ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (22,888)
  • MDPI Publishing  (10,327)
  • 2025-2025
  • 2015-2019  (33,215)
  • 1975-1979
  • 2016  (33,215)
Collection
Years
  • 2025-2025
  • 2015-2019  (33,215)
  • 1975-1979
Year
  • 1
    facet.materialart.
    Unknown
    Oxford University Press
    Publication Date: 2017-04-04
    Description: We provide an updated present-day stress map for the Italian territory. Following the World Stress Map (WSM) Project guidelines, we list the different stress indicators, explaining the criteria used to select data. We discuss the data, which will also be included in the 2016 release of the WSM, highlighting the areas for which we have added stress information. Our map displays the minimum horizontal stress orientations inferred from crustal stress indicators down to 40 km depth using data of A–C quality, updated for earthquakes until December 2015. We have completely reviewed all data, and the data set now contains 855 entries, in contrast to the previous 715. The number of data with A–C quality of 630 corresponds to an increase of 26 per cent relative to the previous data set. In particular, the new data set contains the results of the analysis of borehole breakouts, critically reviewed data from earthquake focal mechanisms, data concerning active faults, formal inversions of focal mechanisms of seismic sequences or of restricted areas and one stress determination from overcoring. The new data set defines the stress field in areas not well covered by the previous data: the region north to the Po Plain and the central Adriatic sea, both characterized by a thrust- and strike-faulting regime, the northern Sicilian belt with a prevailing normal-faulting regime, and the Ionian sea with a strike-slip regime.
    Description: Published
    Description: 1525-1531
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Seismicity and tectonics ; Dynamics: seismotectonics ; Crustal structure ; Europe ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: Although there are many methods for investigating tectonic structures, many faults remain hidden, and they can endanger the life and property of people living along them. The slopes of volcanoes are covered with such hidden faults, near which strong earthquakes and gas releases can appear. Revealing hidden faults can therefore contribute significantly to the protection of people living in volcanic areas. In the study, seven different techniques were used for making measurements of in-soil radon concentrations in order to search for hidden faults on the SE flank of the Mt. Etna volcano. These reported methods had previously been proved to be useful tools for investigating fault structures. The main aim of the experiment presented here was to evaluate the usability of these methods in the geological conditions of the Mt. Etna region, and to find the best place for continual radon monitoring using a permanent station in the near future.
    Description: Published
    Description: 70-73
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: Mt. Etna ; soil gas ; hidden faults ; radon ; 04. Solid Earth::04.02. Exploration geophysics::04.02.01. Geochemical exploration
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Oxford University Press
    In:  EPIC3ICES Journal of Marine Science, Oxford University Press, 73, pp. 772-782, ISSN: 1054-3139
    Publication Date: 2016-11-30
    Description: Global warming and ocean acidification are among the most important stressors for aquatic ecosystems in the future. To investigate their direct and indirect effects on a near-natural plankton community, a multiple-stressor approach is needed. Hence, we set up mesocosms in a full-factorial design to study the effects of both warming and high CO2 on a Baltic Sea autumn plankton community, concentrating on the impacts on microzooplankton (MZP). MZP abundance, biomass, and species composition were analysed over the course of the experiment. We observed that warming led to a reduced time-lag between the phytoplankton bloom and an MZP biomass maximum. MZP showed a significantly higher growth rate and an earlier biomass peak in the warm treatments while the biomass maximum was not affected. Increased pCO2 did not result in any significant effects on MZP biomass, growth rate, or species composition irrespective of the temperature, nor did we observe any significant interactions between CO2 and temperature. We attribute this to the high tolerance of this estuarine plankton community to fluctuations in pCO2, often resulting in CO2 concentrations higher than the predicted end-of-century concentration for open oceans. In contrast, warming can be expected to directly affect MZP and strengthen its coupling with phytoplankton by enhancing its grazing pressure.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © Crown Copyright, 2015. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 204 (2016): 1-20, doi:10.1093/gji/ggv416.
