ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Oxford University Press  (21,336)
  • American Physical Society  (18,690)
  • Periodicals Archive Online (PAO)
  • 2010-2014  (40,026)
  • 2014  (40,026)
  • 1
    facet.materialart.
    Unknown
    American Physical Society
    In:  EPIC3Physical Review E, American Physical Society, 90, pp. 022711-1, ISSN: 1539-3755
    Publication Date: 2014-11-04
    Description: The fascinating ability of algae, insects, and fishes to survive at temperatures below normal freezing is realized by antifreeze proteins (AFPs). These are surface-active molecules and interact with the diffusive water-ice interface thus preventing complete solidification. We propose a dynamical mechanism on how these proteins inhibit the freezing of water. We apply a Ginzburg-Landau-type approach to describe the phase separation in the two-component system (ice, AFP). The free-energy density involves two fields: one for the ice phase with a low AFP concentration and one for liquid water with a high AFP concentration. The time evolution of the ice reveals microstructures resulting from phase separation in the presence of AFPs. We observed a faster clustering of pre-ice structure connected to a locking of grain size by the action of AFP, which is an essentially dynamical process. The adsorption of additional water molecules is inhibited and the further growth of ice grains stopped. The interfacial energy between ice and water is lowered allowing the AFPs to form smaller critical ice nuclei. Similar to a hysteresis in magnetic materials we observe a thermodynamic hysteresis leading to a nonlinear density dependence of the freezing point depression in agreement with the experiments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2014. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 197 (2014): 697-704, doi:10.1093/gji/ggu048.
    Description: After the 1960 M9.5 Valdivia, Chile earthquake, three types of geodetic observations were made during four time periods at nearby locations. These post-seismic observations were previously explained by post-seismic afterslip on the downdip extension of the 1960 rupture plane. In this study, we demonstrate that the post-seismic observations can be explained alternatively by volumetric viscoelastic relaxation of the asthenosphere mantle. In searching for the best-fitting viscosity model, we invert for two variables, the thickness of the elastic lithosphere, He, and the effective Maxwell decay time of the asthenosphere mantle, TM, assuming a 100-km-thick asthenosphere mantle. The best solutions to fit the observations in four sequential time periods, 1960–1964, 1960–1968, 1965–1973 and 1980–2010, each yield a similar He value of about 65 km but significantly increasing TM values of 0.7, 6, 10 and 80 yr, respectively. We calculate the corresponding viscoelastic Coulomb stress increase since 1960 on the future rupture plane of the 2010 M8.8 Maule, Chile earthquake. The calculated viscoelastic stress increase on the 2010 rupture plane varies gradually from 13.1 bars at the southern end to 0.1 bars at the northern end. In contrast, the stress increase caused by an afterslip model has a similar spatial distribution but slightly smaller values of 0.1–3.2 bars on the 2010 rupture plane.
    Description: This work was supported by a MIT/WHOI Joint Program Student Fellowship and a Graduate Student Fellowship from the WHOI Deep Ocean Exploration Institute (MD), as well as NSF Grant OCE-1141785 and a Deerbrook Foundation Award (JL).
    Keywords: Seismic cycle ; Transient deformation ; Seismicity and tectonics ; Subduction zone processes ; Dynamics: seismotectonics ; South America
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology and Evolution 5 (2013): 2368-2381, doi:10.1093/gbe/evt179.
    Description: The dinoflagellates are an evolutionarily and ecologically important group of microbial eukaryotes. Previous work suggests that horizontal gene transfer (HGT) is an important source of gene innovation in these organisms. However, dinoflagellate genomes are notoriously large and complex, making genomic investigation of this phenomenon impractical with currently available sequencing technology. Fortunately, de novo transcriptome sequencing and assembly provides an alternative approach for investigating HGT. We sequenced the transcriptome of the dinoflagellate Alexandrium tamarense Group IV to investigate how HGT has contributed to gene innovation in this group. Our comprehensive A. tamarense Group IV gene set was compared with those of 16 other eukaryotic genomes. Ancestral gene content reconstruction of ortholog groups shows that A. tamarense Group IV has the largest number of gene families gained (314–1,563 depending on inference method) relative to all other organisms in the analysis (0–782). Phylogenomic analysis indicates that genes horizontally acquired from bacteria are a significant proportion of this gene influx, as are genes transferred from other eukaryotes either through HGT or endosymbiosis. The dinoflagellates also display curious cases of gene loss associated with mitochondrial metabolism including the entire Complex I of oxidative phosphorylation. Some of these missing genes have been functionally replaced by bacterial and eukaryotic xenologs. The transcriptome of A. tamarense Group IV lends strong support to a growing body of evidence that dinoflagellate genomes are extraordinarily impacted by HGT.
    Description: J.H.W. was supported by the NSF IGERT Program in Comparative Genomics at the University of Arizona (grant number DGE-0654435). This work was supported by grants from the National Science Foundation (grant numbers OCE-0723498, EF-0732440) and funding provided by the BIO5 Institute at the University of Arizona to J.D.H.
    Keywords: Gene innovation ; Alexandrium tamarense Group IV ; Phylogenetic profile ; Phylogenomics ; De novo transcriptome assembly ; Mitochondrial metabolism
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/vnd.ms-excel
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: Author Posting. © Author, 2014. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 198 (2014): 622-636, doi: 10.1093/gji/ggu121.
