ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Books
  • Articles  (4,745)
  • Wiley  (4,503)
  • Schweizerbart  (242)
  • 2010-2014  (4,745)
  • 1980-1984
  • 1950-1954
  • 2013  (4,745)
  • Geography  (4,745)
Collection
  • Books
  • Articles  (4,745)
Years
  • 2010-2014  (4,745)
  • 1980-1984
  • 1950-1954
Year
Journal
  • 1
    Publication Date: 2013-09-08
    Description: Tree species are predicted to track future climate by shifting their geographic distributions, but climate-mediated migrations are not apparent in a recent continental-scale analysis. To better understand the mechanisms of a possible migration lag, we analyzed relative recruitment patterns by comparing juvenile and adult tree abundances in climate space. One would expect relative recruitment to be higher in cold and dry climates as a result of tree migration with juveniles located further poleward than adults. Alternatively, relative recruitment could be higher in warm and wet climates as a result of higher tree population turnover with increased temperature and precipitation. Using the USDA Forest Service's Forest Inventory and Analysis data at regional scales, we jointly modeled juvenile and adult abundance distributions for 65 tree species in climate space of the eastern United States. We directly compared the optimal climate conditions for juveniles and adults, identified the climates where each species has high relative recruitment, and synthesized relative recruitment patterns across species. Results suggest that for 77% and 83% of the tree species, juveniles have higher optimal temperature and optimal precipitation, respectively, than adults. Across species, the relative recruitment pattern is dominated by relatively more abundant juveniles than adults in warm and wet climates. These different abundance-climate responses through life history are consistent with faster population turnover and inconsistent with the geographic trend of large-scale tree migration. Taken together, this juvenile-adult analysis suggests that tree species might respond to climate change by having faster turnover as dynamics respond to longer growing seasons and higher temperatures, before there is evidence of poleward migration at biogeographic scales. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-09-10
    Description: Land use change as conversion pasture to forest produces several changes on hydrological cycle. In this paper we analyze the effects on stream discharge of afforestation of a small watershed devoted to pasture using the HBV hydrological model. Streamflow data obtained over the first ten years after planting were employed to evaluate the capacity of HBV model to simulate hydrological behavior of catchment after afforestation. Obtained results indicate that the estimation of streamflow was accurate as reflected by statistics (R 2  = 0.90, NSC = 0.89 and PBIAS = 0.34). Afterwards, streamflow under pasture land use (if afforestation had not occurred) was simulated using hydro-meteorological data collected during the period of study and model parameters optimized previously, together with two parameters, pcorr and cevpfo , that were adjusted for pasture conditions. HBV model results indicate that afforestation produced a water yield reduction around 2000 mm (22% of total stream discharge) during the first ten years of planting growth. The differences between forest and pasture land cover are increasing in all seasons year by year. The greatest streamflow reduction was observed in wet period (autumn and winter) with 76% of total reduction. In summer, streamflow reduction represents only 3% of total, however, represents 24.7% of discharge in this season. Streamflow reduction was related to increase of rainfall interception (mainly in wet periods) and the increase of evapotranspiration by plantation in dry periods. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-09-10
    Description: Air flows from the atmosphere into an unconfined aquifer when the water table falls during pumping tests. Pumping test results in unconfined aquifers may be significantly affected by low-permeability zones (LPZs) near the initial water table position because they restrict the downward movement of air. A transient, three-dimensional (3D) air-water two-phase flow model is employed to investigate numerically the effects of local heterogeneity on pumping test results in unconfined aquifers. Two cases of local heterogeneities are considered herein: a LPZ around the pumping well and on one side of the pumping well. Results show that the drawdown with the LPZ is significantly greater than that of the homogeneous aquifer. The differences in drawdown are the most significant at intermediate times and gradually diminish at later times. The LPZ significantly reduces air flow from the atmosphere to the aquifer. The pore air velocity in the LPZ is very low. The air pressure at the observation point under the LPZ when air begins to enter is significantly lower than the air pressure of the homogeneous aquifer at the same point. After that, the air pressure increases quickly and then increases slowly. The time for the air pressure to reach the atmospheric pressure is significantly longer. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-10
    Description: Over the last half century, since logging for timber production became intensive, Borneo has lost much of its pristine tropical forests. The long-term consequences of associated decline in precipitation are evident, and might, in turn, cause much more severe deforestation. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-09-12
    Description: The 170 km long river course of the Guadalete River (western Andalucía) provides an excellent record of Late Pleistocene and Holocene fluvial sedimentation dynamics. Furthermore, its floodplain sediments are very well suited to describe geomorphic changes forced by climate fluctuations, sea-level changes, tectonic influences and human activity. Multiproxy investigations were based on field mapping and the study of 18 profile sections, mainly including sedimentological characterisation, soil-chemical analyses and radiocarbon dating of 34 samples. Findings were complemented by drillings and electrical resistivity tomography. The lowermost 50 km of the river section are divided into an upper and lower part (each 25 km long), based on different sediment preservation conditions. The boundary corresponds to the disappearance of the Late Pleistocene river terrace. Significant floodplain aggradation occurred at around 10 000 cal. years BP, while dynamics were strongly affected by sea-level fluctuations until the early Holocene. Furthermore, sedimentation starting at 8000, 6100, 4600, 2200, 900 and 400 cal. years BP is related to enhanced fluvial dynamics due to environmental stress that presumably was triggered by climate fluctuations, that is, aridification. However, the strongest intensity of sedimentation at 400 cal. years BP points to climate anomalies in the course of the Little Ice Age. In contrast, several periods of stability associated with alluvial soil formation took place during the Bølling and Allerød interstadials, prior to 8000, 6100 and 5100, and after 4300 and 2000 cal. years BP. The anthropogenic signal in floodplain evolution is not clearly distinguishable from that of climate. However, human land use had the potential to amplify geomorphic processes, especially during periods of climate deteriorations that caused increasing stress on the environment.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-13
    Description: Accepting the concept of standardization introduced by the standardized precipitation index (SPI), similar methodologies have been developed to construct some other standardized drought indices such as the standardized precipitation evapotranspiration index (SPEI). In this study, the authors provided deep insight into the SPEI and recognized potential deficiencies/limitations in relating to the climatic water balance it used. By coupling another well-known Palmer drought severity index (PDSI), we proposed a new standardized Palmer drought index (SPDI) through a moisture departure probabilistic approach, which allows multiscalar calculation for accurate temporal and spatial comparison of the hydro-meteorological conditions of different locations. Using datasets of monthly precipitation, temperature and soil available water capacity, the moisture deficit/surplus was calculated at multiple temporal scales and a couple of techniques were adopted to adjust corresponding time series to a generalized extreme value distribution out of several candidates. Results of the historical records (1900–2012) for diverse climates by multiple indices showed that the SPDI was highly consistent and correlated with the SPEI and self-calibrated PDSI (SC-PDSI) at most analyzed time scales. Furthermore, a simple experiment of hypothetical temperature and/or precipitation change scenarios also verified the effectiveness of this newly-derived SPDI index in response to climate change impacts. Being more robust and preferable in spatial consistency and comparability as well as combining the simplicity of calculation with sufficient accounting of the physical nature of water supply and demand relating to droughts, the SPDI is promising to serve as a competent reference and alternative for drought assessment and monitoring. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-13
    Description: Modeled hydrologic processes are represented in a set of numerical equations, the complexity of which can be measured by the total number of variables needed. A single dominant hydrologic process could control the hydrologic response of a watershed, and so the identification of the corresponding dominant variable(s) would aid in identifying a parsimonious model and in collecting more reliable data. By accounting for both model complexity and serial correlation in the variables, a model is used to identify the dominant variables for representing watershed scale streamflow, sediment transport, and phosphorus yields. Long-term water quantity and quality data was used to show that rainfall and non-linear soil water storage were the dominant variables for weekly streamflow, suspended sediment, and particulate phosphorus. Model accuracy did not consistently improve when other statistically significant variables were included. The results suggest that improved model performance may not justify the added model complexity. As such, identification of dominant variables would be the priority for developing parsimonious hydrologic models, especially at watershed scales. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-09-14
    Description: The development of a glacial lake impounded along the retreating, northeastern ice margin of the Fennoscandian Ice Sheet during the last deglaciation and environmental conditions directly following the early Holocene deglaciation have been studied in NE Finland. This so-called Sokli Ice Lake has been reconstructed previously using topographic and geomorphologic evidence. In this paper a multiproxy approach is employed to study a 3-m-thick sediment succession consisting of laminated silts grading into gyttja cored in Lake Loitsana, a remnant of the Sokli Ice Lake. Variations in the sediment and siliceous microfossil records indicate distinct changes in water depth and lake size in the Loitsana basin as the Sokli Ice Lake was drained through various spillways opening up along the retreating ice front. Geochemical data (XRF core-scanning) show changes in the influence of regional catchment geochemistry (Precambrian crystalline rocks) in the glacial lake drainage area versus local catchment geochemistry (Sokli Carbonatite Massif) within the Lake Loitsana drainage area during the lake evolution. Principal component analysis on the geochemical data further suggests that grain-size is an additional factor responsible for the variability of the sediment geochemistry record. The trophic state of the lake changed drastically as a result of morphometric eutrophication once the glacial lake developed into Lake Loitsana. The AMS radiocarbon dating on tree birch seeds found in the glaciolacustrine sediment indicates that Lake Loitsana was deglaciated sometime prior to 10 700 cal. a BP showing that tree Betula was present on the deglaciated land surrounding the glacial lake. Although glacial lakes covered large areas of northern Finland during the last deglaciation, only few glaciolacustrine sediment successions have been studied in any detail. Our study shows the potential of these sediments for multiproxy analysis and contributes to the reconstruction of environmental conditions in NE Finland directly following deglaciation in the early Holocene.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-09-14
    Description: This paper proposes a method to identify blocking onset and decay by means of two stability indicators: enstrophy advection and its integral. The key to this technique is the use of local Lyapunov exponents for the barotropic vorticity equation which can be approximated by the integral of enstrophy (IRE) over a fixed, finite, region. The IRE can then be viewed as a measure of stability. However, by differentiating the IRE with respect to time, two measures of stability can be derived to assess blocking onset and decay: (i) the integral of enstrophy advection (DIRE), for which a time series is used to assess stability; and (ii) enstrophy advection, for which contours are plotted in conjunction with 500 hPa heights to locate blocking. One year of Northern Hemisphere blocking events from July 2011-July 2012 are studied to demonstrate that the integral of enstrophy advection is a useful diagnostic. In particular, time series of IRE and DIRE for four of the blocking cases are presented, while contour plots of enstrophy advection for one case are presented. In all cases studied, the diagnostics were seen to detect the instability in an incipient blocking event and in its decay.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-09-15
    Description: [1]  Although they are key components of the surface ocean carbon budget, physical processes inducing carbon fluxes across the mixed-layer base, i.e. subduction and obduction, have received much less attention than biological processes. Using a global model analysis of the pre-industrial ocean, physical carbon fluxes are quantified and compared to the other carbon fluxes in and out of the surface mixed-layer, i.e. air-sea CO 2 gas exchange and sedimentation of biogenic material. Model-based carbon obduction and subduction are evaluated against independent data-based estimates to the extent that was possible. We find that climatological physical fluxes of DIC are two orders of magnitude larger than the other carbon fluxes and vary over the globe at smaller spatial scale. At temperate latitudes, the subduction of DIC and to a much lesser extent (〈10%) the sinking of particles maintain CO 2 undersaturation, whereas DIC is obducted back to the surface in the tropical band (75%) and Southern Ocean (25%).At the global scale, these two large counter-balancing fluxes of DIC amount to +275.5 PgC y -1 for the supply by obduction and -264.5 PgC y -1 for the removal by subduction which is ~ 3 to 5 times larger than previous estimates. Moreover, we find that subduction of organic carbon (dissolved and particulate) represents ~ 20% of the total export of organic carbon: at the global scale, we evaluate that, of the 11 PgC y–1 of organic material lost from the surface every year, 2.1 PgC y -1 are lost through subduction of organic carbon. Our results emphasis the strong sensitivity of the oceanic carbon cycle to changes in mixed-layer depth, ocean currents and wind.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 11
    Publication Date: 2013-09-15
    Description: Climate warming threatens to increase mass coral bleaching events, and several studies have projected the demise of tropical coral reefs this century. However, recent evidence indicates corals may be able to respond to thermal stress though adaptive processes (e.g., genetic adaptation, acclimatization, and symbiont shuffling). How these mechanisms might influence warming induced bleaching is largely unknown. This study compared how different adaptive processes could affect coral bleaching projections. We used the latest bias-corrected global sea surface temperature (SST) output from the NOAA/GFDL Earth System Model 2 (ESM2M) for the pre-industrial period though 2100 to project coral bleaching trajectories. Initial results showed that, in the absence of adaptive processes, application of a pre-industrial climatology to the NOAA Coral Reef Watch bleaching prediction method over-predicts the present day bleaching frequency. This suggests that corals may have already responded adaptively to some warming over the industrial period. We then modified the prediction method so that the bleaching threshold either permanently increased in response to thermal history (e.g., simulating directional genetic selection) or temporarily increased for 2-10 years in response to a bleaching event (e.g., simulating symbiont shuffling). A bleaching threshold that changes relative to the preceding 60 years of thermal history reduced the frequency of mass bleaching events by 20-80% compared with the ‘no adaptive response’ prediction model by 2100, depending on the emissions scenario. When both types of adaptive responses were applied, up to 14% more reef cells avoided high frequency bleaching by 2100. However, temporary increases in bleaching thresholds alone only delayed the occurrence of high frequency bleaching by ~10 years in all but the lowest emissions scenario. Future research should test the rate and limit of different adaptive responses for coral species across latitudes and ocean basins to determine if and how much corals can respond to increasing thermal stress. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2013-09-15
    Description: The snow-masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large-scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow-albedo feedback is controlled largely by the contrast between snow-covered and snow-free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow-covered and snow-free periods, and among plant functional type (PFT). Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Further, our results demonstrate a relationship between tree cover and snow-albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2013-09-15
    Description: Because of global land surface warming, extreme temperature events are expected to occur more often and more intensely, affecting the growth and development of the major cereal crops in several ways, thus affecting the production component of food security. In this paper, we have identified rice and maize crop responses to temperature in different, but consistent, phenological phases and development stages. A literature review and data compilation of around 140 scientific articles have determined the key temperature thresholds and response to extreme temperature effects for rice and maize, complementing an earlier study on wheat. Lethal temperatures and cardinal temperatures, together with error estimates, have been identified for phenological phases and development stages. Following the methodology of previous work, we have collected and statistically analysed temperature thresholds of the three crops for the key physiological processes such as leaf initiation, shoot growth and root growth and for the most susceptible phenological phases such as sowing to emergence, anthesis and grain filling. Our summary shows that cardinal temperatures are conservative between studies and are seemingly well-defined in all three crops. Anthesis and ripening are the most sensitive temperature stages in rice as well as in wheat and maize. We call for further experimental studies of the effects of transgressing threshold temperatures so such responses can be included into crop impact and adaptation models. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-09-18
    Description: The Weather Research and Forecasting (WRF) model was used to simulate the evolution of Tropical Storm Ivan (2004) in the southeast (SE) US using both the Yonsei University (YSU) and Mellor-Yamada-Janjić (MYJ) boundary layer parameterizations. In contrast with tropical cyclone (TC) simulations over the ocean, the effect of surface layer becomes secondary for a dissipating hurricane along its terrestrial track. Although these two schemes can reproduce Ivan reasonably well, our results suggest that the mixing properties for damped mechanical turbulent conditions (weakly stable) are strongly underestimated by both parameterizations. This underestimation impacts the thermodynamic properties of the storm, leading to significant differences in the storm areal extent and the simulated precipitation fields. Suggestions for further improvements are provided. An evaluation of the impact of using or not using a convective parameterization, specifically the Kain-Fritsch (KF) scheme, at 3 km grid spacing shows marginal impact on storm coverage, intensity and precipitation, except for the presence of widespread light rainfall in the Piedmont east of the mountains when the KF is employed. Analysis of the thermal structure of the simulated storm indicates that, in the inner-storm region, the KF is either not activated or primarily produces ( parameterized ) shallow convection. As a result, the net heating tendency associated with adiabatic and diabatic processes is almost unaltered inside the storm, together with a nearly equivalent surface momentum sink, leading to similar storm areal extent and intensity. Light rainfall to the east of the mountains can be due to the trigger mechanism of KF, which depends on boundary layer convergence, forcing parameterized deep convection near the coast, where surface roughness changes enhance convergence.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2013-09-20
