ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (139)
  • Time Factors  (94)
  • Protein Binding  (45)
  • Nature Publishing Group (NPG)  (139)
  • American Chemical Society (ACS)
  • Frontiers Media
  • Oxford University Press
  • PeerJ
  • Springer Nature
  • Wiley
  • Wiley-Blackwell
  • 2015-2019  (139)
  • 1985-1989
  • 1980-1984
  • 1935-1939
  • 2015  (139)
  • Chemistry and Pharmacology  (139)
  • Biology  (139)
  • Medicine  (139)
  • Education
  • Geography
Collection
  • Journals
  • Articles  (139)
Publisher
Years
  • 2015-2019  (139)
  • 1985-1989
  • 1980-1984
  • 1935-1939
Year
Topic
  • 1
    Publication Date: 2015-04-23
    Description: The current outbreak of Ebola virus in West Africa is unprecedented, causing more cases and fatalities than all previous outbreaks combined, and has yet to be controlled. Several post-exposure interventions have been employed under compassionate use to treat patients repatriated to Europe and the United States. However, the in vivo efficacy of these interventions against the new outbreak strain of Ebola virus is unknown. Here we show that lipid-nanoparticle-encapsulated short interfering RNAs (siRNAs) rapidly adapted to target the Makona outbreak strain of Ebola virus are able to protect 100% of rhesus monkeys against lethal challenge when treatment was initiated at 3 days after exposure while animals were viraemic and clinically ill. Although all infected animals showed evidence of advanced disease including abnormal haematology, blood chemistry and coagulopathy, siRNA-treated animals had milder clinical features and fully recovered, while the untreated control animals succumbed to the disease. These results represent the first, to our knowledge, successful demonstration of therapeutic anti-Ebola virus efficacy against the new outbreak strain in nonhuman primates and highlight the rapid development of lipid-nanoparticle-delivered siRNA as a countermeasure against this highly lethal human disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467030/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4467030/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Thi, Emily P -- Mire, Chad E -- Lee, Amy C H -- Geisbert, Joan B -- Zhou, Joy Z -- Agans, Krystle N -- Snead, Nicholas M -- Deer, Daniel J -- Barnard, Trisha R -- Fenton, Karla A -- MacLachlan, Ian -- Geisbert, Thomas W -- U19 AI109711/AI/NIAID NIH HHS/ -- U19AI109711/AI/NIAID NIH HHS/ -- England -- Nature. 2015 May 21;521(7552):362-5. doi: 10.1038/nature14442. Epub 2015 Apr 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Tekmira Pharmaceuticals, Burnaby, British Columbia V5J 5J8, Canada. ; 1] Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas 77550, USA [2] Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas 77550, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25901685" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Disease Models, Animal ; Ebolavirus/classification/*drug effects/*genetics ; Female ; Hemorrhagic Fever, Ebola/pathology/prevention & control/*therapy/*virology ; Humans ; Macaca mulatta/virology ; Male ; Nanoparticles/*administration & dosage ; RNA, Small Interfering/*administration & dosage/pharmacology/*therapeutic use ; Survival Analysis ; Time Factors ; Treatment Outcome ; Viral Load/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-07-24
    Description: Bacteria secrete peptides and proteins to communicate, to poison competitors, and to manipulate host cells. Among the various protein-translocation machineries, the peptidase-containing ATP-binding cassette transporters (PCATs) are appealingly simple. Each PCAT contains two peptidase domains that cleave the secretion signal from the substrate, two transmembrane domains that form a translocation pathway, and two nucleotide-binding domains that hydrolyse ATP. In Gram-positive bacteria, PCATs function both as maturation proteases and exporters for quorum-sensing or antimicrobial polypeptides. In Gram-negative bacteria, PCATs interact with two other membrane proteins to form the type 1 secretion system. Here we present crystal structures of PCAT1 from Clostridium thermocellum in two different conformations. These structures, accompanied by biochemical data, show that the translocation pathway is a large alpha-helical barrel sufficient to accommodate small folded proteins. ATP binding alternates access to the transmembrane pathway and also regulates the protease activity, thereby coupling substrate processing to translocation.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, David Yin-wei -- Huang, Shuo -- Chen, Jue -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Jul 23;523(7561):425-30. doi: 10.1038/nature14623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Laboratory of Membrane Biology and Biophysics, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA [2] Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA. ; Howard Hughes Medical Institute, 1230 York Avenue, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26201595" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/*chemistry/metabolism ; Adenosine Triphosphate/deficiency/metabolism ; Clostridium thermocellum/*chemistry ; Crystallography, X-Ray ; Models, Molecular ; Peptides/*metabolism/secretion ; Protein Binding ; Protein Multimerization ; Protein Structure, Tertiary ; Structure-Activity Relationship