    Description: The Canada Basin and the southern Alpha-Mendeleev ridge complex underlie a significant proportion of the Arctic Ocean, but the geology of this undrilled and mostly ice-covered frontier is poorly known. New information is encoded in seismic wide-angle reflections and refractions recorded with expendable sonobuoys between 2007 and 2011. Velocity–depth samples within the sedimentary succession are extracted from published analyses for 142 of these records obtained at irregularly spaced stations across an area of 1.9E + 06 km2. The samples are modelled at regional, subregional and station-specific scales using an exponential function of inverse velocity versus depth with regionally representative parameters determined through numerical regression. With this approach, smooth, non-oscillatory velocity–depth profiles can be generated for any desired location in the study area, even where the measurement density is low. Practical application is demonstrated with a map of sedimentary thickness, derived from seismic reflection horizons interpreted in the time domain and depth converted using the velocity–depth profiles for each seismic trace. A thickness of 12–13 km is present beneath both the upper Mackenzie fan and the middle slope off of Alaska, but the sedimentary prism thins more gradually outboard of the latter region. Mapping of the observed-to-predicted velocities reveals coherent geospatial trends associated with five subregions: the Mackenzie fan; the continental slopes beyond the Mackenzie fan; the abyssal plain; the southwestern Canada Basin; and, the Alpha-Mendeleev magnetic domain. Comparison of the subregional velocity–depth models with published borehole data, and interpretation of the station-specific best-fitting model parameters, suggests that sandstone is not a predominant lithology in any of the five subregions. However, the bulk sand-to-shale ratio likely increases towards the Mackenzie fan, and the model for this subregion compares favourably with borehole data for Miocene turbidites in the eastern Gulf of Mexico. The station-specific results also indicate that Quaternary sediments coarsen towards the Beaufort-Mackenzie and Banks Island margins in a manner that is consistent with the variable history of Laurentide Ice Sheet advance documented for these margins. Lithological factors do not fully account for the elevated velocity–depth trends that are associated with the southwestern Canada Basin and the Alpha-Mendeleev magnetic domain. Accelerated porosity reduction due to elevated palaeo-heat flow is inferred for these regions, which may be related to the underlying crustal types or possibly volcanic intrusion of the sedimentary succession. Beyond exploring the variation of an important physical property in the Arctic Ocean basin, this study provides comparative reference for global studies of seismic velocity, burial history, sedimentary compaction, seismic inversion and overpressure prediction, particularly in mudrock-dominated successions.
    Keywords: Numerical approximations and analysis ; Spatial analysis ; Controlled source seismology ; Acoustic properties ; Sedimentary basin processes ; Large igneous provinces ; Crustal structure ; Arctic region
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology and Evolution 7 (2015): 3207-3225, doi:10.1093/gbe/evv210.
    Description: High-throughput sequencing of reduced representation libraries obtained through digestion with restriction enzymes—generically known as restriction site associated DNA sequencing (RAD-seq)—is a common strategy to generate genome-wide genotypic and sequence data from eukaryotes. A critical design element of any RAD-seq study is knowledge of the approximate number of genetic markers that can be obtained for a taxon using different restriction enzymes, as this number determines the scope of a project, and ultimately defines its success. This number can only be directly determined if a reference genome sequence is available, or it can be estimated if the genome size and restriction recognition sequence probabilities are known. However, both scenarios are uncommon for nonmodel species. Here, we performed systematic in silico surveys of recognition sequences, for diverse and commonly used type II restriction enzymes across the eukaryotic tree of life. Our observations reveal that recognition sequence frequencies for a given restriction enzyme are strikingly variable among broad eukaryotic taxonomic groups, being largely determined by phylogenetic relatedness. We demonstrate that genome sizes can be predicted from cleavage frequency data obtained with restriction enzymes targeting “neutral” elements. Models based on genomic compositions are also effective tools to accurately calculate probabilities of recognition sequences across taxa, and can be applied to species for which reduced representation data are available (including transcriptomes and neutral RAD-seq data sets). The analytical pipeline developed in this study, PredRAD (https://github.com/phrh/PredRAD), and the resulting databases constitute valuable resources that will help guide the design of any study using RAD-seq or related methods.
    Description: This research was supported by the Office of Ocean Exploration and Research of the National Oceanic and Atmospheric Administration (NA09OAR4320129 to T.S.); the Division of Ocean Sciences of the National Science Foundation (OCE-1131620 to T.S.); the Astrobiology Science and Technology for Exploring Planets program of the National Aeronautics and Space Administration (NNX09AB76G to T.S.); and the Academic Programs Office (Ocean Ventures Fund to S.H.), the Ocean Exploration Institute (Fellowship support to T.M.S.), and the Ocean Life Institute of the Woods Hole Oceanographic Institution (internal grant to T.M.S. and S.H.).
    Keywords: RAD-seq ; Reduced representation sequencing ; PredRAD ; Experimental design ; Genome size prediction ; Restriction recognition sequence probability
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-25
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Nucleic Acids Research 44 (2016): e157, doi:10.1093/nar/gkw738.