    Description: The robust statistical model of a Gaussian core contaminated by outlying data that underlies robust estimation of the magnetotelluric (MT) response function has been re-examined. The residuals from robust estimators are systematically long tailed compared to a distribution based on the Gaussian, and hence are inconsistent with the robust model. Instead, MT data are pervasively described by the alpha stable distribution family whose variance and sometimes mean are undefined. A maximum likelihood estimator (MLE) that exploits the stable nature of MT data is formulated, and its two-stage implementation in which stable parameters are first fit to the data and then the MT responses are solved for is described. The MLE is shown to be inherently robust, but differs from the conventional robust estimator because it is based on a model derived from the data, while robust estimators are ad hoc, being based on the robust model that is inconsistent with actual data. Propriety versus impropriety of the complex MT response was investigated, and a likelihood ratio test for propriety and its null distribution was established. The Cramér-Rao lower bounds for the covariance matrix of proper and improper MT responses were specified. The MLE was applied to exemplar long period and broad-band data sets from South Africa. Both are shown to be significantly stably distributed using the Kolmogorov–Smirnov goodness of fit and Ansari-Bradley non-parametric dispersion tests. Impropriety of the MT responses at both sites is pervasive, hence the improper Cramér-Rao bound was used to estimate the MLE covariance. The MLE is shown to be nearly unbiased and well described by a Gaussian distribution based on bootstrap simulation. The MLE was compared to a conventional robust estimator, establishing that the standard errors of the former are systematically smaller than for the latter and that the standardized differences between them exhibit excursions that are both too frequent and too large to be described by a Gaussian model. This is ascribed to pervasive bias of the robust estimator that is to some degree obscured by their systematically large confidence bounds. Finally, a series of topics for further investigation is proposed.
    Description: This work was supported by NSF grant EAR0809074.
    Keywords: Time series analysis ; Numerical approximations and analysis ; Fractals and multifractals ; Probability distributions ; Magnetotellurics
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Journal of Plankton Research 36 (2014): 943-955, doi:10.1093/plankt/fbu029.
    Description: The mechanisms by which phytoplankton cope with stressors in the marine environment are neither fully characterized nor understood. As viruses are the most abundant entities in the global ocean and represent a strong top-down regulator of phytoplankton abundance and diversity, we sought to characterize the cellular response of two marine haptophytes to virus infection in order to gain more knowledge about the nature and diversity of microalgal responses to this chronic biotic stressor. We infected laboratory cultures of the haptophytes Haptolina ericina and Phaeocystis pouchetii with CeV-01B or PpV-01B dsDNA viruses, respectively, and assessed the extent to which host cellular responses resemble programmed cell death (PCD) through the activation of diagnostic molecular and biochemical markers. Pronounced DNA fragmentation and activation of cysteine aspartate-specific proteases (caspases) were only detected in virus-infected cultures of these phytoplankton. Inhibition of host caspase activity by addition of the pan-caspase inhibitor z-VAD-fmk did not impair virus production in either host–virus system, differentiating it from the Emiliania huxleyi-Coccolithovirus model of haptophyte–virus interactions. Nonetheless, our findings point to a general conservation of PCD-like activation during virus infection in ecologically diverse haptophytes, with the subtle heterogeneity of cell death biochemical responses possibly exerting differential regulation on phytoplankton abundance and diversity.
    Description: Funding to J.L.R, R.-A.S. and A.L. was provided by the Norwegian Research Council for the “VIPMAP” (nr. 186142) and “HAPTODIV” (nr. 190307) projects, and by the European Research Council Advanced Grant ERC-AG-LS8 “Microbial Network Organisation” (MINOS, project number 250254). J.L.R. received a FRIBIO overseas research fellowship from the Norwegian Research Council. K.D.B. and B.V.M. were supported by funding from the United States National Science Foundation (OCE-1061883).
    Keywords: Caspase ; DNA fragmentation ; IETD ; Phycodnaviridae ; z-VAD-fmk ; Haptophyte
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Format: application/msword
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-05-26
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Genome Biology and Evolution 6 (2014): 2210-2217, doi:10.1093/gbe/evu177.
    Description: The alpha subunits of voltage-gated calcium channels (Cavs) are large transmembrane proteins responsible for crucial physiological processes in excitable cells. They are assisted by three auxiliary subunits that can modulate their electrical behavior. Little is known about the evolution and roles of the various subunits of Cavs in nonbilaterian animals and in nonanimal lineages. For this reason, we mapped the phyletic distribution of the four channel subunits and reconstructed their phylogeny. Although alpha subunits have deep evolutionary roots as ancient as the split between plants and opistokonths, beta subunits appeared in the last common ancestor of animals and their close-relatives choanoflagellates, gamma subunits are a bilaterian novelty and alpha2/delta subunits appeared in the lineage of Placozoa, Cnidaria, and Bilateria. We note that gene losses were extremely common in the evolution of Cavs, with noticeable losses in multiple clades of subfamilies and also of whole Cav families. As in vertebrates, but not protostomes, Cav channel genes duplicated in Cnidaria. We characterized by in situ hybridization the tissue distribution of alpha subunits in the sea anemone Nematostella vectensis, a nonbilaterian animal possessing all three Cav subfamilies common to Bilateria. We find that some of the alpha subunit subtypes exhibit distinct spatiotemporal expression patterns. Further, all six sea anemone alpha subunit subtypes are conserved in stony corals, which separated from anemones 500 MA. This unexpected conservation together with the expression patterns strongly supports the notion that these subtypes carry unique functional roles.
    Keywords: Voltage-gated calcium channel ; Ion channel ; Cnidaria ; Nematostella vectensis ; Evolution of nervous system
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-01-06
    Print ISSN: 1550-7998
    Electronic ISSN: 1550-2368
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-08
    Print ISSN: 1550-7998
    Electronic ISSN: 1550-2368
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-01-06
    Print ISSN: 1550-7998
    Electronic ISSN: 1550-2368
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-01-09
    Print ISSN: 1550-7998
    Electronic ISSN: 1550-2368
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...