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-11-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Geddes, Linda -- England -- Nature. 2015 Nov 5;527(7576):22-5. doi: 10.1038/527022a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26536940" target="_blank"〉PubMed〈/a〉
    Keywords: Attention Deficit Disorder with ; Hyperactivity/diagnosis/physiopathology/psychology ; Autism Spectrum Disorder/diagnosis/physiopathology/psychology ; Brain/blood supply/*growth & development/*physiology ; *Child Development ; Child, Preschool ; Electroencephalography ; Electromyography ; Eye Movements/physiology ; Female ; Humans ; Infant ; Infant Behavior/*physiology/*psychology ; *Laboratories ; London ; Magnetic Resonance Imaging ; Male ; Mirror Neurons ; Neuroimaging ; Personality ; Spectroscopy, Near-Infrared ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-05-29
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉England -- Nature. 2015 May 28;521(7553):394. doi: 10.1038/521394a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26017406" target="_blank"〉PubMed〈/a〉
    Keywords: *Bibliometrics/history ; History, 19th Century ; History, 20th Century ; History, 21st Century ; Research/*history ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-10-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉de Oliveira, Joao Ricardo Mendes -- England -- Nature. 2015 Oct 22;526(7574):506. doi: 10.1038/526506e.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Federal University of Pernambuco, Recife, Brazil.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26490608" target="_blank"〉PubMed〈/a〉
    Keywords: Brazil ; Financing, Organized/*economics/*organization & administration ; Research Personnel/*economics ; Research Support as Topic/*economics/*organization & administration ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-05-29
    Description: Robots have transformed many industries, most notably manufacturing, and have the power to deliver tremendous benefits to society, such as in search and rescue, disaster response, health care and transportation. They are also invaluable tools for scientific exploration in environments inaccessible to humans, from distant planets to deep oceans. A major obstacle to their widespread adoption in more complex environments outside factories is their fragility. Whereas animals can quickly adapt to injuries, current robots cannot 'think outside the box' to find a compensatory behaviour when they are damaged: they are limited to their pre-specified self-sensing abilities, can diagnose only anticipated failure modes, and require a pre-programmed contingency plan for every type of potential damage, an impracticality for complex robots. A promising approach to reducing robot fragility involves having robots learn appropriate behaviours in response to damage, but current techniques are slow even with small, constrained search spaces. Here we introduce an intelligent trial-and-error algorithm that allows robots to adapt to damage in less than two minutes in large search spaces without requiring self-diagnosis or pre-specified contingency plans. Before the robot is deployed, it uses a novel technique to create a detailed map of the space of high-performing behaviours. This map represents the robot's prior knowledge about what behaviours it can perform and their value. When the robot is damaged, it uses this prior knowledge to guide a trial-and-error learning algorithm that conducts intelligent experiments to rapidly discover a behaviour that compensates for the damage. Experiments reveal successful adaptations for a legged robot injured in five different ways, including damaged, broken, and missing legs, and for a robotic arm with joints broken in 14 different ways. This new algorithm will enable more robust, effective, autonomous robots, and may shed light on the principles that animals use to adapt to injury.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cully, Antoine -- Clune, Jeff -- Tarapore, Danesh -- Mouret, Jean-Baptiste -- England -- Nature. 2015 May 28;521(7553):503-7. doi: 10.1038/nature14422.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Sorbonne Universites, Universite Pierre et Marie Curie (UPMC), Paris 06, UMR 7222, Institut des Systemes Intelligents et de Robotique (ISIR), F-75005, Paris, France [2] CNRS, UMR 7222, Institut des Systemes Intelligents et de Robotique (ISIR), F-75005, Paris, France. ; Department of Computer Science, University of Wyoming, Laramie, Wyoming 82071, USA. ; 1] Sorbonne Universites, Universite Pierre et Marie Curie (UPMC), Paris 06, UMR 7222, Institut des Systemes Intelligents et de Robotique (ISIR), F-75005, Paris, France [2] CNRS, UMR 7222, Institut des Systemes Intelligents et de Robotique (ISIR), F-75005, Paris, France [3] Inria, Team Larsen, Villers-les-Nancy, F-54600, France [4] CNRS, Loria, UMR 7503, Vandoeuvre-les-Nancy, F-54500, France [5] Universite de Lorraine, Loria, UMR 7503, Vandoeuvre-les-Nancy, F-54500, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26017452" target="_blank"〉PubMed〈/a〉