    Description: Will warming lead to an increased use of older soil organic carbon (SOC) by microbial communities, thereby inducing C losses from C-rich alpine soils? We studied soil microbial community composition, activity and substrate use after three and four years of soil warming (+4°C, 2007-2010) at the alpine treeline in Switzerland. The warming experiment was nested in a free air CO 2 enrichment experiment using depleted 13 CO 2 (δ 13 C = –30‰, 2001-2009). We traced this depleted 13 C label in phospholipid fatty acids (PLFA) of the organic layer (0-5 cm soil depth) and in C mineralized from root-free soils to distinguish substrate ages used by soil microorganisms: fixed before 2001 (“old”), from 2001 to 2009 (“new”) or in 2010 (“recent”). Warming induced a sustained stimulation of soil respiration (+38%) without decline in mineralizable SOC. PLFA concentrations did not reveal changes in microbial community composition due to soil warming, but soil microbial metabolic activity was stimulated (+66%). Warming decreased the amount of new and recent C in the fungal biomarker 18:2ω6,9 and the amount of new C mineralized from root-free soils, implying a shift in microbial substrate use towards a greater use of old SOC. This shift in substrate use could indicate an imbalance between C inputs and outputs, which could eventually decrease SOC storage in this alpine ecosystem. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2013-09-20
    Description: Heavy precipitation events (HPEs) affect the south-eastern area of France frequently during the months of September to November. Very high amounts of rain can fall during these events, with the ensuing flash-floods causing widespread damage. The cases of the 6th of September 2010 and the 1st to the 4th of November 2011 represent the different large-scale conditions in which these episodes can occur. These HPEs are forecast with differing levels of skill by the Méso-NH model at a 2.5 km resolution. The case of the 6th of September is used to test different methods of addressing cloud physics parameterisation uncertainties. Three ensembles are constructed, where the warm process microphysical time tendencies are perturbed by different methods. Results are compared by examining the spatio-temporal distribution of the precipitation field as well as looking at ensemble statistics. The ensemble methodology which induces the most dispersion in the rainfall field is deemed the most suitable. This method is then used to examine the sensitivity of four cases from November 2011 to errors in the microphysical and turbulent parameterisations. It appears that according to the model skill for the HPE, the sensitivity to microphysical perturbations varies. Events where the model skill is high (low) show low (moderate) sensitivity. These cases show a stronger sensitivity to perturbations performed upon the turbulent tendencies, while perturbing the microphysical and turbulent tendencies together produces even further dispersion. The results show the importance and the usefulness of ensembles with perturbed physical parameterisations in the forecasting of HPEs.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2013-09-20
    Description: This paper analyses the annual mean vertical and latitudinal structure of the Brewer-Dobson circulation in the CMIP5 models. The strength of the tropical mass upwelling is found to increase at all altitudes throughout the stratosphere due to climate change. However, the width of the tropical upwelling region narrows below about 20hPa, and widens above 20hPa, suggesting different physical mechanisms may play a role in this change above and below 20hPa. In the lower stratosphere, an equatorward shift in the stationary wave critical line allows waves to propagate further into the tropics. However, in the upper stratosphere, where the behaviour is dominated by what happens during the winter, an increase in the extratropical zonal mean westerly jet leads to a reduced equatorward refraction of planetary waves. The seasonal cycle of the change in the Brewer-Dobson circulation is also considered, and differences are found in the latitudinal structure of the increased extratropical downwelling between the Northern and Southern Hemispheres in winter.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2013-09-20
    Description: Sub-seasonal forecasts have been routinely produced at ECMWF since 2002 with re-forecasts produced "on the fly" to calibrate the real-time sub-seasonal forecasts. In this study, the skill of the re-forecasts from April 2002 to March 2012 and covering a common set of years (1995 to 2001) has been evaluated. Results indicate that the skill of the ECMWF re-forecasts to predict the Madden Julian Oscillation has improved significantly since 2002, with an average gain of about 1 day of prediction skill per year. The amplitude of the MJO has also become more realistic, although the model still tends to produce MJOs which are weaker than in the ECMWF re-analysis. As a consequence, the ability of the ECMWF model to simulate realistic MJO teleconnections over the northern and southern Extratropics has improved dramatically over the 10-year period. Forecast skill scores have also improved in the Extratropics. For instance, weekly mean forecasts of the North Atlantic Oscillation Index are more skillful in recent years than ten years ago. A large part of this improvement seems to be linked to the improvements in the representation of the Madden Julian Oscillation. Skill to predict 2-metre temperature anomalies over the northern Extratropics has also improved almost continuously since 2002. Changes in the horizontal and vertical resolutions of the atmospheric model had only a small impact on the skill scores, suggesting that most of the improvements in the ECMWF sub-seasonal forecasts were due to changes in model physics which were primarily designed to improve the model climate and medium-range forecasts. The impact of changes in the data assimilation system and in the observing data has not been considered in this study, since all the re-forecasts used for this study were initialized from the same re-analysis over a common set of years.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2013-09-20
    Description: At present continental to global scale flood forecasting predicts at a point discharge, with little attention to detail and accuracy of local scale inundation predictions. Yet, inundation variables are of interest and all flood impacts are inherently local in nature. This paper proposes a large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas. The model was built for the Lower Zambezi River to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. ECMWF ensemble forecast (ENS) data were used to force the VIC (Variable Infiltration Capacity) hydrological model, which simulated and routed daily flows to the input boundary locations of a 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst representing the floodplain at an appropriate scale. The modeling system was calibrated using channel water levels from satellite laser altimetry and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of between one and two model resolutions compared to an observed flood edge and inundation area agreement was on average 86%. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km 2 and at model grid resolutions up to several km 2 .
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2013-09-20
    Description: A class of capillary flows in unsaturated porous media is characterized by quasi-steady viscous flow confined behind curved air-water interfaces and within liquid bodies held by capillary forces along crevices and grain contacts. The geometry of the connected capillary liquid network within the pore space resembles channels that form between adjacent bubbles in foam (Plateau borders) with solid grains representing gas bubbles in foam. For simplified channel geometry we combine expressions for viscous flow with continuity considerations to describe the evolution of the channels cross-sectional area during gravity drainage. This formulation enables modeling of unsaturated flow without invoking the Richards equation and associated hydraulic functions. We adapt a formalism originally developed for foam “free drainage” (drainage under gravity) or “forced drainage” (infiltration front motion) to a class of unsaturated flows in porous media that require a few input parameters only (mean channel corner angle, air entry value and porosity) for certain initial and boundary conditions. We demonstrate that the reduction in capillary channel cross section yields a consistent description of self-regulating internal fluxes towards attainment of the so-called “field capacity” in soil and provides an alternative method for interpretation of outflow experiments for prescribed pressure boundary conditions. Additionally, the geometrically-explicit formulation provides a more intuitive picture of capillary flows across textural boundaries (changes in channel cross-section and number of channels). The foam drainage methodology expands the range of tools available for analyses of unsaturated flow processes and offers more realistic links between liquid configuration and flow dynamics in unsaturated porous media.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 21
    Publication Date: 2013-09-20
    Description: Synthetic streamflows at different sites in a river basin are needed for planning, operation and management of water resources projects. Modeling the temporal and spatial dependence structure of monthly streamflow at different sites is generally required. In this study, the maximum entropy copula method is proposed for multisite monthly streamflow simulation, in which the temporal and spatial dependence structure is imposed as constraints to derive the maximum entropy copula. The monthly streamflows at different sites are then generated by sampling from the conditional distribution. A case study for the generation of monthly streamflow at three sites in the Colorado River basin illustrates the application of the proposed method. Simulated streamflow from the maximum entropy copula is in satisfactory agreement with observed streamflow.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2013-09-20
    Description: The Krycklan Catchment Study (KCS) provides a unique field infrastructure for hillslope to landscape-scale research on short and long-term ecosystem dynamics in boreal landscapes. The site is designed for process-based research assessing the role of external drivers including forest management, climate change, and long-range pollutant transport on forests, mires, soils, streams, lakes and groundwater. The over-arching objectives of KCS are to (1) provide a state-of-the-art infrastructure for experimental and hypothesis driven research, (2) maintain a collection of high quality, long-term climatic, biogeochemical, hydrological and environmental data, and (3) support the development of models and guidelines for research, policy and management.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2013-09-20
    Description: 3-D Hydraulic Tomography (3-D HT) is a method for aquifer characterization whereby the 3-D spatial distribution of aquifer flow parameters (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple partially-penetrating pumping tests. While performance of 3-D HT has been studied extensively in numerical experiments, few field studies have demonstrated the real-world performance of 3-D HT. Here we report on a 3-D transient hydraulic tomography (3-D THT) field experiment at the Boise Hydrogeophysical Research Site which is different from prior approaches in that it represents a “baseline” analysis of 3-D THT performance using only a single arrangement of a central pumping well and 5 observation wells with nearly complete pumping and observation coverage at 1m intervals. We jointly analyze all pumping tests using a geostatistical approach based on the quasi-linear estimator of kitanidis [1995]. We reanalyze the system after progressively removing pumping and/or observation intervals; significant progressive loss of information about heterogeneity is quantified as reduced variance of the K field overall, reduced correlation with slug test K estimates at wells, and reduced ability to accurately predict independent pumping tests. We verify that imaging accuracy is strongly improved by pumping and observational densities comparable to the aquifer heterogeneity geostatistical correlation lengths. Discrepancies between K profiles at wells, as obtained from HT and slug tests, are greatest at the tops and bottoms of wells where HT observation coverage was lacking.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2013-09-21
    Description: ABSTRACT The value of a formally defined Anthropocene for geomorphologists is discussed. Human impacts have been diachronistic, multifaceted and episodic, as demonstrated by the record of alluvial deposition in the UK. Rather than boxing time into discrete eras or periods, modern research uses calendar dates and multiple dating techniques to explore co-trajectories for a range of human impacts. Despite the value of ‘The Anthropocene’ as an informal concept and as a prompt to useful debate, arriving at a single, generally acceptable  formal definition is impractical, and has some disadvantages. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2013-09-21
    Description: Circumpolar expansion of tall shrubs and trees into Arctic tundra is widely thought to be occurring as a result of recent climate warming, but little quantitative evidence exists for northern Siberia, which encompasses the world's largest forest-tundra ecotonal belt. We quantified changes in tall shrub and tree canopy cover in eleven, widely-distributed Siberian ecotonal landscapes by comparing very-high-resolution photography from the Cold War-era “Gambit” and “Corona” satellite surveillance systems (1965-1969) with modern imagery. We also analyzed within-landscape patterns of vegetation change to evaluate the susceptibility of different landscape components to tall shrub and tree increase. The total cover of tall shrubs and trees increased in nine of eleven ecotones. In northwest Siberia, alder ( Alnus ) shrubland cover increased 5.3 – 25.9% in five ecotones. In Taymyr and Yakutia, larch ( Larix ) cover increased 3.0 – 6.7% within three ecotones, but declined 16.8% at a fourth ecotone due to thaw of ice-rich permafrost. In Chukotka, the total cover of alder and dwarf pine ( Pinus ) increased 6.1% within one ecotone and was little-changed at a second ecotone. Within most landscapes, shrub and tree increase was linked to specific geomorphic settings, especially those with active disturbance regimes such as permafrost patterned-ground, floodplains, and colluvial hillslopes. Mean summer temperatures increased at most ecotones since the mid-1960s, but rates of shrub and tree canopy cover expansion were not strongly correlated with temperature trends and were better correlated with mean annual precipitation. We conclude that shrub and tree cover is increasing in tundra ecotones across most of northern Siberia, but rates of increase vary widely regionally and at the landscape-scale. Our results indicate that extensive changes can occur within decades in moist, shrub-dominated ecotones, as in northwest Siberia, while changes are likely to occur much more slowly in the highly continental, larch-dominated ecotones of central and eastern Siberia. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2013-09-21
    Description: The adaptation of different species to warming temperatures has been increasingly studied. Moose ( Alces alces ) is the largest of the ungulate species occupying the northern latitudes across the globe, and in Finland it is the most important game species. It is very well adapted to severe cold temperatures, but has a relatively low tolerance to warm temperatures. Previous studies have documented changes in habitat use by moose due to high temperatures. In many of these studies the used areas have been classified according to how much thermal cover they were assumed to offer based on satellite/aerial imagery data. Here, we identified the vegetation structure in the areas used by moose under different thermal conditions. For this purpose we used airborne laser scanning (ALS) data extracted from the locations of GPS-collared moose. This provided us with detailed information about the relationships between moose and the structure of forests it uses in different thermal conditions and we were therefore able to determine and differentiate between the canopy structures at locations occupied by moose during different thermal conditions. We also discovered a threshold beyond which moose behaviour began to change significantly: as day temperatures began to reach 20 ○ C and higher, the search for areas with higher and denser canopies during daytime became evident. The difference was clear when compared to habitat use at lower temperatures, and was so strong that it provides supporting evidence to previous studies, suggesting that moose are able to modify their behaviour to cope with high temperatures, but also that the species is likely to be affected by warming climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2013-09-21
    Description: Mountain ecosystems are particularly susceptible to climate change. Characterizing intraspecific variation of alpine plants along elevational gradients is crucial for estimating their vulnerability to predicted changes. Environmental conditions vary with elevation, which might influence plastic responses and affect selection pressures that lead to local adaptation. Thus, local adaptation and phenotypic plasticity among low and high elevation plant populations in response to climate, soil and other factors associated with elevational gradients might underlie different responses of these populations to climate warming. Using a transplant experiment along an elevational gradient, we investigated reproductive phenology, growth and reproduction of the nutrient-poor grassland species Ranunculus bulbosus , Trifolium montanum , and Briza media . Seeds were collected from low and high elevation source populations across the Swiss Alps and grown in nine common gardens at three different elevations with two different soil depths. Despite genetic differentiation in some traits, the results revealed no indication of local adaptation to the elevation of population origin. Reproductive phenology was advanced at lower elevation in low and high elevation populations of all three species. Growth and reproduction of T. montanum and B. media were rarely affected by garden elevation and soil depth. In R. bulbosus , however, growth decreased and reproductive investment increased at higher elevation. Furthermore, soil depth influenced growth and reproduction of low elevation R. bulbosus populations. We found no evidence for local adaptation to elevation of origin and hardly any differences in the responses of low and high elevation populations. However, the consistent advanced reproductive phenology observed in all three species shows that they have the potential to plastically respond to environmental variation. We conclude that populations might not be forced to migrate to higher elevations as a consequence of climate warming, as plasticity will buffer the detrimental effects of climate change in the three investigated nutrient-poor grassland species. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-21
    Description: The impact of climate change on the stability of soil organic carbon (SOC) remains a major source of uncertainty in predicting future changes in atmospheric CO 2 levels. One unsettled issue is whether the mineralization response to temperature depends on SOC mineralization rate. Long-term (〉25 years) bare fallow experiments (LTBF) in which the soil is kept free of any vegetation and organic inputs, and their associated archives of soil samples represent a unique research platform to examine this issue as with increasing duration of fallow, the lability of remaining total SOC decreases. We retrieved soils from LTBF experiments situated at Askov (Denmark), Grignon (France), Ultuna (Sweden) and Versailles (France) and sampled at the start of the experiments and after 25, 50, 52, and 79 years of bare fallow, respectively. Soils were incubated at 4, 12, 20 and 35 °C and the evolved CO 2 monitored. The apparent activation energy ( Ea ) of SOC was then calculated for similar loss of CO 2 at the different temperatures. The Ea was always higher for samples taken at the end of the bare-fallow period, implying a higher temperature sensitivity of stable C than of labile C. Our results provide strong evidence for a general relationship between temperature sensitivity and SOC stability upon which significant improvements in predictive models could be based. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
