetics, Artificial Intelligence and Robotics; Computer Programming and Software
    Type: JSC-CN-37140
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: As humans push further beyond the grasp of earth, robotic missions in advance of human missions will play an increasingly important role. These robotic systems will find and retrieve valuable resources as part of an in-situ resource utilization (ISRU) strategy. They will need to be highly autonomous while maintaining high task performance levels. NASA Kennedy Space Center has teamed up with the Biological Computation Lab at the University of New Mexico to create a swarm of small, low-cost, autonomous robots to be used as a ground-based research platform for ISRU missions. The behavior of the robot swarm mimics the central-place foraging strategy of ants to find and collect resources in a previously unmapped environment and return those resources to a central site. This talk will guide the audience through the Swarmie robot project from its conception by students in a New Mexico research lab to its robot trials in an outdoor parking lot at NASA. The software technologies and techniques used on the project will be discussed, as well as various challenges and solutions that were encountered by the development team along the way.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: KSC-E-DAA-TN32821 , Annual DevDay Software Developer Conference; Sep 14, 2016 - Sep 16, 2016; Krakow; Poland
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2019-07-19
    Description: The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.
    Keywords: Electronics and Electrical Engineering; Spacecraft Instrumentation and Astrionics
    Type: JSC-CN-37427 , Technology Collaboration Center of Houston: Radiation Technologies Event; Sep 21, 2016; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2019-07-19
    Description: In 2015, a selection of HS-376 buses were observed photometrically with the United Kingdom Infrared Telescope (UKIRT) to explore relationships between time-on-orbit and Near Infrared (NIR) color. These buses were chosen because of their relatively simple shape, for the abundance of similar observable targets, and their surface material being primarily covered by solar cells. While the HS-376 spacecraft were all very similar in design, differences in the specific solar cells used in the construction of each model proved to be an unconstrained variable that could affect the observed reflective properties. In 2016, samples of the solar cells used on various models of HS-376 spacecraft were obtained from Boeing and were analyzed in the Optical Measurements Center at the Johnson Space Center using a visible-near infrared field spectrometer. The laboratory-based spectra are convolved to match the photometric bands previously obtained using UKIRT and compared with the on-orbit photometry. The results and future work are discussed here.
    Keywords: Instrumentation and Photography; Optics
    Type: JSC-CN-37428
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2019-07-19
    Description: The X-ray diffraction (XRD) instrument (CheMin) onboard the MSL rover Curiosity detected 17 wt% of the SiO2 polymorph tridymite (relative to bulk sample) for the Buckskin drill sample (73 wt% SiO2) obtained from sedimentary rock in the Murray formation at Gale Crater, Mars. Other detected crystalline materials are plagioclase, sanidine, cristobalite, cation-deficient magnetite, and anhydrite. XRD amorphous material constitutes approx. 60 wt% of bulk sample, and the position of its broad diffraction peak near approx. 26 deg. 2-theta is consistent with opal-A. Tridymite is a lowpressure, high-temperature mineral (approx. 870 to 1670 deg. C) whose XRD-identified occurrence on the Earth is usually associated with silicic (e.g., rhyolitic) volcanism. High SiO2 deposits have been detected at Gale crater by remote sensing from martian orbit and interpreted as opal-A on the basis H2O and Si-OH spectral features. Proposed opal-A formation pathways include precipitation of silica from lake waters and high-SiO2 residues of acid-sulfate leaching. Tridymite is nominally anhydrous and would not exhibit these spectral features. We have chemically and spectrally analyzed rhyolitic samples from New Mexico and Iwodake volcano (Japan). The glassy (by XRD) NM samples have H2O spectral features similar to opal-A. The Iwodake sample, which has been subjected to high-temperature acid sulfate leaching, also has H2O spectral features similar to opal-A. The Iwodake sample has approx. 98 wt% SiO2 and 1% wt% TiO2 (by XRF), tridymite (〉80 wt.% of crystalline material without detectable quartz by XRD), and H2O and Si-OH spectral features. These results open the working hypothesis that the opal-A-like high-SiO2 deposits at Gale crater detected from martian orbit are products of alteration associated with silicic volcanism. The presence or absence of tridymite will depend on lava crystallization temperatures (NM) and post crystallization alteration temperatures (Iwodake).