    Description: Site-directed RNA editing (SDRE) is a strategy to precisely alter genetic information within mRNAs. By linking the catalytic domain of the RNA editing enzyme ADAR to an antisense guide RNA, specific adenosines can be converted to inosines, biological mimics for guanosine. Previously, we showed that a genetically encoded iteration of SDRE could target adenosines expressed in human cells, but not efficiently. Here we developed a reporter assay to quantify editing, and used it to improve our strategy. By enhancing the linkage between ADAR's catalytic domain and the guide RNA, and by introducing a mutation in the catalytic domain, the efficiency of converting a UAG premature termination codon (PTC) to tryptophan (UGG) was improved from ∼11% to ∼70%. Other PTCs were edited, but less efficiently. Numerous off-target edits were identified in the targeted mRNA, but not in randomly selected endogenous messages. Off-target edits could be eliminated by reducing the amount of guide RNA with a reduction in on-target editing. The catalytic rate of SDRE was compared with those for human ADARs on various substrates and found to be within an order of magnitude of most. These data underscore the promise of site-directed RNA editing as a therapeutic or experimental tool.
    Description: National Institutes of Health [1R0111223855, 1R01NS64259]; Cystic Fibrosis Foundation Therapeutics [Rosent14XXO]; Infrastructural support was provided by the National Institutes of Health [NIGMS 1P20GM103642, NIMHD 8G12-MD007600]; National Science Foundation [DBI 0115825, DBI 1337284]; Department of Defense [52680-RT-ISP].
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-26
    Description: Author Posting. © Oxford University Press, 2016. This article is posted here by permission of Oxford University Press for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 205 (2016): 728-743, doi:10.1093/gji/ggw044.
    Description: While elasticity is a defining characteristic of the Earth's lithosphere, it is often ignored in numerical models of long-term tectonic processes in favour of a simpler viscoplastic description. Here we assess the consequences of this assumption on a well-studied geodynamic problem: the growth of normal faults at an extensional plate boundary. We conduct 2-D numerical simulations of extension in elastoplastic and viscoplastic layers using a finite difference, particle-in-cell numerical approach. Our models simulate a range of faulted layer thicknesses and extension rates, allowing us to quantify the role of elasticity on three key observables: fault-induced topography, fault rotation, and fault life span. In agreement with earlier studies, simulations carried out in elastoplastic layers produce rate-independent lithospheric flexure accompanied by rapid fault rotation and an inverse relationship between fault life span and faulted layer thickness. By contrast, models carried out with a viscoplastic lithosphere produce results that may qualitatively resemble the elastoplastic case, but depend strongly on the product of extension rate and layer viscosity U × ηL. When this product is high, fault growth initially generates little deformation of the footwall and hanging wall blocks, resulting in unrealistic, rigid block-offset in topography across the fault. This configuration progressively transitions into a regime where topographic decay associated with flexure is fully accommodated within the numerical domain. In addition, high U × ηL favours the sequential growth of multiple short-offset faults as opposed to a large-offset detachment. We interpret these results by comparing them to an analytical model for the fault-induced flexure of a thin viscous plate. The key to understanding the viscoplastic model results lies in the rate-dependence of the flexural wavelength of a viscous plate, and the strain rate dependence of the force increase associated with footwall and hanging wall bending. This behaviour produces unrealistic deformation patterns that can hinder the geological relevance of long-term rifting models that assume a viscoplastic rheology.
    Description: This work was supported by NSF grants OCE-11-54238 (JAO, MDB), EAR-10-10432 (MDB) and OCE-11-55098 (GI), as well as a WHOI Deep Exploration Institute grant and start-up support from the University of Idaho (EM).
    Keywords: Mid-ocean ridge processes ; Continental tectonics: extensional ; Lithospheric flexure ; Mechanics, theory, and modelling
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: © The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Conservation Physiology 4 (2016): cow014, doi:10.1093/conphys/cow014.
    Description: Reproduction of mysticete whales is difficult to monitor, and basic parameters, such as pregnancy rate and inter-calving interval, remain unknown for many populations. We hypothesized that baleen plates (keratinous strips that grow downward from the palate of mysticete whales) might record previous pregnancies, in the form of high-progesterone regions in the sections of baleen that grew while the whale was pregnant. To test this hypothesis, longitudinal baleen progesterone profiles from two adult female North Atlantic right whales (Eubalaena glacialis) that died as a result of ship strike were compared with dates of known pregnancies inferred from calf sightings and post-mortem data. We sampled a full-length baleen plate from each female at 4 cm intervals from base (newest baleen) to tip (oldest baleen), each interval representing ∼60 days of baleen growth, with high-progesterone areas then sampled at 2 or 1 cm intervals. Pulverized baleen powder was assayed for progesterone using enzyme immunoassay. The date of growth of each sampling location on the baleen plate was estimated based on the distance from the base of the plate and baleen growth rates derived from annual cycles of stable isotope ratios. Baleen progesterone profiles from both whales showed dramatic elevations (two orders of magnitude higher than baseline) in areas corresponding to known pregnancies. Baleen hormone analysis shows great potential for estimation of recent reproductive history, inter-calving interval and general reproductive biology in this species and, possibly, in other mysticete whales.