    Publication Date: 2013-09-21
    Description: [1]  In recent decades, it has been found useful to partition the pelagic environment using the concept of biogeochemical provinces, or BGCPs, within each of which it is assumed that environmental conditions are distinguishable and unique at global scale. The boundaries between provinces respond to features of physical oceanography and, ideally, should follow seasonal and inter-annual changes in ocean dynamics. But this ideal has not been fulfilled except for small regions of the oceans. Moreover, BGCPs have been used only as static entities having boundaries that were originally established to compute global primary production. In the present study, a new statistical methodology based on non-parametric procedures is implemented to capture the environmental characteristics within 56 BGCPs. Four main environmental parameters (bathymetry, chlorophyll-a concentration, surface temperature and salinity) are used to infer the spatial distribution of each BGCP over 1997–2007. The resulting dynamic partition allows us to integrate changes in the distribution of BGCPs at seasonal and inter-annual timescales, and so introduces the possibility of detecting spatial shifts in environmental conditions.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 30
    Publication Date: 2013-09-21
    Description: The temperature dependence of aerobic scope has been suggested to be a major determinant of how marine animals will cope with future rises in environmental temperature. Here we present data suggesting that in some animals, the temperature dependence of anaerobic scope (i.e. the capacity for surviving severe hypoxia) may determine present-day latitudinal distributions and potential for persistence in a warmer future. As a model for investigating the role of anaerobic scope, we studied two sibling species of coral-dwelling gobies, Gobiodon histrio and G. erythrospilus , with different latitudinal distributions, but which overlap in equal abundance at Lizard Island (14°40'S) on the Great Barrier Reef. These species did not differ in the temperature dependence of resting oxygen consumption or critical oxygen concentration (the lowest oxygen level where resting oxygen consumption can be maintained). By contrast, the more equatorial species ( G. histrio ) had a better capacity to endure anaerobic conditions at oxygen levels below the critical oxygen concentration at the high temperatures (32 – 33 °C) more likely to occur near the equator, or in a warmer future. These results suggest that anaerobic scope, in addition to aerobic scope, could be important in determining the impacts of global warming on some marine animals. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 31
    Publication Date: 2013-09-21
    Description: Most North American forests are at some stage of post-disturbance regrowth, subject to a changing climate, and exhibit growth and mortality patterns that may not be closely coupled to annual environmental conditions. Distinguishing the possibly interacting effects of these processes is necessary to put short-term studies in a longer-term context, and particularly important for the carbon-dense, fire-prone boreal forest. The goals of this study were to combine dendrochronological sampling, inventory records, and machine-learning algorithms to understand how tree growth and death have changed at one highly studied site (Northern Old Black Spruce, NOBS) in the central Canadian boreal forest. Over the 1999-2012 inventory period, mean tree diameter increased even as stand density and basal area declined significantly. Tree mortality averaged 1.4±0.6% yr −1 , with most mortality occurring in medium-sized trees; new recruitment was minimal. There have been at least two, and probably three, significant influxes of new trees since stand initiation, but none in recent decades. A combined tree ring chronology constructed from sampling in 2001, 2004, and 2012 showed several periods of extreme growth depression, with increased mortality lagging depressed growth by ~5 years. Higher minimum and maximum air temperatures exerted a negative influence on tree growth, while precipitation and climate moisture index had a positive effect; both current- and previous-year data exerted significant effects. Models based on these variables explained 23-44% of the ring-width variability. We suggest that past climate extremes led to significant mortality still visible in the current forest structure, with decadal dynamics superimposed on slower patterns of fire and succession. These results have significant implications for our understanding of previous work at NOBS, the carbon sequestration capability of old-growth stands in a disturbance-prone landscape, and the sustainable management of regional forests in a changing climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 32
    Publication Date: 2013-09-21
    Description: The 20th century was a pivotal period at high northern latitudes as it marked the onset of a rapid climatic warming brought on by major anthropogenic changes in global atmospheric composition. In parallel, Arctic sea ice extent has been decreasing over the period of available satellite data record. Here we document how these changes influenced vegetation productivity in adjacent eastern boreal North America. To do this, we used normalized difference vegetation index (NDVI) data, model simulations of net primary productivity (NPP), and tree-ring width measurements covering the last 300 years. Climatic and proxy-climatic datasets were used to explore the relationships between vegetation productivity and Arctic sea ice concentration and extent, and temperatures. Results indicate that an unusually large amount of black spruce ( Picea mariana ) trees entered into a period of growth decline during the late 20th century (68% of sampled trees; n = 724 cross-sections of age 〉 70 years). This finding is coherent with evidence encoded in NDVI and simulated NPP data. Analyses of climatic and vegetation productivity relationships indicate that the influence of recent climatic changes in the studied forests has been via the enhanced moisture stress (i.e. greater water demands) and autotrophic respiration amplified by the declining sea ice concentration in the Hudson Bay and Hudson Strait. The recent decline strongly contrasts with other growth reduction events that occurred during the 19 th century, which were associated with cooling and high sea ice severity. The recent decline of vegetation productivity is the first one to occur under circumstances related to excess heat in a 300-year period, and further culminates with an intensifying wildfire regime in the region. Our results concur with observations from other forest ecosystems about intensifying temperature-driven drought stress and tree mortality with ongoing climatic changes. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 33
    Publication Date: 2013-09-22
    Description: We applied graphical methods and multivariate statistics to understand impacts of an unsewered slum catchment on nutrients and hydrochemistry of groundwater in Kampala, Uganda. Data was collected from 56 springs (groundwater), 22 surface water sites and 13 rain samples. Groundwater was acidic and dominated by Na, Cl and NO 3 . These ions were strongly correlated indicating pollution originating from wastewater infiltration from on-site sanitation systems. Results also showed that rain, which was acidic, impacted on groundwater chemistry. Using Q-mode hierarchical cluster analysis, we identified three distinct water quality groups. The first group had springs dominated by Ca-Cl-NO 3 , low values of EC, pH and cations, and relatively high NO 3 values. These springs were shown to have originated from the acidic rains because their chemistry closely corresponded to ion concentrations that would occur from rainfall recharge, which was around 3.3 times concentrated by evaporation. The second group had springs dominated by Na-K-Cl-NO 3 and Ca-Cl-NO 3 , low pH but with higher values of EC, NO 3 and cations. We interpreted these as groundwater affected by both acid rain and infiltration of wastewater from urban areas. The third group had the highest EC values (average of 688 μS/cm), low pH and very high concentrations of NO 3 (average of 2.15 mmol/L) and cations. These springs were exclusively located in slum areas and we interpreted these springs as groundwater affected by infiltration of wastewater from poorly sanitized slums areas. Surface water was slightly reducing and eutrophic due to wastewater effluents, but the contribution of groundwater to nutrients in surface water was minimal because o-PO 4 was absent whereas NO 3 was lost by denitification. Our findings suggest that groundwater chemistry in the catchment is strongly influenced by anthropogenic inputs derived from nitrogen-containing rains and domestic wastewater. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 34
    Publication Date: 2013-09-24
    Description: Dual-polarisation radar measurements provide valuable information about the shapes and orientations of atmospheric ice particles. For quantitative interpretation of these data in the Rayleigh regime, common practice is to approximate the true ice crystal shape with that of a spheroid. Calculations using the discrete dipole approximation for a wide range of crystal aspect ratios demonstrate that approximating hexagonal plates as spheroids leads to significant errors in the predicted differential reflectivity, by as much as 1.5dB. An empirical modification of the shape factors in Gans's spheroid theory was made using the numerical data. The resulting simple expressions, like Gans's theory, can be applied to crystals in any desired orientation, illuminated by an arbitrarily polarised wave, but are much more accurate for hexagonal particles. Calculations of the scattering from more complex branched and dendritic crystals indicate that these may be accurately modelled using the new expression, but with a reduced permittivity dependent on the volume of ice relative to an enclosing hexagonal prism.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 35
    Publication Date: 2013-09-24
    Description: The parameterisation of diabatic processes in numerical models is critical for the accuracy of weather forecasts and for climate projections. A novel approach to the evaluation of these processes in models is introduced in this contribution. The approach combines a suite of on-line tracer diagnostics with off-line trajectory calculations. Each tracer tracks accumulative changes in potential temperature associated with a particular parameterised diabatic process in the model. A comparison of tracers therefore allows the identification of the most active diabatic processes and their downstream impacts. The tracers are combined with trajectories computed using model-resolved winds, allowing the various diabatic contributions to be tracked back to their time and location of occurrence. We have used this approach to investigate diabatic processes within a simulated extratropical cyclone. We focus on the warm conveyor belt, in which the dominant diabatic contributions come from large-scale latent heating and parameterised convection. By contrasting two simulations, one with standard convection parameterisation settings and another with reduced parameterised convection, the effects of parameterised convection on the structure of the cyclone have been determined. Under reduced parameterised convection conditions, the large-scale latent heating is forced to release convective instability that would otherwise have been released by the convection parameterisation. Although the spatial distribution of precipitation depends on the details of the split between parameterised convection and large-scale latent heating, the total precipitation amount associated with the cyclone remains largely unchanged. For reduced parameterised convection, a more rapid and stronger latent heating episode takes place as air ascends within the warm conveyor belt.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 36
    Publication Date: 2013-09-24
    Description: Probabilistic estimates of future water levels and river discharge are usually simulated with hydrologic models using ensemble weather forecasts as main inputs. As hydrologic models are imperfect and the meteorological ensembles tend to be biased and underdispersed, the ensemble forecasts for river runoff typically are biased and underdispersed, too. Thus, in order to achieve both reliable and sharp predictions statistical post-processing is required. In this work Bayesian model averaging (BMA) is applied to statistically post-process ensemble runoff raw forecasts for a catchment in Switzerland, at lead-times ranging from 1 to 240 hours. The raw forecasts have been obtained using deterministic and ensemble forcing meteorological models with different forecast lead-time ranges. First, BMA is applied based on mixtures of univariate normal distributions, subject to the assumption of independence between distinct lead-times. Then, the independence assumption is relaxed in order to estimate multivariate runoff forecasts over the entire range of lead-times simultaneously, based on a BMA version that uses multivariate normal distributions. Since river runoff is a highly skewed variable, Box-Cox transformations are applied in order to achieve approximate normality. Both univariate and multivariate BMA approaches are able to generate well calibrated probabilistic forecasts that are considerably sharper than climatological forecasts. Additionally, multivariate BMA provides a promising approach for incorporating temporal dependencies into the post-processed forecasts. Its major advantage against univariate BMA is an increase in reliability when the forecast system is changing due to model availability.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 37
    Publication Date: 2013-09-25
    Description: We derive a series solution for the nonlinear Boussinesq equation in terms of the similarity variable of the Boltzmann transformation in a semi-infinite domain. The first few coefficients of the series have been known for a long time, having been obtained by a truncated inversion of the series solution of the Blasius equation, but no direct recurrence relation was known for the complete series representing the solution of the Boussinesq equation. The series turns out to have a finite radius of convergence, which we estimate with a numerical complex-plane integration method that identifies the singularities of the solution when the equation is extended to the complex plane. The homogeneous condition at the origin produces a singularity which complicates numerical solutions with Runge-Kutta methods. We present two variable transformations that circumvent the problem and that are best suited to the complex-variable and the real-variable versions of the equation, respectively. Using those tools, an approximate solution accurate to 1.75 × 10 -10 and valid for the entire positive real axis is then developed by matching a Padé approximant of the exact series and an asymptotic solution (to overcome the restriction imposed by the finite radius of convergence of the series), along the same lines of the expression proposed by Hogarth and Parlange [1999]. The accuracies of all of the existing and the newly proposed solutions are obtained.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 38
    Publication Date: 2013-09-25
    Description: Field sampling in unwadeable and flashy flood events encounters the problem that lateral variability of flow hydraulics and sediment transport cannot be captured adequately, and there is also an accuracy problem because parameters change while being measured. Moreover, event based gravel-sand mixed transport data in rapidly changing conditions are largely missing, in particular for gravel-bed rivers in small catchments. In this study, field measurements of bed load, suspended load, flow velocities, water depths and cross section geometry were collected during flood events at a monitoring station near the mouth of the Versilia river, Italy. Since the observed hydrographs are characterized by short durations, to the order of a few hours, an analysis of the lateral and temporal flow variability was carried out to enable the design of a sampling strategy and to minimize the errors created by the time variations of discharge associated with unsteady flow conditions. The measurements were interpreted using a 1D hydro-morphodynamic numerical model simulating the dynamics of flow and sediment discharges during a flood event for a given return period. The flow and sediment rating curves were then developed through an integrated approach combining different methodologies: field measurements, laboratory analyses and mathematical modeling. The developed approach allows one to capture the main physical mechanisms associated to the transport of sand–gravel mixtures, such as selective transport, and the hysteretic behaviour of sediment transport produced by rapid and intense flood events.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 39
    Publication Date: 2013-09-27
    Description: Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm-adapted ants replace cold-adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm- and cold-adapted ants to determine if changes in the ant species influence local plant dispersal. The warm-adapted ants forage much later than the cold-adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant-plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm-adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold-adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm- and cold-adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species’ range is limited more by biotic than abiotic interactions – despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic resources. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 40
    Publication Date: 2013-10-01
    Description: Increasing ocean temperatures and strengthening boundary currents have caused the poleward migration of many marine species. Cubozoan jellyfish known to cause Irukandji syndrome have historically been confined to tropical waters but may be expanding into sub-tropical regions. Here we examine the interactive effects of warming and acidification on the population dynamics of polyps of an Irukandji jellyfish, Alatina nr mordens, and the formation of statoliths in newly metamorphosed medusae, to determine if this jellyfish could tolerate future conditions predicted for southeast Queensland (SEQ), Australia. Two experiments, examining the orthogonal factors of temperature and pH were undertaken. Experiment 1 mimicked the current, ca. 2050 and ca. 2100 summer temperature and pH conditions predicted for SEQ using A1F1 scenarios (temperature: 25, 27, 29°C; pH: 7.9, 7.8, 7.6) and Experiment 2 mimicked current and future winter conditions (18 and 22°C, pH 7.9, 7.8, 7.6). All polyps in Experiment 1 survived and budded. Fewer polyps budded in the lower pH treatments but patterns varied slightly among temperature treatments. Statoliths at pH 7.6 were 24% narrower than those at pH 7.8 and 7.9. Most polyps survived the winter conditions mimicked by Experiment 2 but only polyps in the 22°C, pH 7.9 treatment increased significantly. The current absence of A . nr mordens medusae in SEQ, despite the polyps’ ability to tolerate the current temperature and pH conditions, suggests that ecological, rather than abiotic factors currently limit their distribution. Observations that budding was lower under low pH treatments suggest that rates of asexual reproduction will likely be much slower in the future. We consider that A . nr mordens polyps are likely to tolerate future conditions but are unlikely to thrive in the long term. However, if polyps can overcome potential ecological boundaries and acidification proceeds slowly A . nr mordens could expand polewards in the short-term. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 41
    Publication Date: 2013-10-01