    Keywords: *Adaptation, Physiological ; Algorithms ; Animals ; *Artificial Intelligence ; Behavior, Animal ; Biomimetics/*methods ; Dogs ; Extremities/*injuries/physiopathology ; Motor Skills ; Robotics/*instrumentation/*methods ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-02-20
    Description: Pluripotent stem cells provide a powerful system to dissect the underlying molecular dynamics that regulate cell fate changes during mammalian development. Here we report the integrative analysis of genome-wide binding data for 38 transcription factors with extensive epigenome and transcriptional data across the differentiation of human embryonic stem cells to the three germ layers. We describe core regulatory dynamics and show the lineage-specific behaviour of selected factors. In addition to the orchestrated remodelling of the chromatin landscape, we find that the binding of several transcription factors is strongly associated with specific loss of DNA methylation in one germ layer, and in many cases a reciprocal gain in the other layers. Taken together, our work shows context-dependent rewiring of transcription factor binding, downstream signalling effectors, and the epigenome during human embryonic stem cell differentiation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499331/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4499331/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tsankov, Alexander M -- Gu, Hongcang -- Akopian, Veronika -- Ziller, Michael J -- Donaghey, Julie -- Amit, Ido -- Gnirke, Andreas -- Meissner, Alexander -- 5F32DK095537/DK/NIDDK NIH HHS/ -- P01 GM099117/GM/NIGMS NIH HHS/ -- P01GM099117/GM/NIGMS NIH HHS/ -- P50HG006193/HG/NHGRI NIH HHS/ -- U01 ES017155/ES/NIEHS NIH HHS/ -- U01ES017155/ES/NIEHS NIH HHS/ -- England -- Nature. 2015 Feb 19;518(7539):344-9. doi: 10.1038/nature14233.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [3] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA. ; 1] Harvard Stem Cell Institute, Cambridge, Massachusetts 02138, USA [2] Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; 1] Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA [2] Department of Immunology, Weizmann Institute, Rehovot, 76100 Israel.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25693565" target="_blank"〉PubMed〈/a〉
    Keywords: *Cell Differentiation/genetics ; Cell Lineage ; Chromatin/chemistry/genetics/metabolism ; Chromatin Assembly and Disassembly/genetics ; DNA Methylation ; Embryonic Stem Cells/*cytology/*metabolism ; Enhancer Elements, Genetic/genetics ; Epigenesis, Genetic/genetics ; Epigenomics ; Genome, Human/genetics ; Germ Layers/cytology/metabolism ; Histones/chemistry/metabolism ; Humans ; Protein Binding ; Signal Transduction ; Transcription Factors/*metabolism ; Transcription, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-09-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tollefson, Jeff -- England -- Nature. 2015 Sep 24;525(7570):434-5. doi: 10.1038/525434a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26399805" target="_blank"〉PubMed〈/a〉
    Keywords: Conservation of Natural Resources/legislation & jurisprudence/*trends ; *Goals ; Humans ; *International Cooperation ; Poverty/legislation & jurisprudence/*prevention & control/trends ; Time Factors ; *United Nations/legislation & jurisprudence
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-30
    Description: The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bondy-Denomy, Joseph -- Garcia, Bianca -- Strum, Scott -- Du, Mingjian -- Rollins, MaryClare F -- Hidalgo-Reyes, Yurima -- Wiedenheft, Blake -- Maxwell, Karen L -- Davidson, Alan R -- MOP-130482/Canadian Institutes of Health Research/Canada -- MOP-136845/Canadian Institutes of Health Research/Canada -- P20GM103500/GM/NIGMS NIH HHS/ -- R01GM108888/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Oct 1;526(7571):136-9. doi: 10.1038/nature15254. Epub 2015 Sep 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada. ; Department of Microbiology and Immunology, Montana State University, Bozeman, Montana 59717, USA. ; Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26416740" target="_blank"〉PubMed〈/a〉
    Keywords: Bacteria/*metabolism/*virology ; Bacteriophages/*metabolism ; CRISPR-Associated Proteins/*antagonists & inhibitors/metabolism ; CRISPR-Cas Systems/genetics/*physiology ; Clustered Regularly Interspaced Short Palindromic Repeats/genetics ; DNA Helicases/antagonists & inhibitors/metabolism ; DNA, Viral/metabolism ; DNA-Binding Proteins/antagonists & inhibitors/metabolism ; Endonucleases/antagonists & inhibitors/metabolism ; *Evolution, Molecular ; Protein Binding ; Protein Subunits/antagonists & inhibitors/metabolism ; Repressor Proteins/genetics/metabolism ; Substrate Specificity ; Viral Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2015-03-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, Dan -- England -- Nature. 2015 Mar 12;519(7542):148-50. doi: 10.1038/519148a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762265" target="_blank"〉PubMed〈/a〉
    Keywords: *Computer Simulation ; *Conflict (Psychology) ; Feedback ; Humans ; Mathematics ; *Models, Theoretical ; Negotiating/psychology ; Psychology, Social/*methods ; *Research ; Time Factors ; Violence/prevention & control ; *Warfare
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...