    Keywords: Geophysics; Lunar and Planetary Science and Exploration
    Type: JSC-CN-37396 , AGU Fall Meeting; Dec 12, 2016 - Dec 16, 2016; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2019-07-19
    Description: Radiation-induced bone loss can occur with radiotherapy patients, accidental radiation exposure and during long-term spaceflight. Bone loss due to radiation is due to an early increase in oxidative stress, inflammation and bone resorption, resulting in an imbalance in bone remodeling. Furthermore, exposure to high-Linear Energy Transfer (LET) radiation will impair the bone forming progenitors and reduce bone formation. Radiation can be classified as high-LET or low-LET based on the amount of energy released. Dried Plum (DP) diet prevents bone loss in mice exposed to total body irradiation with both low-LET and high-LET radiation. DP prevents the early radiation-induced bone resorption, but furthermore, we show that DP protects the bone forming osteoblast progenitors from high-LET radiation. These results provide insight that DP re-balances the bone remodeling by preventing resorption and protecting the bone formation capacity. This data is important considering that most of the current osteoporosis treatments only block the bone resorption but do not protect bone formation. In addition, DP seems to act on both the oxidative stress and inflammation pathways. Finally, we have preliminary data showing the potential of DP to be radio-protective at a systemic effect and could possible protect other tissues at risk of total body-irradiation such as skin, brain and heart.
    Keywords: Man/System Technology and Life Support; Aerospace Medicine
    Type: ARC-E-DAA-TN32922 , Global Biotechnology Congress 2016; Aug 22, 2016 - Aug 25, 2016; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2019-07-19
    Description: Our Hybrid Reality and Advanced Operations Lab is developing incredibly realistic and immersive systems that could be used to provide training, support engineering analysis, and augment data collection for various human performance metrics at NASA. To get a better understanding of what Hybrid Reality is, let's go through the two most commonly known types of immersive realities: Virtual Reality, and Augmented Reality. Virtual Reality creates immersive scenes that are completely made up of digital information. This technology has been used to train astronauts at NASA, used during teleoperation of remote assets (arms, rovers, robots, etc.) and other activities. One challenge with Virtual Reality is that if you are using it for real time-applications (like landing an airplane) then the information used to create the virtual scenes can be old (i.e. visualized long after physical objects moved in the scene) and not accurate enough to land the airplane safely. This is where Augmented Reality comes in. Augmented Reality takes real-time environment information (from a camera, or see through window, and places digitally created information into the scene so that it matches with the video/glass information). Augmented Reality enhances real environment information collected with a live sensor or viewport (e.g. camera, window, etc.) with the information-rich visualization provided by Virtual Reality. Hybrid Reality takes Augmented Reality even further, by creating a higher level of immersion where interactivity can take place. Hybrid Reality takes Virtual Reality objects and a trackable, physical representation of those objects, places them in the same coordinate system, and allows people to interact with both objects' representations (virtual and physical) simultaneously. After a short period of adjustment, the individuals begin to interact with all the objects in the scene as if they were real-life objects. The ability to physically touch and interact with digitally created objects that have the same shape, size, location to their physical object counterpart in virtual reality environment can be a game changer when it comes to training, planning, engineering analysis, science, entertainment, etc. Our Project is developing such capabilities for various types of environments. The video outlined with this abstract is a representation of an ISS Hybrid Reality experience. In the video you can see various Hybrid Reality elements that provide immersion beyond just standard Virtual Reality or Augmented Reality.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: JSC-CN-37216
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: Lunar Space Station Common Module: A new concept for a module for a lunar space station attempts to reduce the module's mass by abandoning the traditional rack structure currently used on the ISS for the mounting of internal hardware and replacing it with a core structure. By using this design, the pressure shell will not have to carry the loads resulting from the internal mass. I worked with another intern to create the initial design for the module, with him focusing on the core and myself focusing on the pressure shell. To start, I was given the shell overall dimensions and material and tasked with sizing the wall thickness and placing stiffeners such that the shell could withstand the required loads. At the same time, I had to keep the mass to a minimum to keep the overall module within the allowable launch mass. Once I had done initial sizing based on pressure loads, I combined the pressure shell with the inner core to perform optimization of the design. Currently, the design involves circumferential stiffeners along the entire length of the pressure shell with longitudinal stiffeners on either end. In addition, extra wall thickness was added around each of the hatches. At this stage, the design shows a comparable mass to a more traditional design, but we are hopeful that, through optimization, we will be able to reduce the mass even further. There is currently a patent pending for the module design, for which I am listed as a co-inventor. ALON Material Testing: I was given samples of aluminum oxynitride (ALON) that had been impacted by a previous intern on which to perform residual strength tests as part of a plan to approve them for space use. Before testing, I measured the pucks and their damages using a ruler and optical micrometer in order to verify that the puck dimensions were within the tolerances set by the test guidelines and that the damages had not grown when the pucks were thinned. The test was a ring-ring test, which used two concentric rings to place the ring in axisymmetric bending, with the puck set up so that the damaged side was always in tension. Though I was unable to do the setup of the test or run the load machine due to a period of changing test procedures, I was able to observe the testing and perform the data collection. The pucks behaved as expected, breaking at the damage, as did the strengths calculated from the data, being lower than for the unimpacted pucks and having less scatter between the puck values. The attached image is of myself during the ALON strength testing. Over the course of my internship, I was able to learn much more about real-life structural analysis and about the behavior of materials, and it confirmed my previous interest in structural analysis. At the same time, due to the opportunities offered to interns, I was able to learn a lot about mission control, and, in doing so, I developed a second interest in working in mission control. In addition, being able to meet the people here and learn about the type of work NASA does made me want to come back to work for NASA full time.