    Description: Soil CO 2 efflux ( F soil ) is the largest source of carbon from forests and reflects primary productivity as well as how carbon is allocated within forest ecosystems. Through early stages of stand development, both elevated [CO 2 ] and availability of soil nitrogen (N; sum of mineralization, deposition, and fixation) have been shown to increase gross primary productivity, but the long-term effects of these factors on F soil are less clear. Expanding on previous studies at the Duke Free Air CO 2 Enrichment (FACE) site, we quantified the effects of elevated [CO 2 ] and N fertilization on F soil using daily measurements from automated chambers over 10 years. Consistent with previous results, compared to ambient-unfertilized plots, annual F soil increased under elevated [CO 2 ] (~17%) and decreased with N (~21%). N fertilization under elevated [CO 2 ] reduced F soil to values similar to untreated plots. Over the study period, base respiration rates increased with leaf productivity but declined after productivity saturated. Despite treatment-induced differences in aboveground biomass, soil temperature and water content were similar among treatments. Inter-annually, low soil water content decreased annual F soil from potential values – estimated based on temperature alone assuming non-limiting soil water content – by ~0.7% per 1.0% reduction in relative extractable water. This effect was only slightly ameliorated by elevated [CO 2 ]. Variability of soil N availability among plots accounted for the spatial variability of F soil , showing a decrease of ~114 g C m -2 y -1 per 1 g m -2 increase in soil N availability, with consistently higher F soil in elevated [CO 2 ] plots ~127 g C per 100 ppm [CO 2 ] over the +200 ppm enrichment. Altogether, reflecting increased belowground carbon partitioning in response to greater plant nutritional needs, the effects of elevated [CO 2 ] and N fertilization on F soil in this stand are sustained beyond the early stages of stand development and through stabilization of annual foliage production. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 42
    Publication Date: 2013-10-01
    Description: To meet growing global food demand with limited land and reduced environmental impact, agricultural greenhouse gas (GHG) emissions are increasingly evaluated with respect to crop productivity, i.e. on a yield-scaled as opposed to area basis. Here, we compiled available field data on CH 4 and N 2 O emissions from rice production systems to test the hypothesis that in response to fertilizer nitrogen (N) addition, yield-scaled global warming potential (GWP) will be minimized at N rates that maximize yields. Within each study, yield N surplus was calculated to estimate deficit or excess N application rates with respect to the optimal N rate (defined as the N rate at which maximum yield was achieved). Relationships between yield N surplus and GHG emissions were assessed using linear and nonlinear mixed-effects models. Results indicate that yields increased moving from deficit to optimal N rates. At N rates contributing to a yield N surplus, N 2 O and yield-scaled N 2 O emissions increased exponentially. In contrast, CH 4 emissions were not impacted by N inputs. Accordingly, yield-scaled CH 4 emissions decreased with N addition. Overall, yield-scaled GWP was minimized at optimal N rates, decreasing by 21% compared to treatments without N addition. These results are unique compared to aerobic cropping systems in which N 2 O emissions are the primary contributor to GWP, meaning yield-scaled GWP may not necessarily decrease for aerobic crops when yields are optimized by N fertilizer additions. Balancing gains in agricultural productivity with climate change concerns, this work supports the concept that high rice yields can be achieved with minimal yield-scaled GWP through optimal N application rates. Moreover, additional improvements in N use efficiency may further reduce yield-scaled GWP, thereby strengthening the economic and environmental sustainability of rice systems. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 43
    Publication Date: 2013-10-01
    Description: Climate change is projected to push the limits of cropping systems and has the potential to disrupt the agricultural sector from local to global scales. This article introduces the Coordinated Climate-Crop Modeling Project (C3MP), an initiative of the Agricultural Model Intercomparison and Improvement Project (AgMIP) to engage a global network of crop modelers to explore the impacts of climate change via an investigation of crop responses to changes in carbon dioxide concentration ([CO 2 ]), temperature, and water. As a demonstration of the C3MP protocols and enabled analyses, we apply the Decision Support System for Agrotechnology Transfer (DSSAT) CROPGRO-Peanut crop model for Henry County, Alabama, to evaluate responses to the range of plausible [CO 2 ], temperature changes, and precipitation changes projected by climate models out to the end of the 21 st century. These sensitivity tests are used to derive crop model emulators that estimate changes in mean yield and the coefficient of variation for seasonal yields across a broad range of climate conditions, reproducing mean yields from sensitivity test simulations with deviations of ~2% for rainfed conditions. We apply these statistical emulators to investigate how peanuts respond to projections from various global climate models, time periods, and emissions scenarios, finding a robust projection of modest (〈10%) median yield losses in the middle of the 21 st century accelerating to more severe (〉20%) losses and larger uncertainty at the end of the century under the more severe representative concentration pathway 8.5. This projection is not substantially altered by the selection of the AgMERRA global gridded climate dataset rather than the local historical observations, differences between the Third and Fifth Coupled Model Intercomparison Project (CMIP3 and CMIP5), or the use of the delta method of climate impacts analysis rather than the C3MP impacts response surface and emulator approach. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 44
    Publication Date: 2013-10-01
    Description: Large-scale, long-term FACE (Free Air CO 2 -enrichment) experiments indicate that increases in atmospheric CO 2 concentrations will influence forest C cycling in unpredictable ways. It has been recently suggested that responses of mycorrhizal fungi could determine whether forest NPP (net primary production) is increased by elevated CO 2 over long time periods and if forests soils will function as sources or sinks of C in the future. We studied the dynamic responses of ectomycorrhizae to N fertilization and atmospheric CO 2 -enrichment at the Duke FACE experiment using minirhizotrons over a six year period (2005-2010). Stimulation of mycorrhizal production by elevated CO 2 was observed during only one (2007) of six years. This increased the standing crop of mycorrhizal tips during 2007 and 2008; during 2008, significantly higher mortality returned standing crop to ambient levels for the remainder of the experiment. It is therefore unlikely that increased production of mycorrhizal tips can explain the lack of progressive nitrogen limitations and associated increases in N uptake observed in CO 2 -enriched plots at this site. Fertilization generally decreased tree reliance on mycorrhizae as tip production declined with the addition of nitrogen as has been shown in many other studies. Annual NPP of mycorrhizal tips was greatest during years with warm January temperatures and during years with cool spring temperatures. A 2° C increase in average late spring temperatures (May and June) decreased annual production of mycorrhizal root tip length by 50%. This has important implications for ecosystem function in a warmer world in addition to potential for forest soils to sequester atmospheric C. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 45
    Publication Date: 2013-10-01
    Description: Permafrost thaw in the Arctic driven by climate change is mobilizing ancient terrigenous organic carbon (OC) into fluvial networks. Understanding the controls on metabolism of this OC is imperative for assessing its role with respect to climate feedbacks. In this study we examined the effect of inorganic nutrient supply and dissolved organic matter (DOM) composition on aquatic extracellular enzyme activities (EEAs) in waters draining the Kolyma River Basin (Siberia), including permafrost derived OC. Reducing the phenolic content of the DOM pool resulted in dramatic increases in hydrolase EEAs (e.g. phosphatase activity increased 〉 28 fold) supporting the idea that high concentrations of polyphenolic compounds in DOM (e.g. plant structural tissues) inhibit enzyme synthesis or activity, limiting OC degradation. EEAs were significantly more responsive to inorganic nutrient additions only after phenolic inhibition was experimentally removed. In controlled mixtures of modern OC and thawed permafrost endmember OC sources, respiration rates per unit dissolved OC were 1.3 – 1.6 times higher in waters containing ancient carbon, suggesting that permafrost derived OC was more available for microbial mineralization. In addition, waters containing ancient permafrost derived OC supported elevated phosphatase and glucosidase activities. Based on these combined results, we propose that both composition and nutrient availability regulates DOM metabolism in Arctic aquatic ecosystems. Our empirical findings are incorporated into a mechanistic conceptual model highlighting two key enzymatic processes in the mineralization of riverine OM: 1) the role of phenol oxidase activity in reducing inhibitory phenolic compounds; and 2) the role of phosphatase in mobilizing organic P. Permafrost derived DOM degradation was less constrained by this initial “phenolic-OM” inhibition; thus, informing reports of high biological availability of ancient, permafrost derived DOM with clear ramifications for its metabolism in fluvial networks and feedbacks to climate. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 46
    Publication Date: 2013-10-01
    Description: Due to the intrinsic complexities associated with modeling land-atmosphere interactions, global models typically use elaborate land surface and boundary layer physics parameterizations. Unfortunately, it is difficult to use elaborate models, by themselves, to develop a deeper understanding of how land surface parameters affect the coupled land-atmosphere system. At the same time, it is also increasingly important to gain a deeper understanding of the role of changes in land cover, land use, and ecosystem function as forcings and feedbacks in past and future climate change. To improve the foundation of our understanding, we outline a framework for boundary layer climate sensitivity based on surface energy balance; just as global climate sensitivity is based on top-of-atmosphere energy balance. We develop an analytic theory for the boundary layer climate sensitivity of an idealized model of a diurnally-averaged well-mixed boundary layer over land [ Betts, 2000]. This analytic sensitivity theory identifies changes in the properties of the land surface — including moisture availability, albedo, and aerodynamic roughness — as forcings, and identifies strong negative feedbacks associated with the surface fluxes of latent and sensible heat. We show that our theory can explain nearly all of the sensitivity of the Betts [2000] full system of equations. Favorable comparison of the theory and the simulation results from a two-column radiative convective model suggests that the theory may be broadly useful for unifying our understanding of how changes in land use or ecosystem function may affect climate change.
    Electronic ISSN: 1942-2466
    Topics: Geography , Geosciences
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 47
    Publication Date: 2013-10-02
    Description: Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO 2 ) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO 2 are equally important to the regulation of phytoplankton biomass. We full-factorially exposed three compositionally different marine phytoplankton communities to two different CO 2 levels and examined the effects and relative importance (ω 2 ) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO 2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO 2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. Our study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO 2 potentially has strong implications for nutrient cycling and carbon export in future oceans. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 48
    Publication Date: 2013-10-02
    Description: Less than half of anthropogenic carbon emissions are accumulating in the atmosphere, due to large net fluxes into both the oceans and the land (Le Queré et al., 2012). The land sink in particular has increased markedly, doubling in strength since the 1960's, to reach 26 petagrams of carbon in the latest decade. However, the location and drivers of this large terrestrial sink are still relatively poorly constrained by atmospheric measurements (Ciais et al. 2013). Pan et al. (2011) recently utilised 〉1 million forest inventory plots to provide summaries of forest carbon stocks, and the first global bottom-up estimates of carbon fluxes for the world's forest biomes for the period 1990-2007. One key result was that almost all the residual global terrestrial carbon sink (i.e. carbon uptake after accounting for land use change), some 2.4 ± 0.4 Pg of carbon per year, is located in the world's established forests (Pan et al., 2011). The sink is distributed worldwide, with globally significant net fluxes into boreal and temperate forests, and a large sink in intact tropical forest, albeit with large uncertainty. Furthermore, Pan et al. (2011) showed that this tropical intact forest sink - may have faded from an estimated annual 1.3 ± 0.4 Pg C in the 1990's to 1.0 ± 0.5 Pg C for 2000-2007. The tropical intact sink is offset by a net land-use emission (1.5 Pg C yr −1 [1990-1999]) declining to 1.1 Pg C yr −1 [2000-2007]), and as a consequence aircraft measurements and inverse modelling studies indicate the tropics to be close to neutral in terms of net carbon fluxes (reviewed by Ciais et al. 2013). While the intact tropical forest sink values represent updates from similar values published previously (e.g., Lewis et al., 2009a), the fact that almost the entire residual terrestrial carbon sink is accounted for by the forests of the world was a notable discovery. Evidence from the ground now points to established forests being a net sink across almost every major forest region, including all extra-tropical forest regions analysed. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 49
    Publication Date: 2013-10-02
    Description: Forecasting how global warming will affect onset of the growing season is essential for predicting terrestrial productivity, but suffers from conflicting evidence. We show that accurate estimates require ways to connect discrete observations of changing tree status (e.g., pre- vs. post-budbreak) with continuous responses to fluctuating temperatures. By coherently synthesizing discrete observations with continuous responses to temperature variation, we accurately quantify how increasing temperature variation accelerates onset of growth. Application to warming experiments at two latitudes demonstrates that maximum responses to warming are concentrated in late winter, weeks ahead of the main budbreak period. Given that warming will not occur uniformly over the year, knowledge of when temperature variation has the most impact can guide prediction. Responses are large and heterogeneous, yet predictable. The approach has immediate application to forecasting effects of warming on growing season length, requiring only information that is readily available from weather stations and generated in climate models. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 50
    Publication Date: 2013-10-02
    Description: Climate change is expected to cause geographic redistributions of species. To the extent that species within assemblages have different niche requirements, assemblages may no longer remain intact and dis- and reassemble at current or new geographic locations. We explored how climate change projected by 2100 may transform the world's avian assemblages (characterized at a 110 km spatial grain) by modelling environmental niche-based changes to their dietary guild structure under 0 km, 500 km, and 2000 km dispersal distances. We examined guild structure changes at coarse (primary, high-level, and mixed consumers) and fine (frugivores, nectarivores, insectivores, herbivores, granivores, scavengers, omnivores, and carnivores) ecological resolutions to determine whether or not geographic co-occurrence patterns among guilds were associated with the magnitude to which guilds are functionally resolved. Dietary guilds vary considerably in their global geographic prevalence, and under broad-scale niche-based redistribution of species, these are projected to change very heterogeneously. A non-dispersal assumption results in the smallest projected changes to guild assemblages, but with significant losses for some regions and guilds, such as South American insectivores. Longer dispersal distances are projected to cause greater degrees of disassembly, and lead to greater homogenization of guild composition, especially in northern Asia and Africa. This arises because projected range gains and losses result in geographically heterogeneous patterns of guild compensation. Projected decreases especially of primary and mixed consumers most often are compensated by increases in high-level consumers, with increasing uncertainty about these outcomes as dispersal distance and degree of guild functional resolution increases. Further exploration into the consequences of these significant broad-scale ecological functional changes at the community or ecosystem level should be increasingly on the agenda for conservation science. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 51
    Publication Date: 2013-10-02
    Description: Climate change scenarios predict increases in the frequency and duration of ENSO-related droughts for parts of South-East Asia until the end of this century exposing the remaining rainforests to increasing drought risk. A pan-tropical review of recorded drought-related tree mortalities in more than 100 monitoring plots before, during and after drought events suggested a higher drought-vulnerability of trees in South-East Asian than in Amazonian forests. Here, we present the results of a replicated (n=3 plots) throughfall exclusion experiment in a perhumid tropical rainforest in Sulawesi, Indonesia. In this first large-scale roof experiment outside semi-humid eastern Amazonia, 60% of the throughfall was displaced during the first 8 months and 80% during the subsequent 17 months, exposing the forest to severe soil desiccation for about 17 months. In the experiment's second year, wood production decreased on average by 40% with largely different responses of the tree families (ranging from -100 to +100% change). Most sensitive were trees with high radial growth rates under moist conditions. In contrast, tree height was only a secondary factor and wood specific gravity had no influence on growth sensitivity. Fine root biomass was reduced by 35% after 25 months of soil desiccation while fine root necromass increased by 250% indicating elevated fine root mortality. Cumulative aboveground litter production was not significantly reduced in this period. The trees from this Indonesian perhumid rainforest revealed similar responses of wood and litter production and root dynamics as those in two semi-humid Amazonian forests subjected to experimental drought. We conclude that trees from paleo- or neotropical forests growing in semi-humid or perhumid climates may not differ systematically in their growth sensitivity and vitality under sub-lethal drought stress. Drought vulnerability may depend more on stem cambial activity in moist periods than on tree height or wood specific gravity. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 52
    Publication Date: 2013-10-02
    Description: We examined the water balance a forested ombrotrophic peatland and adjacent burned peatland in the boreal plain of western Canada over a three-year period. Complete combustion of foliage and fine branches dramatically increased shortwave radiation inputs to the peat surface while halting all tree transpiration at the burned site. End-of-winter snowpack was 7-25% higher at the burned site likely due to decreased ablation from the tree canopy at the unburned site. Shrub regrowth at the burned site was rapid post-fire, and shading by the shrub canopy in the burned site approached that of the unburned site within three years after fire. Site-averaged surface resistance to evaporation was not different between sites, though surface resistance in hollows was lower in the burned site. Water loss at both burned and unburned sites is largely driven by surface evaporative losses. Evaporation at the burned site marginally exceeded the sum of pre-fire transpiration and interception at the unburned site, suggesting that ET during the growing season was 2 0–40  mm greater at the the burned peatland. While the net change in water storage during the growing season was largely unchanged by fire, the lack of low-density surface peat in the burned site appears to have decreased specific yield, leading to greater water table decline at the burned site despite similar net change in storage. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 53
    Publication Date: 2013-10-02