    Description: This work was supported by the Eppley Foundation for Research, the National Oceanographic and Atmospheric Administration Marine Mammal Health and Stranding Program and the Woods Hole Oceanographic Institution Ocean Life Institute.
    Keywords: Baleen ; Cetacea ; Marine mammals ; Pregnancy ; Progesterone ; Reproduction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Author Posting. © The Author(s), 2016. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 205 (2016): 785-795, doi:10.1093/gji/ggw036.
    Description: An L-configured, three-component short period seismic array was deployed on the Ross Ice Shelf, Antarctica during November 2014. Polarization analysis of ambient noise data from these stations shows linearly polarized waves for frequency bands between 0.2 and 2 Hz. A spectral peak at about 1.6 Hz is interpreted as the resonance frequency of the water column and is used to estimate the water layer thickness below the ice shelf. The frequency band from 4 to 18 Hz is dominated by Rayleigh and Love waves propagating from the north that, based on daily temporal variations, we conclude were generated by field camp activity. Frequency–slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile within the firn and ice to ∼150 m depth. The derived density profile allows estimation of the pore close-off depth and the firn–air content thickness. Separate inversions of Rayleigh and Love wave dispersion curves give different shear wave velocity profiles within the firn. We attribute this difference to an effective anisotropy due to fine layering. The layered structure of firn, ice, water and the seafloor results in a characteristic dispersion curve below 7 Hz. Forward modelling the observed Rayleigh wave dispersion curves using representative firn, ice, water and sediment structures indicates that Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. The forward modelling shows that analysis of seismic data from an ice shelf provides the possibility of resolving ice shelf thickness, water column thickness and the physical properties of the ice shelf and underlying seafloor using passive-source seismic data.
    Description: PDB, AD and PG were supported by NSF Grant PLR 1246151. RAS was supported by NSF Grant PLR-1246416. DAW, RA and AN were supported under NSF Grants PLR-1142518, 1141916 and 1142126, respectively. PDB also received support from the California Department of Parks and Recreation, Division of Boating and Waterways under contract 11-106-107.
    Keywords: Glaciology ; Surface waves and free oscillations ; Seismic anisotropy ; Antarctica
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © International Council for the Exploration of the Sea, 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in ICES Journal of Marine Science 73 (2016): 1839-1850, doi: 10.1093/icesjms/fsw086.
    Description: For terrestrial and marine benthic ecologists, landscape ecology provides a framework to address issues of complexity, patchiness, and scale—providing theory and context for ecosystem based management in a changing climate. Marine pelagic ecosystems are likewise changing in response to warming, changing chemistry, and resource exploitation. However, unlike spatial landscapes that migrate slowly with time, pelagic seascapes are embedded in a turbulent, advective ocean. Adaptations from landscape ecology to marine pelagic ecosystem management must consider the nature and scale of biophysical interactions associated with organisms ranging from microbes to whales, a hierarchical organization shaped by physical processes, and our limited capacity to observe and monitor these phenomena across global oceans. High frequency, multiscale, and synoptic characterization of the 4-D variability of seascapes are now available through improved classification methods, a maturing array of satellite remote sensing products, advances in autonomous sampling of multiple levels of biological complexity, and emergence of observational networks. Merging of oceanographic and ecological paradigms will be necessary to observe, manage, and conserve species embedded in a dynamic seascape mosaic, where the boundaries, extent, and location of features change with time.
    Description: This work was supported by NASA grant NNX14AP62A “National Marine Sanctuaries as Sentinel Sites for a Demonstration Marine Biodiversity Observation Network (MBON)” funded under the National Ocean Partnership Program (NOPP RFP NOAA-NOS-IOOS-2014-2003803 in partnership between NOAA, BOEM, and NASA), the NOAA Integrated Ocean Observing System (IOOS) Program Office, and the LenFest Ocean Program.
    Keywords: Biodiversity ; Conservation ; Landscape ; Ocean observations ; Pelagic ; Phytoplankton ; Seascape
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...