    Keywords: Structural Mechanics; Spacecraft Design, Testing and Performance
    Type: JSC-CN-36935
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The project I am working on at NASA-Johnson Space Center in Houston, TX is a hexapod robot. This project was started by various engineers at the Trick Lab. The goal of this project is to have the hexapod track a yellow ball or possibly another object from left to right and up/down. The purpose is to have it track an object like a real creature. The project will consist of using software and hardware. This project started with a hexapod robot which uses a senor bar to track a yellow ball but with a limited field of vision. The sensor bar acts as the robots "head." Two servos will be added to the hexapod to create flexion and extension of the head. The neck and head servos will have to be programmed to be added to the original memory map of the existing servos. I will be using preexisting code. The main programming language that will be used to add to the preexisting code is C++. The trick modeling and simulation software will also be used in the process to improve its tracking and movement. This project will use a trial and error approach, basically seeing what works and what does not. The first step is to initially understand how the hexapod works. To get a general understanding of how the hexapod maneuvers and plan on how to had a neck and head servo which works with the rest of the body. The second step would be configuring the head and neck servos with the leg servos. During this step, limits will be programmed specifically for the each servo. By doing this, the servo is limited to how far it can rotate both clockwise and counterclockwise and this is to prevent hardware damage. The hexapod will have two modes in which it works in. The first mode will be if the sensor bar does not detect an object. If the object it is programmed to look for is not in its view it will automatically scan from left to right 3 times then up and down once. The second mode will be if the sensor bar does detect the object. In this mode the hexapod will track the object from left to right or up and down. The hexapod will eventually be able to track the object moving its head and body in sync with on another and being able to rotate its body at 360 degrees. This is the plans and possible end results for the hexapod robot I will be working on during my summer internship at NASA Johnson Space Center. Since working on the hexapod project I have gained an increase interest in robotics. I enjoy the process of critical thinking. Also will working on this project I was challenged in a way that made more passionate to strive even more to become an engineer. I've learned that asking questions is an important part of the learning process. Also I learn that much more is accomplished when teamwork is applied.
    Keywords: Cybernetics, Artificial Intelligence and Robotics
    Type: JSC-CN-36969
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-07-19
    Description: The main task for this project was the development of a prototype for the Space to Space Advanced EMU Radio (SSAER). The SSAER is an updated version of the Space to Space EMU Radio (SSER), which is the current radio used by EMUs (Extravehicular Mobility Unit) for communication between suits and with the ISS. The SSER was developed in 1999, and it was desired to update the design used in the system. Importantly, besides replacing out-of-production parts it was necessary to decrease the size of the radio due to increased volume constraints with the updated Portable Life Support System (PLSS) 2.5, which will be attached on future space suits. In particular, it was desired to fabricate a PCB for the front-end of the prototype SSAER system. Once this board was manufactured and all parts assembled, it could then be tested for quality of operation as well as compliancy with the SSER required specifications. Upon arrival, a small outline of the target system was provided, and it was my responsibility to take that outline to a finished, testable board. This board would include several stages, including frequency mixing, amplification, modulation, demodulation, and handled both the transmit and receive lines of the radio. I developed a new design based on the old SSER system and the outline provided to me, and found parts to fit the tasks in my design. It was also important to consider the specifications of the SSER, which included the system noise figure, gain, and power consumption. Further, all parts needed to be impedance matched, and spurious signals needed to be avoided. In order to fulfill these two requirements, it was necessary to perform some calculations using a Smith Chart and excel analysis. Once all parts were selected, I drew the schematics for the system in Altium Designer. This included developing schematic symbols, as well as layout. Once the schematic was finished, it was then necessary to lay the parts out onto a PCB using Altium. Similar to the schematic design, in order to accomplish this it was necessary to develop component land patterns and add component 3D models. All of this was achieved, and the PCB is currently in review. After it is finished being reviewed, this board will be sent out for manufacture. All electronic components used in the PCB have been acquired, and once the board arrives they will be soldered onto the board using a machine in building 44. Finally, the board will be tested for performance on-site. This will likely be accomplished by the end of the internship.
    Keywords: Space Communications, Spacecraft Communications, Command and Tracking
    Type: JSC-CN-37169
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...