    Description: Soil microbial communities in Chihuahuan Desert grasslands generally experience highly variable spatiotemporal rainfall patterns. Changes in precipitation regimes can affect belowground ecosystem processes such as decomposition and nutrient cycling by altering soil microbial community structure and function. The objective of this study was to determine if increased seasonal precipitation frequency and magnitude over a seven-year period would generate a persistent shift in microbial community characteristics and soil nutrient availability. We supplemented natural rainfall with large events (one/winter and three/summer) to simulate increased precipitation based on climate model predictions for this region. We observed a two year delay in microbial responses to supplemental precipitation treatments. In Years 3-5, higher microbial biomass, arbuscular mycorrhizae abundance, and soil enzyme C and P acquisition activities were observed in the supplemental water plots even during extended drought periods. In Years 5-7, available soil P was consistently lower in the watered plots compared to control plots. Shifts in soil P corresponded to higher fungal abundances, microbial C utilization activity, and soil pH. This study demonstrated that 25% shifts in seasonal rainfall can significantly influence soil microbial and nutrient properties, which in turn may have long-term effects on nutrient cycling and plant P uptake in this desert grassland. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 54
    Publication Date: 2013-10-02
    Description: It is proposed that increases in anthropogenic reactive nitrogen (N r )-deposition may cause temperate and boreal forests to sequester a globally significant quantity of carbon (C); however, long-term data from boreal forests describing how C sequestration responds to realistic levels of chronic N r -deposition are scarce. Using a long term (14-year) stand scale (0.1 ha) N-addition experiment (three levels: 0, 12.5, and 50 kg N ha −1 yr −1 ) in the boreal zone of northern Sweden, we evaluated how chronic N additions altered N uptake and biomass of understory communities, and whether changes in understory communities explained N uptake and C sequestration by trees. We hypothesized that understory communities (i.e. mosses and shrubs) serve as important sinks for low-level N additions, with the strength of these sinks weakening as chronic N addition rates increase, due to shifts in species composition. We further hypothesized that trees would exhibit non-linear increases in N acquisition, and subsequent C sequestration as N addition rates increased, due to a weakening understory N sink. Our data showed that understory biomass was reduced by 50% in response to the high N addition treatment, mainly due to reduced moss biomass. A 15 N labelling experiment showed that feather mosses acquired the largest fraction of applied label, with this fraction decreasing as the chronic N addition level increased. Contrary to our hypothesis, the proportion of label taken up by trees was equal (~8%) across all three N addition treatments. The relationship between N addition and C sequestration in all vegetation pools combined was linear, and had a slope of 16 kg C kg −1 N. While canopy retention of N r deposition may cause C sequestration rates to be slightly different than this estimate, our data suggests that a minor quantity of annual anthropogenic CO 2 emissions are sequestered into boreal forests as a result of N r deposition. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 55
    Publication Date: 2013-10-02
    Description: Urbanization is one of the most extensive and ecologically significant changes happening to terrestrial environments, as it strongly affects the distribution of biodiversity. It is well established that native species richness is reduced in urban and suburban areas, but the species traits that predict tolerance to urbanization are yet little understood. In birds, one of the most studied groups in this respect, evidence is appearing that acoustic traits influence urban living, but it is unknown how this compares to the effects of more obvious ecological traits that facilitate urban living. Therefore, it remains unclear whether acoustic communication is an important predictor of urban tolerance among species. Here, with a comparative study across 140 European and North American passerines, I show that high song frequency, which is less masked by the low-frequency anthropogenic noise, is associated with urban tolerance, with an effect size over half that of the most important ecological trait studied: off-ground nesting. Other nesting and foraging traits accepted to facilitate urban living did not differ for species occurring in urban environments. Thus, the contribution of acoustic traits for passerine urban tolerance approximates that of more obvious ecological traits. Nonetheless, effect sizes of the biological predictors of urban tolerance were low and the phylogenetic signal for urban tolerance was null, both of which suggest that factors other than phenotypic traits have major effects on urban tolerance. A simple possibility is exposure to urbanization, since there was a higher proportion of urban-tolerant species in Europe, which is more urbanized than North America. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 56
    Publication Date: 2013-10-02
    Description: The eddy covariance (EC) method was used in a 30-month study to quantify evapotranspiration (ET) and vegetation coefficient (K CW ) for a wetland on a ranch in subtropical south Florida. To evaluate the errors in ET estimates, the EC-based ET (ET C.-EC ) and the Food and Agricultural Organization (FAO) Penman-Monteith (PM) based ET (ET C.-PM ) estimates (with literature crop coefficient K C ) were compared to each other. The ET C.-EC and FAO-PM reference ET were used to develop K CW . Regression models were developed to estimate K CW using climatic and hydrologic variables. Annual and daily ET C.-EC values were 1152 mm and 3.27 mm, respectively. The FAO-PM model underestimated ET by 25% with ET C.-EC being statistically higher than ET C.-PM . The K CW varied from 0.79 (December) to 1.06 (November). The mean K CW for dry (November-April) season (0.95) was much higher than values reported for wetlands in literature, while wet (May-October) season K CW (0.97) was closer to literature values. Higher than expected K CW values during dry season were due to higher temperature, lower humidity and perennial wetland vegetation. Regression analyses showed that factors affecting the K CW were different during the dry (soil moisture, temperature, and relative humidity) and wet (net radiation, inundation, and wind speed) seasons. Separate regression models for the dry and wet seasons were developed. ET and K CW from this study, one of the first for the agricultural wetlands in subtropical environment, will help improve the ET estimates for similar wetlands. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 57
    Publication Date: 2013-10-03
    Description: We present an unprecedented multicentennial sediment record from the foot of Vesterisbanken Seamount, central Greenland Sea, covering the past 22.3 thousand years (ka). Based on planktic foraminiferal total abundances, species assemblages, and stable oxygen and carbon isotopes, the palaeoenvironments in this region of modern deepwater renewal were reconstructed. Results show that during the Last Glacial Maximum the area was affected by harsh polar conditions with only episodic improvements during warm summer seasons. Since 18 ka extreme freshwater discharges from nearby sources occurred, influencing the surface water environment. The last major freshwater event took place during the Younger Dryas. The onset of the Holocene was characterized by an improvement of environmental conditions suggesting warming and increasing ventilation of the upper water layers. The early Holocene saw a stronger Atlantic waters advection to the area, which began around 10.5 and ended quite rapidly at 5.5 ka, followed by the onset of Neoglacial cooling. Surface water ventilation reached a maximum in the middle Holocene. Around 3 ka the surface water stratification increased leading to subsequent amplification of the warming induced the North Atlantic Oscillation at 2 ka.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 58
    Publication Date: 2013-10-02
    Description: Motivated by observations of the mean state of tropical precipitable water (PW), a moist, first baroclinic mode, shallow water system on an equatorial β -plane with a background saturation profile that depends on latitude and longitude is studied. In the presence of a latitudinal moisture gradient, linear analysis of the non-rotating problem reveals large-scale, symmetric, eastward and westward propagating unstable modes. The introduction of a zonal moisture gradient breaks the east–west symmetry of the unstable modes. The effects of rotation are then included by numerically solving the resulting eigenvalue problem on an equatorial β -plane. With a purely meridional moisture gradient, the system supports large-scale, low-frequency, eastward and westward moving neutral modes. Some of the similarities, and some of the discrepancies of these modes with intraseasonal tropical waves are pointed out. Finally, a zonal moisture gradient in the presence of rotation renders some of the aforementioned neutral modes unstable. In particular, as per observations of large-scale, low-frequency tropical variability, it is seen that regions where the background saturation profile increases (decreases) to the east favour eastward (westward) moving moist modes.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 59
    Publication Date: 2013-10-02
    Description: In this study changes in the Northern Hemisphere winter storm tracks during the 20th century are investigated based on the individual 56 ensemble-members of the 20th Century Reanalysis dataset. It is found that the 20th century trends in storm track activities exhibit large discrepancies between the upper and lower troposphere. In the upper troposphere, a substantial intensification is identified at the poleward and downstream regions of the North Pacific and North Atlantic storm track activities, indicating a large northeastward expansion of storm tracks in the late 20th century. However, in the lower troposphere the synoptic eddy activities, especially in terms of the eddy kinetic energy (EKE) and meridional eddy heat flux, tend to be significantly weakened over the high-latitudes of central-western North Pacific and the upstream regions of the North Atlantic storm tracks. Further inspections find that such strengthening (weakening) of storm tracks in the upper (lower) troposphere are mainly attributed to the increase (decrease) of the baroclinic instability, which is predominantly determined by the meridional temperature gradient changes. Moreover, from a local energetic perspective, the baroclinic generation and barotropic damping of the synoptic eddies are found to be substantially enhanced at the upstream and downstream regions of the two storm tracks in the upper troposphere, respectively, while in the lower troposphere the baroclinic energy conversion to eddies are generally decreased.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 60
    Publication Date: 2013-10-02
    Description: We derive a family of ideal (nondissipative) 3D sound-proof fluid models that includes both the Lipps-Hemler anelastic approximation (AA) and the Durran pseudo-incompressible approximation (PIA). This family of models arises in the Euler-Poincaré framework involving a constrained Hamilton's principle expressed in the Eulerian fluid description. The derivation in this framework establishes the following properties of each member of the entire family: the Kelvin-Noether circulation theorem, conservation of potential vorticity on fluid parcels, a Lie-Poisson Hamiltonian formulation possessing conserved Casimirs, a conserved domain integrated energy and an associated variational principle satisfied by the equilibrium solutions. Having set the stage with the derivations of 3D models using the constrained Hamilton's principle, we then derive the corresponding 2D vertical slice models for these sound-proof theories.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 61
    Publication Date: 2013-10-03
    Description: Research on runoff processes to date has focused on the differences between the main divisions of runoff partitioning. Indeed, our major advancements in runoff theory have come with new differentiations of different forms of overland flow and subsurface stormflow. These studies of ‘how runoff processes are different’ have resulted in our current summaries of runoff regimes conceptually (e.g. the Variable Source Area (VSA) concept) and codified in our models (e.g. TOPMODEL and its derivatives). This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 62
    Publication Date: 2013-10-03
    Description: ABSTRACT A study was performed to characterize over land precipitation associated with tropical cyclones (TCs) for basins around the world based upon the International Best Track Archive for Climate Stewardship (IBTrACS). From 1998 to 2009, data from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) product 3B42, showed that TCs accounted for 5.5%, 7.5%, 6%, 9.5%, and 8.9% of the annual precipitation for impacted over land areas of the Americas, East Asia, South and West Asia, Oceania, and East Africa respectively, and that TC contribution decreased significantly within the first 150-km from the coast. Locally, TCs contributed on average to more than 25% and up to 61% of the annual precipitation budget over very different climatic areas with arid or tropical characteristics. East Asia represented the higher and most constant TC rain (118±19% mm y -1 ) normalized over the area impacted, while East Africa presented the highest variability (108±60% mm y -1 ), and the Americas displayed the lowest average TC rain (65±24% mm y -1 ) despite a higher TC activity. Furthermore, the maximum monthly TC contribution (8-11%) was found later in the TC season and depended on the peak of TC activity, TC rainfall, and the domain transition between dry and wet regimes if any. Finally, because of their importance in terms of rainfall amount, the contribution of TCs was provided for a selection of 50 urban areas experiencing cyclonic activity. Results showed that for particularly intense years, urban areas prone to cyclonic activity received more than half of their annual rainfall from TCs.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 63
    Publication Date: 2013-10-03
    Description: A multivariate, multi-site daily weather generator is presented for use in decision-centric vulnerability assessments under climate change. The tool is envisioned useful for a wide range of socioeconomic and biophysical systems sensitive to different aspects of climate variability and change. The proposed stochastic model has several components, including 1) a wavelet decomposition coupled to an autoregressive model to account for structured, low-frequency climate oscillations, 2) a Markov Chain and k-nearest-neighbor (KNN) resampling scheme to simulate spatially-distributed, multivariate weather variables over a region, and 3) a quantile mapping procedure to enforce long-term distributional shifts in weather variables that result from prescribed climate changes. The Markov Chain is used to better represent wet and dry spell statistics while the KNN bootstrap resampler preserves the covariance structure between the weather variables and across space. The wavelet-based autoregressive model is applied to annual climate over the region and used to modulate the Markov Chain and KNN resampling, embedding appropriate low-frequency structure within the daily weather generation process. Parameters can be altered in any of the components of the proposed model to enable the generation of realistic time series of climate variables that exhibit changes to both lower-order and higher-order statistics at long-term (inter-annual), mid-term (seasonal), and short-term (daily) timescales. The tool can be coupled with impact models in a bottom-up risk assessment to efficiently and exhaustively explore the potential climate changes under which a system is most vulnerable. An application of the weather generator is presented for the Connecticut River basin to demonstrate the tool's ability to generate a wide range of possible climate sequences over an extensive spatial domain.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 64
    Publication Date: 2013-10-03
    Description: The objective of the least cost design problem of a water distribution system is to find its minimum cost with discrete diameters as decision variables and hydraulic controls as constraints. The goal of a robust least cost design is to find solutions which guarantee its feasibility independent of the data (i.e., under model uncertainty). A robust counterpart approach for linear uncertain problems is adopted in this study, which represents the uncertain stochastic problem as its deterministic equivalent. Robustness is controlled by a single parameter providing a trade-off between the probability of constraint violation and the objective cost. Two principal models are developed-uncorrelated uncertainty model with implicit design reliability, and correlated uncertainty model with explicit design reliability. The models are tested on three example applications and compared for uncertainty in consumers’ demands. The main contribution of this study is the inclusion of the ability to explicitly account for different correlations between water distribution systems demand nodes. In particular it is shown that including correlation information in the design phase has a substantial advantage in seeking more efficient robust solutions.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 65
    Publication Date: 2013-10-03
    Description: Moving from univariate to multivariate frequency analysis, this study extends the Klemeš' critique of the widespread belief that the increasingly refined mathematical structures of probability functions increase the accuracy and credibility of the extrapolated upper tails of the fitted distribution models. In particular, we discuss key aspects of multivariate frequency analysis applied to hydrological data such as the selection of multivariate design events (i.e., appropriate subsets or scenarios of multiplets that exhibit the same joint probability to be used in design applications) and the assessment of the corresponding uncertainty. Since these problems are often overlooked or treated separately, and sometimes confused, we attempt to clarify properties, advantages, shortcomings and reliability of results of frequency analysis. We suggest a selection method of multivariate design events with prescribed joint probability based on simple Monte Carlo simulations that accounts for the uncertainty affecting the inference results and the multivariate extreme quantiles. It is also shown that the exploration of the p -level probability regions of a joint distribution returns a set of events that is a subset of the p -level scenarios resulting from an appropriate assessment of the sampling uncertainty, thus tending to overlook more extreme and potentially dangerous events with the same (uncertain) joint probability. Moreover, a quantitative assessment of the uncertainty of multivariate quantiles is provided by introducing the concept of joint confidence intervals. From an operational point of view, the simulated event sets describing the distribution of the multivariate p -level quantiles can be used to perform multivariate risk analysis under sampling uncertainty. As an example of the practical implications of this study, we analyse two case studies already presented in the literature.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 66
    Publication Date: 2013-10-05
    Description: Supraglacial channels are an important mechanism for surface water transport over the ablation zone of western Greenland. The first assessment of the spatio-temporal distribution of surface melt channels and their relationship to supraglacial lakes over the Jakobshavn Isbrae region of Western Greenland was analyzed using Landsat ETM + panchromatic images during the 2007 melt season. A total of 1188 melt channels were delineated and show an increase in the number of melt channels throughout the season, reaching a peak on August 9. Water-filled melt channels advanced to maximum elevation of 1647 m on August 9, and attained a minimum average slope of 0.009 on July 8. The ablation zone demonstrates two hydrologic modes, where crevasse and moulin terminating channels dominate at elevations 〈800 m and higher order channel networks 〉800 m. Development of higher order networks is interrupted by flow divergence due to partitioning of melt water into vertical infiltration through moulins and crevasse fields prevalent at lower elevations. Tributary and Connector networks between 800 to 1200 m in elevation are correlated with fewer lake occurrences, relatively lower surface velocities (~50 ma -1 ) and ice flow dominated by internal deformation over basal sliding. High order channels are associated with lake basins that exceed melt water storage capacity. Evolution of channel networks is coupled to changes in melt water production, runoff, and ice dynamics with implication for the englacial and subglacial environments. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 67
    facet.materialart.
    Unknown
    Wiley
    Publication Date: 2013-10-05
    Description: This paper reviews the use of the Generalised Likelihood Uncertainty Estimation (GLUE) methodology in the 20 years since the paper by Beven and Binley (1992) in Hydrological Processes, which is now one of the most highly cited papers in hydrology. The original conception, the on-going controversy it has generated, the nature of different sources of uncertainty and the meaning of the GLUE prediction uncertainty bounds, are discussed. The hydrological, rather than statistical, arguments about the nature of model and data errors and uncertainties that are the basis for GLUE are emphasised. The application of the IHDM model to the Gwy catchment at Plynlimon presented in the original paper is revisited, using a much larger sample of models, a wider range of likelihood evaluations and new visualisation techniques. It is concluded that there are good reasons to reject this model for that data set. This is a positive result in a research environment in that it requires improved models or data to be made available. In practice, there may be ethical issues of using outputs from models for which there is evidence for model rejection in decision making. Finally some suggestions for what is needed in the next 20 years are provided. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 68
    Publication Date: 2013-10-05
    Description: A short-term flood inundation prediction model has been formulated based on the combination of the super-tank model, forced with downscaled rainfall from a global numerical weather prediction model, and a one-dimensional hydraulic model. Different statistical methods for downscaled rainfall have been explored, taking into account the availability of historical data. It has been found that the full implementation of a statistical downscaling model considering physically based corrections to the numerical weather prediction model output for rainfall prediction performs better compared with an altitudinal correction method. The integration of the super-tank model into the one-dimensional hydraulic model demonstrates a minimal requirement for the calibration of rainfall-runoff and flood propagation models. Updating the model with antecedent rainfall and regular forecast renewal has enhanced the model's capabilities as a result of the data assimilation processes of the runoff and numerical weather prediction models. The results show that the predicted water levels demonstrate acceptable agreement with those measured by stream gauges and comparable to those reproduced using the actual rainfall. Moreover, the predicted flood inundation depth and extent exhibit reasonably similar tendencies to those observed in the field. However, large uncertainties are observed in the prediction results in lower, flat portions of the river basin where the hydraulic conditions are not properly analysed by the one-dimensional flood propagation model. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 69
    Publication Date: 2013-10-05
    Description: This study aims to analyse the combined impacts of future discharges and sea levels on erosion-sedimentation potential, and its seasonal changes, in a ~43 km long coastal river reach of South-West Finland. To our knowledge, this kind of combined study has not been performed before. In addition to surveying the present erosion-sedimentation conditions, the daily erosion-sedimentation potential is simulated with a one dimensional hydrodynamic model for the 1971–2000 and 2070–2099 periods by applying four discharge scenarios. Different sea level stages are also employed in the simulations. All scenarios forecast increasing autumn and winter discharges, but diminishing summer discharges. This indicates increasing river channel erosion, particularly during winters and autumns. Although discharge changes have altogether a greater influence on erosion-sedimentation potential, the importance of sea level changes on sedimentation is noticeable in the estuary. The rising sea level scenarios increase the sedimentation potential. In total, by 2070–2099 the erosion potential may increase in most parts of the study area. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 70
    Publication Date: 2013-10-04
    Description: Sparse geologic dictionaries provide a novel approach for subsurface flow model representation and calibration. Learning sparse dictionaries from prior training datasets is an effective approach to describe complex geologic connectivity patterns in subsurface imaging applications. However, the computational cost of sparse learning algorithms becomes prohibitive for large models. Performing the sparse dictionary learning process on smaller image patches (segments) provides a simple approach to address this problem in image processing applications. However, in underdetermined subsurface flow model calibration inverse problems, reconstruction of a segmented image can introduce significant structural distortion and discontinuity at the boundaries of the segments. This paper proposes an alternative sparse learning approach where the sparse dictionaries are learned from low-rank representations of the large-scale training dataset in spectral domains (e.g., frequency domain). The objective is to develop a computationally efficient dictionary learning approach that emphasizes large-scale spatial connectivity patterns. This is achieved by removing the strong spatial correlations in the training data, thereby eliminating a large number of insignificant components from the sparse learning computation. In addition to improving the computational complexity, sparse learning from low-rank training datasets suppresses the small-scale details from entering the reconstruction of large-scale connectivity patterns, and providing a regularization effect in solving the resulting ill-posed inverse problems. We apply the proposed approach to travel-time tomography inversion and nonlinear subsurface flow model calibration inverse problems to demonstrate its effectiveness and practicality.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 71
    Publication Date: 2013-09-07
    Description: ABSTRACT Landscape evolution models (LEMs) simulate the geomorphic development of river basins over long time periods and large space scales (100's-1000's of years, 100's of km^2). Due to these scales they have been developed with simple steady flow models that enable long time steps (e.g. years) to be modelled, but not shorter term hydrodynamic effects (e.g. the passage of a flood wave). Non steady flow models that incorporate these hydrodynamic effects typically require far shorter time steps (seconds or less) and use more expensive numerical solutions hindering their inclusion in LEMs. The recently developed LISFLOOD-FP simplified 2D flow model addresses this issue by solving a reduced form of the shallow water equations using a very simple numerical scheme, thus generating a significant increase in computationally efficiency over previous hydrodynamic methods. This leads to potential convergence of computational cost between LEMs and hydrodynamic models, and presents an opportunity to combine such schemes. This paper outlines how two such models (the LEM CAESAR and the hydrodynamic model LISFLOOD-FP) were merged to create the new CAESAR-Lisflood model, and through a series of preliminary tests shows that using a hydrodynamic model to route flow in an LEM affords many advantages. The new model is fast, computationally efficient and has a stronger physical basis than a previous version of the CAESAR model. For the first time it allows hydrodynamic effects (tidal flows, lake filling, alluvial fans blocking valley floor) to be represented in an LEM, as well as producing noticeably different results to steady flow models. This suggests that the simplification of using steady flow in existing LEMs may bias their findings significantly. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 72
    Publication Date: 2013-09-07
    Description: Northern peatlands are a large source of atmospheric methane (CH 4 ) and both a source and sink of atmospheric carbon dioxide (CO 2 ). The rate and temporal variability in gas exchanges with peat soils is directly related to the spatial distribution of these free-phase gases within the peat column. In this paper we present results from surface and borehole ground penetrating radar (GPR) surveys – constrained with direct soil and gas sampling – that compare the spatial distribution of gas accumulations in two raised bogs: one in Wales (UK), the other in Maine (USA). Although the two peatlands have similar average thickness, physical properties of the peat matrix differ, particularly in terms of peat type and degree of humification. We hypothesize that these variations in physical properties are responsible for the differences in gas distribution between the two peatlands characterized by: 1) gas content up to 10.8 % associated with woody peat and presence of wood layers in Caribou Bog (Maine), and 2) a more homogenous distribution with gas content up to 5.7 % at the surface (i.e. 〈 0.5 m deep) in Cors Fochno (Wales). Our results highlight the variability in biogenic gas accumulation and distribution across peatlands and suggest that the nature of the peat matrix has a key role in defining how biogenic gas accumulates within, and is released to the atmosphere from, peat soils. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 73
    Publication Date: 2013-09-07
    Description: The confounding effects of step change invalidate the stationarity assumption of commonly used trend analysis methods such as the Mann-Kendall test technique, so previous studies have failed to explain inconsistencies between detected trends and observed large precipitation anomalies. The objectives of this study were to: 1) formulate a trend analysis approach that considers nonstationarity due to step changes; 2) use this approach to detect trends and extreme occurrences of precipitation in a mid-latitude Eurasian steppe watershed in north China; and 3) examine how runoff responds to precipitation trends in the study watershed. Our results indicate that annual precipitation underwent a marginal step jump around 1995. The significant annual downward trend after 1994 was primarily due to a decrease in summer rainfall; other seasons exhibited no significant precipitation trends. At a monthly scale, July rainfall after 1994 exhibited a significant downward trend, whereas precipitation in other months had no trend. The percentage of wet days also underwent a step jump around 1994 following a significant decreasing trend, although the precipitation intensity exhibited neither a step change nor any significant trend. However, both low- and high-frequency precipitation events in the study watershed occurred more often after than before 1994, probably as either a result or an indicator of climate change. In response to these precipitation changes, the study watershed had distinctly different precipitation-runoff relationships for observed annual precipitations of less than 300 mm, between 300 and 400 mm, and greater than 400 mm. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 74
    Publication Date: 2013-09-08
    Description: ABSTRACT The southern foreland basin of the Alborz Mountains of northern Iran is characterized by an approximately 7.3-km-thick sequence of Miocene sedimentary rocks, constituting three basin-wide coarsening-upward units spanning a period of 10 6  years. We assess available magnetostratigraphy, paleoclimatic reconstructions, stratal architecture, records of depositional environments, and sediment-provenance data to characterize the relationships between tectonically-generated accommodation space (A) and sediment supply (S). Our analysis allows an inversion of the stratigraphy for particular forcing mechanisms, documenting causal relationships, and providing a basis to decipher the relative contributions of tectonics and climate (inferred changes in precipitation) in controlling sediment supply to the foreland basin. Specifically, A/S 〉 1, typical of each basal unit (17.5-16.0, 13.8-13.1 and 10.3-9.6 Ma), is associated with sharp facies retrogradation and reflects substantial tectonic subsidence. Within these time intervals, arid climatic conditions, changes in sediment provenance, and accelerated exhumation in the orogen suggest that sediment supply was most likely driven by high uplift rates. Conversely, A/S 〈 1 (13.8 and 13.8-11 Ma, units 1, and 2) reflects facies progradation during a sharp decline in tectonic subsidence caused by localized intra-basinal uplift. During these time intervals, climate continued to be arid and exhumation active, suggesting that sediment supply was again controlled by tectonics. A/S 〈 1, at 11-10.3 Ma and 9-6-7.6 Ma (and possibly 6.2; top of units 2 and 3), is also associated with two episodes of extensive progradation, but during wetter phases. The first episode appears to have been linked to a pulse in sediment supply driven by an increase in precipitation. The second episode reflects a balance between a climatically-induced increase in sediment supply and a reduction of subsidence through the incorporation of the proximal foreland into the orogenic wedge. This in turn caused an expansion of the catchment and a consequent further increase in sediment supply. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 75
    Publication Date: 2013-09-11
    Description: Hydrological models are useful tools to analyze present and future conditions of water quantity and quality. The integrated modeling of water and nutrients needs an adequate representation of the different discharge components. In common with many lowlands, groundwater contribution to the discharge in the North German lowlands is a key factor for a reasonable representation of the water balance especially in low flow periods. Several studies revealed that the widely used SWAT model performs poorly for low flow periods. This paper deals with the extension of the groundwater module of the SWAT model to enhance low flow representation. The current two-storage concept of SWAT was further developed to a three-storage-concept. This was realized due to modification of the groundwater module by splitting the active roundwater storage into a fast and a slow contributing aquifer. The results of this study show that the groundwater module with three storages leads to good prediction of the overall discharge especially for the recession limbs and the low flow periods. The improved performance is reflected in the signature measures for the mid segment (PBIAS: −2:4% vs. −15:9%) and the low segment (PBIAS: 14:8% vs. 46:8%) of the flow duration curve. The three-storage groundwater module is more process oriented than the original version due to the introduction of a fast and a slow groundwater flow component. The three-storage version includes a modular approach, since groundwater storages can be activated or deactivated independently for subbasin and HRU level. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 76
    Publication Date: 2013-09-11
    Description: There is evidence that climate change induced tree mortalities in boreal and temperate forests and increased forest turnover rates (both mortality and recruitment rates) in Amazon forests. However, no study has examined China's tropical and subtropical evergreen broadleaved forests (TEBF) that cover 〉26% of China's terrestrial land . The sustainability of this biome is vital to the maintenance of local ecosystem services (e.g., carbon sequestration, biodiversity conservation, climatic regulation etc.), many of which may influence patterns of atmospheric circulation and composition at regional to global scales. Here we analyze time-series data collected from thirteen permanent plots within China's unmanaged TEBF to study whether and how this biome has changed over recent decades. We find that the numbers of individuals and species for shrub and small tree have increased since 1978, whereas the numbers of individuals and species for tree have decreased over this same time period. The shift in species composition is accompanied by a decrease in the mean DBH (diameter at breast height) for all individuals combined. China's TEBF may thereby be transitioning from cohorts of fewer and larger individuals to ones of more and smaller individuals, which shows a unique change pattern differing from the documented. Regional-scale drying is likely responsible for the biome's reorganization. This biome-wide reconstitution would deeply impact the regimes of carbon sequestration and biodiversity conservation and have implications for the sustainability of economic development in the area. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 77
    Publication Date: 2013-09-11
    Description: Freshwater ecosystems provide vital resources for humans and support high levels of biodiversity, yet are severely threatened throughout the world. The expansion of human land uses, such as urban and crop cover, typically degrades water quality and reduces freshwater biodiversity, thereby jeopardizing both biodiversity and ecosystem services. Identifying and mitigating future threats to freshwater ecosystems requires forecasting where land use changes are most likely. Our goal was to evaluate the potential consequences of future land use on freshwater ecosystems in the coterminous United States by comparing alternative scenarios of land use change (2001-2051) with current patterns of freshwater biodiversity and water-quality risk. Using an econometric model, each of our land use scenarios projected greater changes in watersheds of the eastern half of the country, where freshwater ecosystems already experience higher stress from human activities. Future urban expansion emerged as a major threat in regions with high freshwater biodiversity (e.g., the Southeast) or severe water-quality problems (e.g., the Midwest). Our scenarios reflecting environmentally-oriented policies had some positive effects. Subsidizing afforestation for carbon sequestration reduced crop cover and increased natural vegetation in areas that are currently stressed by low water quality, while discouraging urban sprawl diminished urban expansion in areas of high biodiversity. On the other hand, we found that increases in crop commodity prices could lead to increased agricultural threats in areas of high freshwater biodiversity. Our analyses illustrate the potential for policy changes and market factors to influence future land use trends in certain regions of the country, with important consequences for freshwater ecosystems. Successful conservation of aquatic biodiversity and ecosystem services in the U.S. into the future will require attending to the potential threats and opportunities arising from policies and market changes affecting land use. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 78
    Publication Date: 2013-09-12
    Description: Coarse crystalline cryogenic cave carbonate (CCC) forms during the slow freezing of standing water pools and represents indirect proof of freezing temperature in the past. The dating by U-series of CCC deposits from nine caves in the Western Carpathians Mountains of Slovakia suggests that freezing conditions, and possible permafrost conditions, occurred during the Last Permafrost Maximum (LPM, c . 20–18 ka BP). The CCC deposits occur in caves at elevations of between 800 and 1800 m a.s.l. They point to widespread alpine permafrost, the lower limit of discontinuous/sporadic permafrost being approximately 800 m a.s.l. The thickness of permafrost probably varied between 30 and 180 m. In the Vysoké Tatry Mountains at altitudes of ∼1800 m a.s.l., one occurrence of CCC suggests that subzero temperatures may have penetrated to a depth of over 285 m.
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 79
    Publication Date: 2013-09-13
    Description: The ecological condition and biodiversity values of floodplain wetlands are highly dependent on the hydrological connectivity of wetlands to adjacent rivers. This paper describes a method for quantifying connectivity between floodplain wetlands and the main rivers in a wet tropical catchment of northern Australia. We used a 1-D hydrodynamic model to simulate time-varying water depths across the stream network (i.e. rivers, streams and man-made drains). The timing and duration of connectivity of seven wetlands (4 natural and 3 artificial) with the two main rivers in the catchment were then calculated for different hydrological conditions. Location and areal extent of the wetlands and the stream network were identified using high resolution laser altimetry (LiDAR) and these data formed key inputs to the hydrodynamic model. The model was calibrated using measured water depths and discharges across the floodplain. An algorithm was developed to identify contiguous water bodies at daily time steps and this gave the temporal history of connection and disconnection between wetlands and the rivers. Simulation results show that connectivity of individual wetlands to both rivers varies from 26 to 365 days during an average hydrological condition. Location, especially proximity to a main river, and wetland type (natural stream or artificial drain) were identified as key factors influencing these levels of connectivity. Some natural wetlands maintain connection with the river for most or all of the year, whereas the connectivity of some artificial wetlands varies from 26 to 36 days according to their patterns of network connection to adjacent rivers – a result that has important implications for the accessibility of these types of wetland to aquatic biota. Using readily available river gauge data, we also show how connectivity modelling can be used to identify periods when connectivity has fallen below critical thresholds for fish movement. These connectivity patterns within the floodplain network are central to the setting of river flows that will meet environmental requirements for biota that use floodplain wetlands during their life history. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 80
    Publication Date: 2013-09-13
    Description: [1]  The current positive trend in the Southern Annular Mode (SAM) is thought to reduce the growth rate of the Southern Ocean CO 2 sink because enhanced wind-driven upwelling of dissolved inorganic carbon (DIC) increases outgassing of natural CO 2 . However, no study to date has quantified the potentially large role of mesoscale eddies in compensating intensified upwelling, nor the mixed layer processes in terms of their effects on CO 2 fluxes. Here we report on results from two new simulations in a regional 0.5º eddying model of the Southern Ocean. The first simulation is forced with interannually varying atmospheric reanalysis and coupled to a biogeochemistry model run under constant preindustrial atmospheric CO 2 . The second simulation is like the first except that superimposed on the forcing is a poleward shifted and intensified westerlies wind anomaly consistent with the positive phase of the SAM. In response to the SAM, the Southern Ocean's sea-to-air CO 2 flux is enhanced by 0.1 Pg C yr -1 per standard deviation of the SAM, mostly from the Antarctic Zone (AZ), where enhanced surface DIC is only partly compensated by enhanced surface alkalinity. Increased mixed-layer DIC in the AZ results from a combination of increased upwelling below the mixed layer and increased vertical diffusion at the base of the mixed layer. Previous studies overlooked the latter. Thus upward supply of DIC and alkalinity depends on associated vertical gradients just below the mixed layer, which are affected by interior ocean transport. Our eddying model study suggests that about one-third of the SAM enhancement of the Ekman-induced northward DIC transport is compensated by southward transport from standing and transient eddies.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 81
    Publication Date: 2013-09-13
    Description: Pumping tests are one of the most commonly used in-situ testing techniques for assessing aquifer hydraulic properties. Numerous researches have been conducted to predict the effects of aquifer heterogeneity on the groundwater levels during pumping tests. The objectives of the present work were 1) to predict drawdown conditions and estimate aquifer properties during pumping tests undertaken in radially symmetric heterogeneous aquifers and 2) to identify a method for assessing the transmissivity field along the radial coordinate in radially symmetric and fully heterogeneous transmissivity fields. The first objective was achieved by expanding an existing analytical drawdown formulation which was valid for a radially symmetric confined aquifer with two concentric zones around the pumping well to an N concentric zone confined aquifer having a constant transmissivity value within each zone. The formulation was evaluated for aquifers with three and four concentric zones to assess the effects of the transmissivity field on the drawdown conditions. The specific conditions under which aquifer properties could be identified using traditional methods of analysis were also evaluated. The second objective was achieved by implementing the Inverse Solution Algorithm (ISA) which was developed for petroleum reservoirs to groundwater aquifer settings. The results showed that the drawdown values are influenced by a volumetric integral of a weighting function and the transmissivity field within the cone of depression. The weighting function migrates in tandem with the expanding cone of depression. The ability of the ISA to predict radially symmetric and log-normally distributed transmissivity fields was assessed against analytical and numerical benchmarks. The results of this investigation indicated that the ISA method is a viable technique for evaluating the radial transmissivity variations of heterogeneous aquifer settings. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 82
    Publication Date: 2013-09-14
    Description: ABSTRACT This article focuses on the Early–Middle Bronze Age (MBA) transition in Sicily and southern Italy from a Bayesian radiocarbon perspective. The aims are to: (i) estimate the beginning of the MBA (i.e. Thapsos–Milazzese culture in Sicily; Apennine culture in southern Italy) at four key-sites; (ii) assess the existence of a site-wide variability; and (iii) understand if an offset is likely to have existed between the beginning of the MBA and the Aegean Late Helladic (LH) IIIA phase, which currently marks the start of the MBA. The study indicates that the MBA probably started earlier at Portella (95.4% range 1541–1430, mode 1465 BC) and Roca Vecchia (1706–1394, mode 1460 BC) than at Coppa Nevigata (1527–1292, mode 1410 BC; or 1490–1265, mode 1380 BC) and Ustica (1609–1261, mode 1405 BC). Also, the beginning of the MBA at Portella and Roca Vecchia is probably earlier than that of the LH IIIA. This suggests that the current synchronization between MBA and LH IIIA, based on historical grounds, needs revision as radiocarbon evidence points to an earlier start of the MBA at two of the four sites. Overall, by means of scientific dating methods and Bayesian modelling, the study allows us to set in a different perspective the chronology proposed in the current literature based on historical synchronizations. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 83
    Publication Date: 2013-09-14
    Description: ABSTRACT We present an expanded training set of salt-marsh foraminifera for reconstructing Holocene relative sea-level change from 12 sites in New Jersey that represent varied physiographic environments. Seven groups of foraminifera are recognized, including four high- or transitional-marsh assemblages and a low-salinity assemblage. A weighted-averaging transfer function trained on this dataset was applied to a dated core from Barnegat Bay to reconstruct sea level with uncertainties of ± 14% of tidal range. We evaluate the transfer function using seven tests. (1) Leave-one-site-out cross validation suggests that training sets of salt-marsh foraminifera are robust to spatial autocorrelation caused by sampling along transects. (2) Segment-wise analysis shows that the transfer function performs best at densely sampled elevations and overall estimates of model performance are over optimistic. (3) Dissimilarity and (4) non-metric multi-dimensional scaling evaluated the analogy between modern and core samples. The closest modern analogues for core samples were drawn from six sites demonstrating the necessity of a multi-site training set. (5) Goodness-of-fit statistics assessed the validity of reconstructions. (6) The transfer function failed a test of significance because of the unusual properties of some cores selected for sea-level reconstruction. (7) Agreement between reconstructed sea level and tide-gauge measurements demonstrates the transfer function's utility. Copyright © 2013 John Wiley & Sons, Ltd.
    Print ISSN: 0267-8179
    Electronic ISSN: 1099-1417
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 84
    Publication Date: 2013-09-14
    Description: The surface wind response to SST and SST meridional gradient is investigated in the Gulf of Guinea by using daily observations and reanalyses in the 2000–2009 decade, with a focus on boreal spring and summer months (May to August), where quasi-biweekly fluctuations in the position of the northern front of the equatorial cold tongue induce quasi-biweekly equatorial sea surface temperature (SST) anomalies. Following a large-scale wind acceleration (deceleration), an equatorial SST cold (warm) anomaly is created within a few days. In order to explain the local atmospheric response to this SST anomaly, the two following mechanisms are invoked: first, a colder (warmer) ocean decreases (increases) the vertical stability in the marine atmospheric boundary layer, which favors a weaker (stronger) surface wind; and second, a negative (positive) anomaly of SST meridional gradient induces a positive (negative) anomaly of sea level pressure meridional gradient, which decelerate (accelerate) the surface wind. The first mechanism has an immediate effect in the equatorial belt between 1°S-1°N (and to a lesser extent between 3°S and 1°S), while the second takes one or two days to adjust and damps anomalous southeasterlies up to 800 hPa in the low troposphere between 7°S and 1°N, through reversed anomalies of meridional SST and pressure gradient. This negative feedback leads to weaker (stronger) winds in the southeastern Tropical Atlantic, which forces the opposite phase of the oscillation within about a week. Around the equator, where the amplitude of the oscillation is found maximal, both mechanisms combine to maximize the wind response to the front fluctuations. Between the equator and the coast, a low-level secondary atmospheric circulation takes control of the surface wind acceleration or deceleration around 3°N, which reduces the influence of the SST front fluctuations.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 85
    Publication Date: 2013-09-14
    Description: The purpose of the operational-oriented system COALITION ( C ontext and Scale Oriented Thunderstorm Satellite Predictors Development) is to automatically detect severe thunderstorms early in their development and consequently help weather forecasters to increase lead time when issuing severe weather warnings. This new object-oriented system integrates data provided by different sources. Data from Meteosat Second Generation Rapid Scan Service, weather radar and numerical weather prediction, as well as climatology are utilized by the system. One of its primary purposes is to use all the best operationally available information about convective processes and to integrate it into a heuristic model. Furthermore the orographic forcing, which is often neglected in heuristic nowcasting models, is taken into account and included in the system as an additional convective triggering mechanism. This is particularly important for areas characterized by complex orography like the Alpine region. The COALITION algorithm merges evolving thunderstorm properties with selected predictors. The forecasted evolution of the storm is the result of the interaction between convective signatures and surrounding storm environment. Eight different "object-environment" interactions are analysed in eight modules, providing ensemble nowcasts of thunderstorm attributes (satellite- and radar-based) for the following 60 minutes. All ensemble nowcasts are then combined through a weighting and thresholding scheme and the results are summarized into a single graphical map in order to facilitate user interpretation. The COALITION nowcast system has an update frequency of 5 minutes. The output highlights the cells having a high probability of severe thunderstorm development within the next 30 minutes. Verification statistics confirm that COALITION is able to nowcast the intensity of developing convective cells with sufficient skill up to a lead time of about 20 minutes.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 86
    Publication Date: 2013-09-15
    Description: In late February 2010 the extraordinary windstorm Xynthia crossed over Southwestern and Central Europe and caused severe damage, affecting particularly the Spanish and French Atlantic coasts. The storm was embedded in uncommon large-scale atmospheric and boundary conditions prior to and during its development, namely enhanced sea surface temperatures (SST) within the low-level entrainment zone of air masses, an unusual southerly position of the polar jet stream, and a remarkable split jet structure in the upper troposphere. To analyse the processes that led to the rapid intensification of this exceptional storm originating close to the subtropics (30°N), the sensitivity of the cyclone intensification to latent heat release is determined using the regional climate model COSMO-CLM forced with ERA-Interim data. A control simulation with observed SST shows that moist and warm air masses originating from the subtropical North Atlantic were involved in the cyclogenesis process and led to the formation of a vertical tower with high values of potential vorticity (PV). Sensitivity studies with reduced SST or increased laminar boundary roughness for heat led to reduced surface latent heat fluxes. This induced both a weaker and partly retarded development of the cyclone and a weakening of the PV-tower together with reduced diabatic heating rates, particularly at lower and mid levels. We infer that diabatic processes played a crucial role during the phase of rapid deepening of Xynthia and thus to its intensity over the Southeastern North Atlantic. We suggest that windstorms like Xynthia may occur more frequently under future climate conditions due to the warming SSTs and potentially enhanced latent heat release, thus increasing the windstorm risk for Southwestern Europe.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 87
    Publication Date: 2013-09-15
    Description: A new hybrid wavelet–bootstrap–neural network (WBNN) model is proposed in this study for short term (1, 3 and 5 day; 1 and 2 week; and 1 and 2 month) urban water demand forecasting. The new method was tested using data from the city of Montreal in Canada. The performance of the WBNN method was compared with the autoregressive integrated moving average (ARIMA) and autoregressive integrated moving average model with exogenous input variables (ARIMAX), traditional NNs, wavelet analysis based NNs (WNN), bootstrap based NNs (BNN), and a simple naïve persistence index model. The WBNN model was developed as an ensemble of several NNs built using bootstrap resamples of wavelet sub-time series instead of raw datasets. The results demonstrated that the hybrid WBNN and WNN models produced significantly more accurate forecasting results than the traditional NN, BNN, ARIMA and ARIMAX models. It was also found that the WBNN model reduces the uncertainty associated with the forecasts, and the performance of WBNN forecasted confidence bands were found to be more accurate and reliable than BNN forecasted confidence bands. It was found in this study that maximum temperature and total precipitation improved the accuracy of water demand forecasts using wavelet analysis. The performance of WBNN models was also compared for different numbers of bootstrap resamples (i.e., 25, 50, 100, 200, and 500) and it was found that WBNN models produced optimum results with different numbers of bootstrap resamples for different lead time forecasts with considerable variability.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 88
    Publication Date: 2013-09-20
    Description: ABSTRACT Most of the largest rivers on Earth have multiple active channels connected at bifurcations and confluences. At present a method to describe a channel network pattern and changes in the network beyond the simplistic braiding index is unavailable. Our objectives are to test a network approach to understand the character, stability and evolution of a multi-channel river pattern under natural discharge conditions. We developed a semi-automatic method to derive a chain-like directional network from images that represents the multi-channel river and to connect individual network elements through time. The Jamuna river was taken as an example with a series of Landsat TM and ETM+ images taken at irregular intervals between 1999 and 2004. We quantified the overall importance of individual channels in the entire network using a centrality property. Centrality showed that three reaches can be distinguished along the Jamuna with a different network character: the middle reach has dominantly one important channel whilst upstream and downstream there are about two important channels. Temporally, relatively few channels changed dramatically in both low flow and high flow periods despite the increase of braiding index during a flood. Based on the centrality we calculated a weighted braiding index that represents the number of important channels in the network, which is about two in the Jamuna river and which is larger immediately after floods. We conclude that the network measure centrality provides a novel characterisation of river channel networks highlighting properties and tendencies that have morphological significance. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 89
    Publication Date: 2013-09-20
    Description: Stormwater management increasingly recognises the need to emulate, to the maximum extent possible, the flow regime of receiving waters in their pre-development state. Hydrological models play a central role in assessing the catchment-scale impacts of alternative stormwater management strategies. However, because of the complexity of physical processes involved in urban hydrology, particularly subsurface flows, the predictive performance of such models is often low. We investigated how the structure of hydrological models influenced the prediction of urbanisation and stormwater management impacts on baseflow. We calibrated three conceptual models of the same reference catchment and compared the modelled flow regime from different stormwater management scenarios, using each of the three model structures. Scenarios were assessed using six metrics, characterising the whole streamflow regime and in particular baseflow. While the three models of the reference catchment represented the observed hydrograph well, the most complex structure, developed using a thorough diagnostic of the catchment behaviour, better captured the change in hydrological regime during dry years. Predictions of baseflow changes due to urbanisation varied significantly according to the model structure. Similarly, the models showed distinct responses to the stormwater management scenarios applied, especially for scenarios involving infiltration of stormwater at source. Our results confirm the importance of predicting the consequences of land use changes with conceptual models that are consistent with the hydrological behaviour of the study catchment. Future work should help quantify the uncertainties due to model structure, and thus provide practical guidance to the use of catchment models for assessing stormwater management strategies. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 90
    Publication Date: 2013-09-20
    Description: Animals living in tropical regions may be at increased risk from climate change because current temperatures at these locations already approach critical physiological thresholds. Relatively small temperature increases could cause animals to exceed these thresholds more often, resulting in substantial fitness costs or even death. Oviparous species could be especially vulnerable because the maximum thermal tolerances of incubating embryos is often lower than adult counterparts, and in many species mothers abandon the eggs after oviposition, rendering them immobile and thus unable to avoid extreme temperatures. As a consequence, the effects of climate change might become evident earlier and be more devastating for hatchling production in the tropics. Loggerhead sea turtles ( Caretta caretta ) have the widest nesting range of any living reptile, spanning temperate to tropical latitudes in both hemispheres. Currently, loggerhead sea turtle populations in the tropics produce nearly 30% fewer hatchlings per nest than temperate populations. Strong correlations between empirical hatching success and habitat quality allowed global predictions of the spatiotemporal impacts of climate change on this fitness trait. Under climate change, many sea turtle populations nesting in tropical environments are predicted to experience severe reductions in hatchling production, whereas hatching success in many temperate populations could remain unchanged or even increase with rising temperatures. Some populations could show very complex responses to climate change, with higher relative hatchling production as temperatures begin to increase, followed by declines as critical physiological thresholds are exceeded more frequently. Predicting when, where, and how climate change could impact the reproductive output of local populations is crucial for anticipating how a warming world will influence population size, growth, and stability. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 91
    Publication Date: 2013-09-20
    Description: It has recently been found that the frequency distribution of remotely sensed tree cover in the tropics has three distinct modes, which seem to correspond to forest, savanna and treeless states. This pattern has been suggested to imply that these states represent alternative attractors, and that the response of these systems to climate change would be characterized by critical transitions and hysteresis. Here, we show how this inference is contingent upon mechanisms at play. We present a simple dynamical model that can generate three alternative tree cover states (forest, savanna and a treeless state), based on known mechanisms, and use this model to simulate patterns of tree cover under different scenarios. We use these synthetic data to show that the hysteresis inferred from remotely sensed tree cover patterns will be inflated by spatial heterogeneity of environmental conditions. On the other hand, we show that the hysteresis inferred from satellite data may actually underestimate real hysteresis in response to climate change if there exists a positive feedback between regional tree cover and precipitation. Our results also indicate that such positive feedback between vegetation and climate should cause direct shifts between forest and a treeless state (rather than through an intermediate savanna-state) to become more likely. Lastly, we show how directionality of historical change in conditions may bias the observed relationship between tree cover and environmental conditions. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 92
    Publication Date: 2013-09-20
    Description: ABSTRACT Although mechanistic reaction networks have been developed to quantify the biogeochemical evolution of subsurface systems associated with bioremediation, it is difficult in practice to quantify the onset and distribution of these transitions at the field scale using commonly collected wellbore datasets. As an alternative approach to the mechanistic methods, we develop a data-driven, statistical model to identify biogeochemical transitions using various time-lapse aqueous geochemical data (e.g., Fe(II), sulfate, sulfide, acetate, and uranium concentrations) and induced polarization (IP) data. We assume that the biogeochemical transitions can be classified as several dominant states that correspond to redox transitions and test the method at a uranium-contaminated site. The relationships between the geophysical observations and geochemical time-series vary depending upon the unknown underlying redox status, which is modeled as a hidden Markov random field. We estimate unknown parameters by maximizing the joint likelihood function using the maximization-expectation algorithm. The case study results show that when considered together aqueous geochemical data and IP imaginary conductivity provide a key diagnostic signature of biogeochemical stages. The developed method provides useful information for evaluating the effectiveness of bioremediation, such as the probability of being in specific redox stages following biostimulation where desirable pathways (e.g., uranium removal) are more highly favored. The use of geophysical data in the approach advances the possibility of using non-invasive methods to monitor critical biogeochemical system stages and transitions remotely and over field relevant scales (e.g., from square meters to several hectares).
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 93
    Publication Date: 2013-09-20
    Description: In recent years, a number of numerical modelling studies of transient sea-level rise (SLR) and seawater intrusion (SWI) in flux-controlled systems have reported an overshoot phenomenon, whereby the freshwater-saltwater interface temporarily extends further inland than the eventual steady-state position. In this study, we have carried out physical sand tank modelling of SLR-SWI in a flux-controlled unconfined aquifer setting to test if SWI overshoot is a measurable physical process. Photographs of the physical SLR experiments show, for the first time, that an overshoot occurs under controlled laboratory conditions. A sea-level drop (SLD) experiment was also carried out, and overshoot was again observed, whereby the interface was temporarily closer to the coast than the eventual steady-state position. This shows that an overshoot can occur for the case of a retreating interface. Numerical modelling corroborated the physical SLR and SLD experiments. The magnitude of the overshoot for SLR and SLD in the physical experiments was 24% of the change in steady-state interface position, albeit the laboratory setting is designed to maximise overshoot extent by adopting high groundwater flow gradients and large and rapid sea-level changes. While the likelihood of overshoot at the field scale appears to be low, this work has shown that it can be observed under controlled laboratory conditions.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 94
    Publication Date: 2013-09-20
    Description: A new analytical solution of the flow equation has been developed to estimate the time to reach a near-equilibrium state in mixed aquifers, i.e. having unconfined and confined portions, following a large hydraulic perturbation. Near-equilibrium is defined as the time for an initial aquifer perturbation to dissipate by an average 95% across the aquifer.The new solution has been obtained by solving the flow system of a simplified conceptual model of a mixed aquifer using Laplace transforms. The conceptual model is based on two assumptions: 1) the groundwater flow can be reduced to a horizontal 1D problem; and 2) the transmissivity, a function of the saturated thickness, is assumed constant on the unconfined portion. This new solution depends on the storativity of the unconfined portion, the lengths of the unconfined and confined portions and the transmissivity, assumed to be constant and equal in both portions of the mixed aquifer. This solution was then tested and validated against a numerical flow model, where the variations of the saturated thickness and therefore variations of the transmissivity were either ignored, or properly modeled. The agreement between the results from the new solution and those from the numerical model is good, validating the use of this new solution to estimate the time to reach near-equilibrium in mixed aquifers. This solution for mixed aquifers, as well as the solutions for a fully confined or fully unconfined aquifer, have been used to estimate the time to reach near-equilibrium in thirteen large aquifers in the world. For those different aquifers, the time to reach near-equilibrium ranges between 0.7 ky to 2.4x10 7 ky. These results suggest that the present hydraulic heads in these aquifers are typically a mixture of responses induced from current and past hydrologic conditions and thus climate conditions. For some aquifers, the modern hydraulic heads may in fact depend upon hydrologic conditions resulting from several past climate cycles.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 95
    Publication Date: 2013-09-20
    Description: The impact of contact angle on 2D spatial and temporal water content distribution during infiltration and drainage was experimentally studied. The 0.3-0.5 mm fraction of a quartz dune sand was treated and turned sub-critically repellent (contact angle of 33 0 , 48 0 , 56 0 , and 75 0 for S33, S48, S56, and S75, respectively). The media were packed uniformly in transparent flow chambers and water was supplied to the surface as a point source at different rates (1 to 20 ml/min). A sequence of grey-value images was taken by CCD camera during infiltration and subsequent drainage; grey values were converted to volumetric water content by water volume balance. Narrow and long plumes with water accumulation behind the downward moving wetting front (tip) and negative water gradient above it (tail) developed in the S56 and S75 media during infiltration at lower water application rates. The plumes became bulbous with spatially uniform water content distribution as water application rates increased. All plumes in these media propagated downward at a constant rate during infiltration and were frozen during drainage. In contrast, regular plume shapes were observed in the S33 and S48 media at all flow rates, and drainage profiles were non-monotonic with a transition plane at the depth that water reached during infiltration. Given that the studied media have similar pore-size distributions, the conclusion is that imbibition hindered by the non-zero contact angle induced pressure buildup at the wetting front (dynamic water entry value) that controlled the plume shape and internal water-content distribution during infiltration and drainage.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 96
    Publication Date: 2013-09-22
    Description: Although fire-induced soil water repellency (SWR) and its effects on soil hydrology and geomorphology have been studied with detail, very few studies have considered the effect of rock fragments resting on the soil surface or partly embedded in soil. In this research, we have studied the effect of rock fragments on the strength and spatial distribution of fire-induced SWR at different fire severities. A fire-affected area was selected for this experiment and classified into different zones according to fire severity (unburned, low, moderate and high) and rock fragment cover (low, 〈20%, and high, 〉60%). During 7 days after fire, SWR and infiltration rates were assessed in the soil surface covered by individual rock fragments and in the midpoint between two adjacent rock fragments (with maximum spacing of 20 cm). SWR increased with fire severity. Rock fragments resting on the soil surface increased the heterogeneity of the spatial distribution of fire-induced SWR. SWR increased significantly with rock fragment cover in bare areas under moderate and high fire severity, but quantitatively important changes were only observed under high fire severity. In areas with a low rock fragment cover, water repellency from soil surfaces covered by rock fragments increased relative to bare soil surfaces, with increasing SWR. In areas with a high rock fragment cover, SWR increased significantly from non-covered to covered soil surfaces only after low-severity burning. Rock fragment cover did not affect infiltration rates, although it decreased significantly in soil surfaces after high-severity burning in areas under low and high rock fragment cover. This article is protected by copyright. All rights reserved.
    Print ISSN: 0885-6087
    Electronic ISSN: 1099-1085
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 97
    Publication Date: 2013-09-24
    Description: We present a series of idealized numerical model experiments to investigate aspects of deep convection in tropical depressions, including the effects of a boundary layer wind structure on storm structure, especially on vertical vorticity production and updraught splitting, and the combined effects of horizontal and vertical shear on vertical vorticity production, with and without background rotation. In warm-cored disturbances such as tropical depressions, the vertical shear and horizontal vorticity change sign at some level near the top of the boundary layer so that, unlike in the typical middle-latitude ‘supercell’ storm, the tilting of horizontal vorticity by a convective updraught leads not only to dipole patterns of vertical vorticity, but also to a reversal in sign of the updraught rotation with height. This finding has implications for understanding the merger of convectively-induced vorticity anomalies during vortex evolution. Ambient cyclonic horizontal shear and/or cyclonic vertical vorticity favour amplification of the cyclonically-rotating gyre of the dipole. Consistent with an earlier study, storm splitting occurs in environments with pure horizontal shear as well as pure vertical shear, but the morphology of splitting is different. In both situations, splitting is found to require a relatively unstable sounding and relatively strong wind shear.
    Print ISSN: 0035-9009
    Electronic ISSN: 1477-870X
    Topics: Geography , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 98
    Publication Date: 2013-09-24
    Description: Estimation of design quantiles of hydro-meteorological variables at critical locations in river basins is necessary for hydrological applications. To arrive at reliable estimates for locations (sites) where no or limited records are available, various regional frequency analysis (RFA) procedures have been developed over the past five decades. The most widely used procedure is based on Index-flood approach and L -moments. It assumes that values of scale and shape parameters of frequency distribution are identical across all the sites in a homogeneous region. In real world scenario, this assumption may not be valid even if a region is statistically homogeneous. To address this issue, a novel mathematical approach is proposed. It involves (i) identification of an appropriate frequency distribution to fit the random variable being analyzed for homogeneous region, (ii) use of a proposed transformation mechanism to map observations of the variable from original space to a dimensionless space where the form of distribution does not change, and variation in values of its parameters is minimal across sites, (iii) construction of a growth curve in the dimensionless space, and (iv) mapping the curve to the original space for the target site by applying inverse transformation to arrive at required quantile(s) for the site. Effectiveness of the proposed approach in predicting quantiles for ungauged sites is demonstrated through Monte-Carlo simulation experiments considering five frequency distributions that are widely used in RFA, and by case study on watersheds in conterminous United States. Results indicate that the proposed approach outperforms methods based on index-flood approach.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 99
    Publication Date: 2013-09-24
    Description: Prediction of microbial surface water contamination is a formidable task because of the inherent randomness of environmental processes driving microbial fate and transport. In this article we develop a theoretical framework of a fully stochastic model of microbial transport in watersheds, and apply the theory to a simple flow network to demonstrate its use. The framework bridges the gap between microscopic behavior of individual microorganisms and macroscopic ensemble dynamics. This scaling is accomplished within a single mathematical framework, where each microorganism behaves according to a continuous-time discrete-space Markov process, and the Markov behavior of individual microbes gives rise to a non-homogeneous Poisson random field that describes microbial population dynamics. Mean value functions are derived, and the spatial and temporal distribution of water contamination risk is computed in a straightforward manner.
    Print ISSN: 0043-1397
    Electronic ISSN: 1944-7973
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 100
    facet.materialart.
    Unknown
    Wiley
    In: Boreas
    Publication Date: 2013-09-25
    Print ISSN: 0300-9483
    Electronic ISSN: 1502-3885
    Topics: Geography , Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...